All questions will be worth 5 points. These questions are all from Munkres’ book. The answers here are brief!

(1) §10, no. 4
Solution: An increasing function on a closed interval has on a countable set of discontinuities. Let \(S_1 \) be the set of discontinuities of \(f \) and \(S_2 \) the set of discontinuities of \(g \). Then \(fg \) is continuous except at the sets \(S_1 \times [0, 1] \) and \([0, 1] \times S_2 \). Each of these is a countable union of sets of measure zero, so \(fg \) is continuous off a set of measure zero, hence integrable.

(2) §10, no. 5
Solution: \(f \) vanishes off the countable set of rational points. Let \(x_n \to x \) be a sequence with an irrational limit. Then for given \(q \) and large \(n \) it cannot be the case that \(x_n \) is of the form \(p/q \) with \(p \) and \(q \) relatively prime. Thus it follows that \(\lim_{n \to \infty} f(x_n) = 0 \) so \(f \) is continuous at \(x \). Thus, \(f \) is continuous off the rationals and so is integrable on \([0, 1] \).

(3) §11, no. 1
Take \(A \) the set of points in \([0, 1]^n\) with rational coefficients. It is countable, hence of measure zero. Its closure is the whole cube, so not of measure zero. Its boundary is \([0, 1]^n \setminus A \) so also not of measure zero since if it were then \([0, 1]^n \) would have measure zero, as the union of two such sets.

(4) §11, no. 2
It contains a ball of rectangle of positive volume, any covering by rectangles must have total volume larger than this.

(5) §11, no. 8
Since \(f \) vanishes off a closed set it is continuous on the complement (since it is locally constant, namely zero, near each point of the complement). Thus its set of discontinuities is contained in \(B \) hence has measure zero. Thus \(f \) is integrable. By Theorem 11.3 its integral vanishes.

(6) §11, no. 9
(a) If \(f(x) \geq 0 \) on \(Q \) then any lower partial sum with respect to a partition is non-negative, hence the integral itself is non-negative.
(b) By (a), \(\int_Q f \geq 0 \). So either it is positive or it vanishes. In the latter case it follows that all lower sums must vanish, since they are non-negative but smaller than than the integral. Thus \(f \) itself must vanish. Since \(f(x) > 0 \) this is not possible, so the integral is positive.