ADVANCED METHODS IN MATRIX ANALYSIS

PLAMEN KOEV

Notation

We consider n-by-n square matrices, e.g.,

$$A = [a_{ij}]_{i,j=1}^n = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{bmatrix}$$

The submatrices consisting of rows i_1, i_2, \ldots, i_k and columns j_1, j_2, \ldots, j_k will be denoted using MATLAB notation as

$$A([i_1, i_2, \ldots, i_k], [j_1, j_2, \ldots, j_k]) = \begin{bmatrix} a_{i_1,j_1} & a_{i_1,j_2} & \ldots & a_{i_1,j_k} \\ a_{i_2,j_1} & a_{i_2,j_2} & \ldots & a_{i_2,j_k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_k,j_1} & a_{i_k,j_2} & \ldots & a_{i_k,j_k} \end{bmatrix}.$$

The determinants

$$\det A([i_1, i_2, \ldots, i_k], [j_1, j_2, \ldots, j_k]) = \det A(i_1:k, j_1:k)$$

are called minors of A. In particular,

$$\det A(1:k, 1:k), k = 1, 2, \ldots, n,$$

are called leading principal minors.

1. Gaussian Elimination

The process of Gaussian elimination is a fundamental tool in solving linear systems of equations.

Example 1.1. Consider the linear system:

$$\begin{align*}
 x_1 + x_2 + x_3 &= 3 \\
 x_1 + 2x_2 + 4x_3 &= 7 \\
 x_1 + 3x_2 + 9x_3 &= 13.
\end{align*}$$

(1)

The traditional way of solving this system is to subtract the first equation from the second and the third to obtain

$$\begin{align*}
 x_1 + x_2 + x_3 &= 3 \\
 x_2 + 3x_3 &= 4 \\
 2x_2 + 8x_3 &= 12.
\end{align*}$$

Date: November 7, 2006.
Now subtract 2 times the second equation from the third to obtain
\[x_1 + x_2 + x_3 = 3 \]
\[x_2 + 3x_3 = 4 \]
\[2x_3 = 2. \]

Now we can perform back substitution:
\[x_3 = 1 \]
\[x_2 = 3 - 3x_3 = 4 - 3 \cdot 1 = 1 \]
\[x_1 = 3 - x_2 - x_3 = 3 - 1 - 1 = 1. \]

Instead of performing the same process for every right hand side, it is more advantageous to use matrix factorizations instead. Write the system (1) as
\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}
=
\begin{bmatrix}
3 \\
7 \\
13 \\
\end{bmatrix}.
\]

In general linear systems are written as
\[Ax = b \]
or
\[
\begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn} \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n \\
\end{bmatrix},
\]
where we assume that leading principal minors \(A(1 : k, 1 : k), k = 1, 2, \ldots, n \), of the \(n \)-by-\(n \) matrix \(A = [a_{ij}]_{i,j=1}^n \) are nonzero.

Some linear systems are easy to solve. For example if \(A \) is triangular or diagonal. If \(A \) is (lower or upper) triangular nonsingular matrix, then \(Ax = b \) can be solved via back substitution. The system
\[
\begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn} \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n \\
\end{bmatrix},
\]
(the zero entries of the upper triangular part have been omitted) is equivalent to
\[a_{11}x_1 = b_1 \]
\[a_{21}x_1 + a_{22}x_2 = b_2 \]
\[\ldots \]
\[a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n \]
and is solved by computing \(x_1 \) from the first equation, substituting into the second and so on:
\[x_1 = \frac{b_1}{a_{11}} \]
\[x_2 = \frac{b_2 - a_{21}x_1}{a_{22}} \]
\[\ldots \]
\[x_n = \frac{b_n - a_{n1}x_1 - a_{n2}x_2 - \ldots - a_{n,n-1}x_{n-1}}{a_{nn}}. \]
The solution to a diagonal linear system is trivial:
\[
\begin{bmatrix}
d_1 \\
d_2 \\
\vdots \\
d_n \\
\end{bmatrix}
\cdot
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n \\
\end{bmatrix}
\]
implies \(x_i = \frac{b_i}{d_i} \), \(i = 1, 2, \ldots, n \).

Definition 1.2. A matrix \(A \) is called **unit lower triangular** if \(a_{ij} = 0 \), \(1 \leq i < j \leq n \) and \(a_{ii} = 1 \), \(1 \leq i \leq n \).

An **unit upper triangular** matrix is defined analogously.

Example 1.3. The following 4-by-4 matrix is unit lower triangular
\[
\begin{bmatrix}
1 & 2 & 1 & 4 \\
3 & 5 & 1 & 6 \\
7 & 9 & 27 & 1 \\
\end{bmatrix}
\]

Exercise 1.4. Prove that if \(A \) and \(B \) are unit lower triangular matrices, then so are \(A^{-1} \) and \(AB \).

Definition 1.5. Let \(A \) be a nonsingular matrix. A decomposition of \(A \) as a product of a unit lower triangular matrix \(L \), a diagonal matrix \(D \), and a unit upper triangular matrix \(U \):
\[
A = LDU
\]
is called an **LDU decomposition** of \(A \).

The main idea in what follows is to use Gaussian elimination to compute the LDU decomposition of \(A \).

Once we have the LDU decomposition of \(A \), the equation \(Ax = b \) becomes \(LDUx = b \), which is easy to solve. First compute the solution \(y \) to the lower triangular system \(Ly = b \), then the solution \(z \) to the diagonal system \(Dy = y \), and finally the solution \(x \) to the upper triangular system \(Ux = z \). Finally,
\[
Ax = LDUx = LD(Ux) = L(Dy) = Ly = b,
\]
as desired.

So how does one compute the LDU decomposition of a nonsingular matrix \(A \)?

First we represent a subtraction of a multiple of one row from another in matrix form. Consider the matrix:
\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 4 \\
3 & 9 & 27 \\
\end{bmatrix}
\]

In order to introduce a zero in position \((3,1)\) we need to subtract 3 times the first row from the third. This is equivalent to multiplication by the matrix
\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
-3 & 0 & 1 \\
\end{bmatrix}
\]
namely

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
-3 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
3 & 9 & 27
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
0 & 6 & 24
\end{bmatrix}.
\]

Since

\[
\begin{bmatrix}
1 & 0 & 1 \\
-3 & 0 & 1
\end{bmatrix}^{-1} = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 3
\end{bmatrix},
\]

the equality (2) implies

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
3 & 9 & 27
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix} \cdot \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
3 & 0 & 1
\end{bmatrix}.
\]

Next, subtract the first row from the second to analogously obtain

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
3 & 9 & 27
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix} \cdot \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
3 & 0 & 1
\end{bmatrix}.
\]

Now observe that the matrices used for elimination combine very nicely:

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
3 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
3 & 0 & 1
\end{bmatrix},
\]

therefore

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
3 & 9 & 27
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
3 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix}.
\]

Then continue by induction—subtract 6 times the second row from the third, obtaining the decomposition

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix} \cdot \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix}.
\]

Therefore

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
3 & 9 & 27
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix} \cdot \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{bmatrix}.
\]
Algorithm 1.6 (Gaussian Elimination). The following algorithm computes the LDU decomposition of a matrix A whose leading principal minors are nonzero.

$U = A$, $L = I$, $D = I$

for $i = 1 : n - 1$

for $j = i + 1 : n$

\[l_{ji} = u_{ji}/u_{ii} \]

\[u_{j,i:n} = u_{j,i:n} - l_{ji}u_{i,n} \]

endfor

\[d_{ii} = u_{ii} \]

\[u_{i,n} = u_{i,n}/d_{ii} \]

endfor

Let the entries of L, D, and U be l_{ij}, d_i, $1 \leq i \leq n$, and u_{ij}, $i < j$. Next, we obtain formulas for l_{ij}, d_i, and u_{ij} in terms of the minors of A.

If we performed Gaussian elimination on the leading submatrix $A(1 : k, 1 : k)$ only, we would obtain

\[A(1 : k, 1 : k) = L(1 : k, 1 : k) \cdot D(1 : k, 1 : k) \cdot U(1 : k, 1 : k). \]

Since L and U are both unit lower and upper triangular, respectively, we have

\[\det A(1 : k, 1 : k) = d_1d_2 \cdots d_k. \]

Therefore

\[d_k = \frac{\det A(1 : k, 1 : k)}{\det A(1 : k - 1, 1 : k - 1)}. \]

Since subtracting a multiple of a row from another does not change the value of a determinant, we conclude that the values of all minors of A and DU are the same, in particular

\[\det A(1 : k, [1 : k - 1, j]) = d_1d_2 \cdots d_k u_{kj}. \]

Therefore

\[u_{kj} = \frac{\det A(1 : k, [1 : k - 1, j])}{\det A(1 : k, 1 : k)}, \quad k < j. \]

Analogously,

\[l_{kj} = \frac{\det A([1 : k - 1, j], 1 : k)}{\det A(1 : k, 1 : k)}, \quad k > j. \]

Theorem 1.7. If the leading principal minors $A(1 : k, 1 : k)$, $k = 1, 2, \ldots, n$, of A are nonzero, then its LDU decomposition exists and is unique.

Proof. Existence: Algorithm 1.6 completes successfully and computes an LDU decomposition of A as long as there are no divisions by zero. Divisions by zero cannot occur because $d_i = \frac{\det A(1 : k, 1 : k)}{\det A(1 : k - 1, 1 : k - 1)} \neq 0$.

Uniqueness: Suppose $A = LDU = L_1D_1U_1$. Then

\[L_1^{-1}L = D_1U_1U^{-1}D^{-1}. \]

The matrix $L_1^{-1}L$ is unit lower triangular (see Exercise 1.4) and $D_1U_1U^{-1}D^{-1}$ is upper triangular. This is only possible if they are both diagonal. Since $L_1^{-1}L$ has ones on the main diagonal, we must have $L_1^{-1}L = I$, i.e., $L = L_1$. Analogously, $U = U_1$. Finally, $D_1D^{-1} = I$ implies $D = D_1$. \qed
2. Symmetric Positive Definite Matrices

A matrix A is symmetric positive definite (s.p.d.) if it is symmetric, $A^T = A$, $x^T Ax \geq 0$ for every x, and $x^T Ax = 0$ only when $x = 0$.

If A is s.p.d., then all eigenvalues of A are positive and all leading principal minors $A(1 : k, 1 : k) > 0$, $k = 1, 2, \ldots, n$.

Let $A = LDU$ be the LDU decomposition of an s.p.d. matrix A. Then

$U^T D^T L^T = U^T D L^T = A^T = A = LDU$.

Since U^T and L^T are unit lower and upper triangular matrices, respectively, we obtain two LDU decompositions of A:

$A = U^T DL^T$ and $A = LDU$.

From Theorem 1 these decompositions must be the same, therefore $U^T = L$. Finally,

$A = LDL^T$.

We can also write $A = LDL = (LD^{1/2})(D^{1/2}L^T) = CCT$, where $C = LD^{1/2}$ is lower triangular (all elements of D, $d_i = \frac{\det A(1:k,1:k)}{\det A(1:k-1,k-1)} > 0$, so we can safely form $D^{1/2}$).

Definition 2.1. The decomposition

$A = CCT$

of an s.p.d. matrix as a product of a nonsingular lower triangular matrix and its transpose is called Cholesky decomposition.

Theorem 2.2. A matrix A is s.p.d. if and only if it has a Cholesky decomposition.

Proof. If A is s.p.d., then it has a Cholesky decomposition as we described above.

If $A = CCT$, where C is nonsingular, let $y = CTx$. Then

$x^T Ax = x^T CCT x = (CTx)^T C^T x = y^T y = y_1^2 + y_2^2 + \cdots + y_n^2 \geq 0$,

with equality only when $y = 0$, i.e., only when $x = 0$ (since $y = CTx$ and C^T is nonsingular).

Example 2.3.

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 13 & 18 \\
3 & 18 & 50
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & \\
3 & 4 & 5
\end{bmatrix} \cdot \begin{bmatrix}
1 & 2 & 3 \\
 & 4 & \\
 & & 5
\end{bmatrix}.
\]

Exercise 2.4. If A is s.p.d., then $a_{ii}a_{jj} > |a_{ij}^2|$, $i \neq j$.
3. POSITIVE AND NONNEGATIVE MATRICES

Definition 3.1. A matrix A is called positive (nonnegative) if $a_{ij} > 0$ ($a_{ij} \geq 0$).

Definition 3.2. The set of eigenvalues $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ of an n-by-n matrix A is called spectrum of A and denoted $\sigma(A)$.

Definition 3.3. The spectral radius of A is the nonnegative number

$$\rho(A) = \max\{|\lambda_i|, \lambda_i \in \sigma(A)\}.$$

Definition 3.4. A matrix norm $\|\cdot\|$ is called an operator norm if $\|AB\| \leq \|A\| \cdot \|B\|$.

Theorem 3.5. If $\|\cdot\|$ is an operator norm, then $\rho(A) \leq \|A\|$.

Proof. Let λ be an eigenvalue such that $|\lambda| = \rho(A)$. Let x be an eigenvector corresponding to the eigenvalue λ and let X be a matrix consisting of n copies of the vector x. Then $AX = \lambda X$ and

$$|\lambda| \cdot \|X\| = \|AX\| = \|A \cdot X\| \leq \|A\| \cdot \|X\|.$$

Thus $\rho(A) \leq \|A\|$.

Theorem 3.6. $\lim_{k \to \infty} A^k = 0$ if and only if $\rho(A) < 1$.

Proof. If $\lim_{k \to \infty} \rho(A) = 0$, then

$$\lim_{k \to \infty} (\rho(A))^k = \lim_{k \to \infty} (\rho(A^k)) = \lim_{k \to \infty} \|A^k\| = 0,$$

thus $\rho(A) < 1$.

Conversely, if $\rho(A) < 1$, then there exists an $\epsilon > 0$ such that $\rho(A) + \epsilon < 1$. Also, there exists a similarity transformation S such that $S^{-1}AS = A$ and $A_{i,i+1} \leq \epsilon$.

Finally,

$$\lim_{k \to \infty} \|A^k\|_{\infty} \leq \|S\| \cdot \|S^{-1}\| \cdot \lim_{k \to \infty} \|A^k\|_{\infty} = \|S\| \cdot \|S^{-1}\| \cdot \lim_{k \to \infty} (\rho(A) + \epsilon)^k = 0.$$

Theorem 3.7. Let $\|\cdot\|$ be an operator norm. Then

$$\rho(A) = \lim_{k \to \infty} \|A^k\|^{1/k}.$$

Proof. We have $\rho(A)^k \leq \rho(A^k) \leq \|A^k\|$. In the other direction, let $\epsilon > 0$ be given, then $B \equiv (\rho(A) + \epsilon)^{-1}A$ has spectral radius $\rho(B) = (\rho(A) + \epsilon)^{-1}\rho(A) < 1$, thus $\lim_{k \to \infty} \|B^k\| = 0$. Therefore there exists a number N such that $\|B^k\| < 1$ for $k > N$, which means that for $k > N$, $\|A^k\| \leq (\rho(A) + \epsilon)^k$. Finally, for $k > N$ and arbitrary ϵ we have $\|A^k\|^{1/k} \leq \rho(A) + \epsilon \leq \|A^k\|^{1/k} + \epsilon$ and we are done.

Definition 3.8. The matrix $C = |A|$ is defined as $c_{ij} = |a_{ij}|, i, j = 1, 2, \ldots, n$. The notation $A \leq B$ means $a_{ij} \leq b_{ij}, i, j = 1, 2, \ldots, n$.

Exercise 3.9. The following are true:

1. $|Ax| \leq |A| \cdot |x|$
2. $|AB| \leq |A| \cdot |B|$
3. $|A^m| \leq |A|^m$
4. $0 \leq A \leq B$ and $0 \leq C \leq D$ imply $0 \leq AC \leq BD$
5. $A \geq 0$ implies $A^m \geq 0$ and $A > 0$ implies $A^m > 0$, $m > 0$.
6. $A > 0, x \geq 0, x \neq 0$ imply $Ax > 0$
(7) $|A| \leq |B|$ imply $\|A\|_\infty \leq \|B\|_\infty$.
(8) $\|A\|_\infty = \|\|A\|_\infty$

Theorem 3.10. If $|A| \leq B$, then $\rho(A) \leq \rho(|A|) \leq \rho(B)$.

Proof. From the above exercise we have $|A|^m \leq |A|^m \leq B^m$,
\[
\|A^m\|_\infty \leq \|\|A^m\|_\infty \leq \|B^m\|_\infty \text{ and } \|A^m\|^{1/m}_\infty \leq \|\|A^m\|^{1/m}_\infty \leq \|B^m\|^{1/m}_\infty.
\]
Now we let $m \to \infty$ and use Theorem 3.7. □

Corollary 3.11. $0 \leq A \leq B$ imply $\rho(A) \leq \rho(B)$.

Corollary 3.12. If B is any principal submatrix of $A > 0$, then $\rho(B) \leq \rho(A)$.

Lemma 3.13. If the row sums of A are constant, then $\rho(A) = \|A\|_\infty$. If the column sums of A are constant, then $\rho(A) = \|A\|_1$.

Proof. Say the row sums of A are constant (and thus they equal $\|A\|_\infty$). Then $\rho(A) \leq \|A\|_\infty$. On the other side the vector $(1,1,\ldots,1)^T$ is an eigenvector with eigenvalue $\|A\|_\infty$. If the column sums of A are constant, we apply the same argument to A^T. □

Theorem 3.14. If $A \geq 0$, then
\[
\min_i \sum_{j=1}^n a_{ij} \leq \rho(A) \leq \max_i \sum_{j=1}^n a_{ij}
\]
and
\[
\min_j \sum_{i=1}^n a_{ij} \leq \rho(A) \leq \max_j \sum_{i=1}^n a_{ij}.
\]

Proof. Construct a matrix $B \leq A$ with row sums $\alpha \equiv \min_j \sum_{j=1}^n a_{ij}$. For example take $b_{ij} = a_{ij} \alpha / \sum_{j=1}^n a_{ij}$. From the previous lemma $\rho(B) = \alpha$ and from $0 \leq B \leq A$ we have $\alpha = \rho(B) \leq \rho(A)$. The rest is proven analogously. □

Corollary 3.15. If $A > 0$, then $\rho(A) > 0$.

We now generalize Theorem 3.14.

Theorem 3.16. If $A \geq 0$ and $x > 0$
\[
\min_i \frac{1}{x_i} \sum_{j=1}^n a_{ij} x_j \leq \rho(A) \leq \max_i \frac{1}{x_i} \sum_{j=1}^n a_{ij} x_j
\]
and
\[
\min_j x_j \sum_{i=1}^n \frac{a_{ij}}{x_i} \leq \rho(A) \leq \max_j x_j \sum_{i=1}^n \frac{a_{ij}}{x_i}.
\]

Proof. We have $\rho(S^{-1}AS) = \rho(A)$. If $A \geq 0$ and $S = \text{diag}(x_1, \ldots, x_n)$, $x_i > 0$, $i = 1, 2, \ldots, n$, then $S^{-1}AS \geq 0$. We apply Theorem 3.14 to $S^{-1}AS = [a_{ij}x_jx_i^{-1}]_{i,j=1}^n$ to finish the proof. □

Corollary 3.17. Let $A \geq 0$ and $x > 0$. If $\alpha, \beta > 0$ are such that $\alpha x \leq Ax \leq \beta x$, then $\alpha \leq \rho(A) \leq \beta$. Moreover if $\alpha x < Ax$, then $\alpha < \rho(A)$. If $Ax < \beta x$, then $\rho(A) < \beta$.

Corollary 3.23. \(\beta \leq \alpha \). If \(\alpha x \leq Ax \), then \(\alpha \leq \min_{i \leq n} x_i^{-1} \sum_{j=1}^{n} a_{ij} x_j \) and by the above theorem, \(\alpha \leq \rho(A) \). If \(\alpha x < Ax \), then there is \(\alpha' > \alpha \) such that \(\alpha' x \leq Ax \) for which \(\alpha' \leq \rho(A) \), thus \(\alpha < \rho(A) \). \(\square \)

Lemma 3.18. Let \(A > 0 \), \(Ax = \lambda x \) and \(|\lambda| = \rho(A) \). Then \(A|x| = \rho(A)|x| \) and \(|x| > 0 \).

Proof.

\(\rho(A)|x| = |\lambda||x| = |\lambda x| = |Ax| \leq |A||x| = A|x| \)

therefore \(y = A|x| - \rho(A)|x| \geq 0 \). Since \(|x| \geq 0, x \neq 0 \) we have \(A|x| > 0 \). Since \(A > 0 \) we have \(\rho(A) > 0 \). If \(y = 0 \), then \(A|x| = \rho(A)|x| \) and \(|x| = (\rho(A))^{-1}A|x| > 0 \).

If \(y \neq 0 \), let \(z = A|x| > 0 \). Then

\[0 < Ay = Az - \rho(A)z \]

and \(Az > \rho(A)z \). Therefore \(\rho(A) > \rho(A) \), which is a contradiction. \(\square \)

Theorem 3.19. Let \(A > 0 \). Then \(\rho(A) > 0 \), \(\rho(A) \) is an eigenvalue of \(A \), and there is a positive eigenvector \(x \) corresponding to \(\rho(A) \).

Proof. Let \(Ax = \lambda x \), where \(|\lambda| = \rho(A) \). Then according to Lemma 3.18, \(A|x| = \rho(A)|x| \), i.e., \(\rho(A) \) is an eigenvalue with an eigenvector \(|x| > 0 \). \(\square \)

Lemma 3.20. Let \(A > 0, Ax = \lambda x, x \neq 0 \), and \(|\lambda| = \rho(A) \). Then \(|x| = e^{-i\theta}x \) for some real number \(\theta \).

Proof. We have \(|Ax| = |\lambda x| = \rho(A)|x| \). From Lemma 3.18 we have \(A|x| = \rho(A)|x| \).

Therefore \(A|x| = |Ax| \), i.e.,

\[\left| \sum_{j=1}^{n} a_{ij} x_j \right| = \sum_{j=1}^{n} a_{ij} |x_j| \]

This is only possible if all \(x_j \) lie on the same ray in the complex plane. We denote the common argument by \(\theta \). Therefore \(e^{-i\theta}a_{ij}x_j > 0 \) for all \(j = 1, 2, \ldots, n \). Since \(a_{ij} > 0 \), we have \(e^{-i\theta}x > 0 \). \(\square \)

Theorem 3.21. Let \(A > 0 \), then \(|\lambda| < \rho(A) \) for every eigenvalue \(\lambda \neq \rho(A) \).

Proof. We have \(|\lambda| \leq \rho(A) \) for every eigenvalue \(\lambda \) of \(A \). If \(|\lambda| = \rho(A) \) and \(Ax = \lambda x, x \neq 0 \), then according to Lemma 3.20, \(w \equiv e^{-i\theta}x > 0 \) for some real argument \(\theta \), so \(Aw = \lambda w \). Now \(A > 0 \) and \(w > 0 \) imply \(\lambda > 0 \), i.e., \(\lambda = \rho(A) \). \(\square \)

Theorem 3.22. Let \(A > 0, Aw = \rho(A)w \) and \(Az = \rho(A)z \). Then \(w = az \) for some real number \(a \).

Proof. By Lemma 3.20, there exist \(\theta \) and \(\eta \) such that \(p \equiv e^{-i\theta}z > 0 \) and \(q \equiv e^{-i\eta}w > 0 \). Let

\[\beta = \min_{1 \leq i \leq n} q_i \]

(say \(\beta = q_k/p_k \)), and define \(r \equiv q - \beta p \geq 0 \). Then \(Ar = Aq - \beta Ap = \rho(A)(q - \beta p) = \rho(A)r \). Now \(r \geq 0 \) and \(A > 0 \) imply \(r = (\rho(A))^{-1}Ar > 0 \), which is a contradiction with \(r_k = 0 \). Therefore \(r = 0 \), hence \(q = \beta p \) and \(w = \beta e^{i(\theta - \eta)}z \). \(\square \)

Corollary 3.23. The geometric multiplicity of \(\rho(A) \) as an eigenvalue of \(A \) is one.
Theorem 3.24. The algebraic multiplicity of $\rho(A)$ as an eigenvalue of A is also one.

Proof. (Due to Froilán Dopico) Let x and y be left and right eigenvectors of A corresponding to $\rho(A)$. If the algebraic multiplicity of $\rho(A)$ is greater than one, then $x^T y = 0$ (since the geometric multiplicity of $\rho(A)$ is one). This is a contradiction with $|x| > 0$ and $|y| > 0$. □

Corollary 3.25. If $A > 0$, then there exists a unique vector $x > 0$ such that $Ax = \rho(A)x$, and $\sum_{i=1}^n x_i = 1$.

Definition 3.26. The unique vector of Corollary 3.25 is called Perron vector of $A > 0$.

Theorem 3.27 (Perron). If $A > 0$, then

1. $\rho(A) > 0$;
2. $\rho(A)$ is an eigenvalue of A;
3. There is an $x > 0$ such that $Ax = \rho(A)x$;
4. $\rho(A)$ is a simple eigenvalue of A;
5. $|\lambda| < \rho(A)$ for every eigenvalue $\lambda \neq \rho(A)$.
4. Formula of Cauchy–Binet

Let \(C = AB \) where \(A \) and \(B \) are \(m \)-by-\(n \) and \(n \)-by-\(m \), respectively, \(m \leq n \), i.e.,

\[
(c_{ij}) = \sum_{k=1}^{n} a_{ik} b_{kj}.
\]

Theorem 4.1 (Formula of Cauchy–Binet).

\[
\det C = \sum_{1 \leq k_1 < \cdots < k_m \leq n} \det A(1 : m, k_1 : m) \cdot \det B(k_1 \ldots m, 1 : m).
\]

Proof. Using (3) we get

\[
\det C = \det \begin{bmatrix}
\sum_{\alpha_1=1}^{n} a_{1\alpha_1} b_{\alpha_11} & \cdots & \sum_{\alpha_m=1}^{n} a_{1\alpha_m} b_{\alpha_m m} \\
\vdots & \ddots & \vdots \\
\sum_{\alpha_1=1}^{n} a_{m\alpha_1} b_{\alpha_11} & \cdots & \sum_{\alpha_m=1}^{n} a_{m\alpha_m} b_{\alpha_m m}
\end{bmatrix}
\]

\[
= \sum_{\alpha_1, \ldots, \alpha_m=1}^{n} \det \begin{bmatrix}
a_{1\alpha_1} b_{\alpha_11} & \cdots & a_{1\alpha_m} b_{\alpha_m m} \\
\vdots & \ddots & \vdots \\
a_{m\alpha_1} b_{\alpha_11} & \cdots & a_{m\alpha_m} b_{\alpha_m m}
\end{bmatrix}
\]

(4)

A summand in (4) is nonzero only if all \(\alpha_i \) are different. Therefore

\[
\det C = \sum_{1 \leq k_1 < \cdots < k_m \leq n} \sum_{\alpha_{1 : m} = \text{permutation of } k_{1 : m}} \det A(1 : m, \alpha_1 : m) \cdot b_{\alpha_11} b_{\alpha_2 1} \cdots b_{\alpha_m m}.
\]

where \((-1)^{(\alpha_{1 : m})}\) is the sign of the permutation \(\{\alpha_1, \ldots, \alpha_m\} \) of \(\{k_1, \ldots, k_m\} \). □

Corollary 4.2. If \(C = AB \) (\(A \) and \(B \) are \(n \)-by-\(n \)), then

\[
\det C(i_1 : p, j_1 : p) = \sum_{1 \leq i_1 < \cdots < i_p \leq n} \det A(i_1 : p, k_1 : m) \cdot \det B(k_1 : m, j_1 : p)
\]

Proof. \(C(i_1 : p, j_1 : p) = A(i_1 : p, 1 : n) B(1 : n, j_1 : p) \). □
5. Compound Matrices

Let A be n-by-n. Consider all pth order minors of A:

$$A(i_1:p, k_1:p),$$

where $1 \leq i_1 < \cdots < i_p \leq n$ and $1 \leq k_1 < \cdots < k_p \leq n$. There are N^2 such minors, where $N \equiv \binom{n}{p}$. We arrange the minors (5) in a square array by enumerating all N combinations of p numbers in (say) lexicographic order.

If we assign the numbers α and β to the combinations of indexes $i_1 < i_2 < \cdots < i_p$ and $k_1 < k_2 < \cdots < k_p$, then we denote

$$a_{\alpha \beta}^{(p)} = A(i_1:p, k_1:p).$$

Definition 5.1. The matrix

$$A^{(p)} = [a_{\alpha \beta}^{(p)}]_{\alpha, \beta = 1}^N$$

is called pth compound matrix of the matrix A.

Example 5.2. If $A = [a_{ij}]_{i,j=1}^4$, then we can order the combinations of 2 numbers from $\{1, 2, 3, 4\}$ as follows:

$$(12), (13), (14), (23), (24), (34).$$

Then

$$A^{(2)} = \begin{bmatrix}
A(1, 2, 1, 2) & A(1, 2, 1, 3) & A(1, 2, 1, 4) & A(1, 2, 2, 3) & A(1, 2, 2, 4) & A(1, 2, 3, 4) \\
A(1, 3, 1, 2) & A(1, 3, 1, 3) & A(1, 3, 1, 4) & A(1, 3, 2, 3) & A(1, 3, 2, 4) & A(1, 3, 3, 4) \\
A(1, 4, 1, 2) & A(1, 4, 1, 3) & A(1, 4, 1, 4) & A(1, 4, 2, 3) & A(1, 4, 2, 4) & A(1, 4, 3, 4) \\
A(2, 3, 1, 2) & A(2, 3, 1, 3) & A(2, 3, 1, 4) & A(2, 3, 2, 3) & A(2, 3, 2, 4) & A(2, 3, 3, 4) \\
A(2, 4, 1, 2) & A(2, 4, 1, 3) & A(2, 4, 1, 4) & A(2, 4, 2, 3) & A(2, 4, 2, 4) & A(2, 4, 3, 4) \\
A(3, 4, 1, 2) & A(3, 4, 1, 3) & A(3, 4, 1, 4) & A(3, 4, 2, 3) & A(3, 4, 2, 4) & A(3, 4, 3, 4)
\end{bmatrix}.$$}

The entries of the compound matrix are meant as determinants.

Theorem 5.3. The following properties of compound matrices hold.

1. If T is upper triangular, then $T^{(p)}$ is also upper triangular;
2. If $C = AB$, then $C^{(p)} = A^{(p)}B^{(p)}$;
3. If $B = A^{-1}$, then $B^{(p)} = (A^{(p)})^{-1}$.

Proof. We use the definition of a compound matrix and the Theorem of Cauchy–Binet.

1. Assume the minors in the compound matrix are in lexicographic order. Let

$$i_{lm}^{(k)} = T(i_{1:k}, j_{1:k})$$

and $l > m$. Therefore $i_1 = j_1, \ldots, i_r = j_r$, and $i_{r+1} > j_{r+1}$. Then

$$T(i_{1:k}, j_{1:k}) = \det \begin{bmatrix}
\lambda_{i_1} & * & \cdots & * & \cdots & * \\
0 & \lambda_{i_2} & \cdots & * & \cdots & * \\
& & \ddots & & & \\
0 & 0 & \cdots & \lambda_{i_r} & \cdots & * \\
0 & 0 & \cdots & 0 & \cdots & * \\
& & & & \ddots & \\
0 & 0 & \cdots & 0 & \cdots & *
\end{bmatrix} = 0.$$
From the Cauchy–Binet formula we have
\[
\det C(i_1:p, k_1:p) = \sum_{1 \leq l_1 < \cdots < l_p \leq n} \det A(i_1:p, l_1:p) \det B(l_1:p, k_1:p),
\]
where \(1 \leq i_1 < \cdots < i_p \leq n\) and \(1 \leq k_1 < \cdots < l_p \leq n\). We can rewrite
the above as
\[
c_{p}^{(\alpha, \beta)} = \sum_{\lambda=1}^{N} a_{\alpha \lambda}^{(p)} b_{\lambda \beta}^{(p)},
\]
\(\alpha, \beta = 1, 2, \ldots, N\), where \(\alpha, \beta,\) and \(\lambda\) are the indexes of the combinations
\(i_1:p, k_1:p,\) and \(l_1:p,\) respectively. Hence
\[
C^{(p)} = A^{(p)} B^{(p)}.
\]
(3) From \(AB = I\) we have \(A^{(p)} B^{(p)} = T^{(p)}\).

Theorem 5.4. Let the eigenvalues of a matrix \(A\) be \(\lambda_1, \lambda_2, \ldots, \lambda_n\). Then the
eigenvalues of \(A^{(k)}\) are all possible products of \(\lambda_1, \lambda_2, \ldots, \lambda_n\) taken \(k\) at a time.

Proof. Consider the Schur normal form of \(A\):
\[
A = QTQ^{-1},
\]
where \(T\) is upper triangular. Then
\[
A^{(k)} = Q^{(k)} T^{(k)} (Q^{(k)})^{-1}.
\]
The matrix \(T^{(k)} = [t_{lm}^{(k)}]\) is upper triangular. The elements on the main diagonal
of \(T^{(k)}\) are
\[
t_{ii}^{(k)} = T(i_{1:k}, i_{1:k}) = \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_k},
\]
all products of \(\lambda_1, \lambda_2, \ldots, \lambda_n\) taken \(k\) at a time. \(\square\)
6. Totally Nonnegative and Totally Positive Matrices

Definition 6.1. A matrix is called *totally nonnegative* [TN] (totally positive [TP]) if all its minors of any order are nonnegative (positive).

Example 6.2. The Cauchy matrix

\[
C = \left[\frac{1}{x_i + y_j} \right]_{i,j=1}^n,
\]

\[0 < x_1 < x_2 < \cdots < x_n, \quad 0 < y_1 < y_2 < \cdots < y_n \] is totally positive.

Any submatrix of \(C\) is also Cauchy and satisfies the same condition on the nodes, therefore it suffices to establish that \(\det C > 0\). We have

\[
\det C = \prod_{i<j} (x_j - x_i)(y_j - y_i) \prod_{i,j} (x_i + y_j) > 0.
\]

Example 6.3. A tridiagonal matrix \(T\) with positive elements and positive principal minors is TN.

Indeed, let \(i_1, \ldots, i_p\) and \(k_1, \ldots, k_p\) be such that

\[1 \leq i_1 < i_2 < \cdots < i_p \leq n, \quad 1 \leq k_1 < k_2 < \cdots < k_p \leq n\]

and

\[i_{j+1} = k_1, i_{j+1} \neq k_{j+1}, \ldots, i_{j_2} \neq k_{j_2}, i_{j_2+1} = k_{j_2+1}, \ldots\]

Then

\[
\det T(i_1, k_1, \ldots, i_p, k_p) = \det T(i_1, k_1, i_{j_1+1}, k_{j_1+1}, \ldots, i_{j_2}, k_{j_2}, i_{j_2+1}, k_{j_2+1}, \ldots).
\]

Therefore \(T(i_1, k_1, \ldots, i_p, k_p) \geq 0\).

Example 6.4. A bidiagonal matrix with positive diagonal and only one nonzero offdiagonal entry \(x > 0\) is TN.

\[
A = \begin{bmatrix}
 a_1 & x & & \\
 & a_2 & & \\
 & & \ddots & \\
 & & & a_n
\end{bmatrix}.
\]

As we will see later any nonsingular TN matrix can be represented as a product of these bidiagonal matrices and their transposes. A matrix \(A\) of this type is the most elementary building block of a nonsingular TN matrix.

Theorem 6.5. If \(A\) and \(B\) are TN (TP), then \(AB\) is also TN (TP).

Proof. Cauchy–Binet. \(\square\)

Theorem 6.6. The eigenvalues of a TP matrix \(A\) are real, positive, and distinct.

Proof. We number the eigenvalues of \(A\) as \(|\lambda_1| \geq |\lambda_2| \geq \cdots\).

The \(k\)th compound matrix \(A^{(k)}\) is positive and its eigenvalues are

\[\lambda_1 \lambda_2 \cdots \lambda_k, \quad \lambda_1 \lambda_2 \cdots \lambda_{k-1} \lambda_{k+1}, \ldots\]

Since \(A^{(k)} > 0\) we have

\[\lambda_1 \lambda_2 \cdots \lambda_k > 0, \quad (k = 1, 2, \ldots, n)\]
and

\[\lambda_1 \lambda_2 \cdots \lambda_k > \lambda_1 \lambda_2 \cdots \lambda_{k-1} \lambda_{k+1}, \quad (k = 1, 2, \ldots, n - 1). \]

The result follows. \qed

Definition 6.7. A matrix \(A \) is called oscillatory if \(A \) is TN and \(A^k \) is TP for some \(k \geq 1 \).

Exercise 6.8. Prove that the eigenvalues of an oscillatory matrix are real, positive, and distinct.
7. Neville Elimination

A nonsingular TN matrix A can be reduced to upper triangular form using only adjacent rows or columns for elimination. This process is called Neville elimination. For example the (i,j)th entry $a_{ij} \neq 0$ is eliminated by subtracting a multiple $m_{ij} = a_{ij}/a_{i-1,j}$ of the $(i-1)$st row from the ith. In matrix form this results in the decomposition $A = E_i(m_{ij}) \cdot A'$, where E_i differs from the identity only in its $(i,i-1)$ entry:

$$E_i(m_{ij}) \equiv \begin{bmatrix}
 1 & & & \\
 & 1 & & \\
 & m_{ij} & 1 & \\
 & & & \ddots \\
 & & & m_{ij} & 1 \\
 & & & & \ddots \\
 & & & & & \ddots \\
 & & & & & & 1
\end{bmatrix}.$$ \hspace{1cm} (6)

Once A is reduced to upper triangular form U, the same elimination process is applied to U using only adjacent columns. As a result A is factored as a product of $(n^2-n)/2$ matrices of type (6), a diagonal matrix D, and $(n^2-n)/2$ transposes of matrices of type (6).

One may have noticed that we bravely divided by $a_{i-1,j}$ in forming m_{ij}. This will never lead to division by zero for nonsingular TN matrices. Indeed, if $a_{i-1,k}$ is any nonzero (thus positive) entry in the $(i-1)$st row of A, then the 2×2 minor of rows $i-1$ and i and columns j and k ($j < k$) must be nonnegative. Therefore $a_{ij} > 0$ implies $a_{i-1,j} > 0$ and in turn $a_{i-1,j} = 0$ implies $a_{ij} = 0$. Equivalently, $m_{ij} = 0$ implies $m_{i+1,j} = \ldots = m_{nj} = 0$ and thus

$$m_{ij} = 0 \implies \begin{cases}
 m_{kj} = 0 \text{ for all } k > i, \text{ if } i > j; \\
 m_{ik} = 0 \text{ for all } k > j, \text{ if } i < j.
\end{cases} \hspace{1cm} (7)$$

For example:

$$\begin{bmatrix}
 1 & 2 & 6 \\
 4 & 13 & 69 \\
 28 & 131 & 852
\end{bmatrix}
= \begin{bmatrix}
 1 & & \\
 & 1 & \\
 & 4 & 1
\end{bmatrix}
\begin{bmatrix}
 1 & & \\
 & 5 & \\
 & 8 & 1
\end{bmatrix}
\begin{bmatrix}
 1 & 2 & \\
 & 1 & 6 \\
 & 9 & 1
\end{bmatrix}
\begin{bmatrix}
 1 & \\
 & 1 \\
 & 3
\end{bmatrix}.$$

The matrices E_i have the following important properties

$$E_i^{-1}(x) = E_i(-x) \hspace{1cm} (8)$$

$$E_i(x)E_j(y) = E_j(y)E_i(x), \text{ unless } |i-j| = 1 \text{ and } xy \neq 0$$

$$E_i(x)E_i(y) = E_i(x + y)$$

If we apply Neville elimination to A, eliminating one subdiagonal at a time, starting with the $(n,1)$ entry we obtain

$$A = (E_n(m_{n1})) \cdot (E_{n-1}(m_{n-1,1})E_n(m_{n2})) \cdot \ldots \cdot (E_2(m_{21})E_3(m_{32}) \ldots E_n(m_{n,n-1})) \cdot D \cdot (E_n^T(m_{n-1,n}) \ldots E_3^T(m_{23})E_2^T(m_{12}) \ldots \cdot (E_n^T(m_{2n})E_{n-1}^T(m_{1,n-1})) \cdot (E_n^T(m_{1n})). \hspace{1cm} (9)$$
Written another way (9) becomes:

\[A = \prod_{k=1}^{n-1} \prod_{j=n-k+1}^{n} E_j(m_{j,k+j-n}) \cdot D \cdot \prod_{j=1}^{k=n-1} \prod_{i=n-k+1}^{n} E_j(m_{k+j-n,j}) , \]

We “assemble” the \(E_i \)’s for each \(k \) (inside the parentheses of (9)) into bidiagonal matrices \(L^{(k)} \):

\[L^{(k)} = \begin{cases} 1 & \cdots & a_{1k} \cdots a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{k-1,k-1} & \cdots & a_{k-1,k-n} & a_k(k-2) & \cdots & a_k(k-1) \\ 0 & \cdots & 0 & a_{k+1,k-1} & \cdots & a_{k+1,k-n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & a_{nk} & \cdots & a_{nk} \end{cases} \]

where

\[(L^{(k)})_{i-1,1} \equiv (L^{(k)})_{i,i-1} = m_{i,k+i-n} \]

We analogously form unit upper bidiagonal matrices \(U^{(k)} \). Finally,

\[A = L^{(1)} \cdots L^{(n-1)} \cdot D \cdot U^{(n-1)} \cdots U^{(1)}, \]

We can obtain simple determinantal formulas for the entries of \(L^{(i)} , D \), and \(U^{(i)} \).

Since \(L = L^{(1)} \cdots L^{(n-1)} \) is lower triangular and \(U = U^{(n-1)} \cdots U^{(1)} \) is upper triangular, \(A = LDU \) is the usual LDU decomposition of \(A \) and

\[D_{ii} = \frac{\det A(1:i,1:i)}{A(1:i-1,1:i-1)} \]

Consider the matrix \(A \) after \(k - 1 \) steps of Neville elimination:

The minors of \(A \) do not change in this process, therefore

\[\det A^{(k-1)}(1:k,1:k) = a_{11}a_{22}^{(1)} \cdots a_{kk-1,k-1}^{(k-2)}a_{kk}^{(k-1)} \]

and

\[a_{kk}^{(k-1)} = \frac{\det A(1:k,1:k)}{\det A(1:k-1,1:k-1)} \]

We will now obtain similar formulas for \(a_{ij}^{(k-1)} \). The crucial observation is that we will still get the entry \(a_{ij}^{(k-1)} \) whether we run Neville elimination on rows \(1:n, \)
2 : n, . . . , or i − k + 1 : n, since \(a_{ij}^{(k-1)} \) will be obtained as a result of the very same operations.

Consider applying \(k - 1 \) steps of Neville elimination to rows \(i - k + 1 \) through \(n \) of \(A \) to obtain:

\[
\begin{bmatrix}
 a_{i+k-1,1} & a_{i+k-1,2} & \cdots & a_{i+k-1,k-1} & a_{i+k-1,k} & \cdots & a_{i+k-1,n} \\
 0 & a_{i+k,2}^{(1)} & \cdots & a_{i+k,k-1}^{(1)} & a_{i+k,k}^{(1)} & \cdots & a_{i+k,n}^{(1)} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_{i-1,k-1}^{(k-2)} & a_{i-1,k}^{(k-2)} & \cdots & a_{i-1,n}^{(k-2)} \\
 0 & 0 & \cdots & 0 & a_{i,k}^{(k-1)} & \cdots & a_{i,n}^{(k-1)} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 0 & a_{nk}^{(k-1)} & \cdots & a_{nn}^{(k-1)} \\
\end{bmatrix}
\]

Analogously to (13) we get:

\[
a_{ik}^{(k-1)} = \frac{\det A(i - k + 1 : i, 1 : k)}{\det A(i - k + 1 : i - 1, 1 : k - 1)}.
\]

Therefore the multiplier used to set an entry \((i, j)\) to zero in the process of Neville elimination equals:

\[
m_{ik} = \frac{a_{ik}}{a_{i,k-1}} = \frac{\det A(i - k + 1 : i, 1 : k)}{\det A(i - k + 1 : i - 1, 1 : k - 1)} \cdot \frac{\det A(i - k : i - 2, 1 : k - 1)}{\det A(i - k : i - 1, 1 : k)}.
\]

The connection between \(l_i^{(r)} \) and \(m_{ik} \) is given by (11).

Theorem 7.1. The following expressions are valid for the entries of the bidiagonal decomposition (12) of \(A \):

\[
(14) \quad l_1^{(k)} = \frac{\det A(q + 1 : i + 1, 1 : q + 1)}{\det A(q + 1 : i, 1 : q)} \cdot \frac{\det A(q : i - 1, 1 : i - q)}{\det A(q : i - 1, 1 : i)},
\]

\[
(15) \quad u_i^{(k)} = \frac{\det A(1 : i - q + 1, q + 1 : i + 1)}{\det A(1 : i - q + 1, q + 1 : i)} \cdot \frac{\det A(1 : i - q, q : i - 1)}{\det A(1 : i - q, q : i)},
\]

\[
(16) \quad d_i = \frac{\det A(1 : i, 1 : i)}{\det A(1 : i - 1, 1 : i - 1)},
\]

where \(q = n - k; i \geq q = n - k \) in (14) and (15); and \(l_1^{(k)} = u_1^{(k)} = 0 \) for \(i < n - k \).

Therefore, if \(A \) is TN, then \(l_i^{(k)} \geq 0, d_i \geq 0, \) and \(u_i^{(k)} \geq 0 \). Conversely, if \(l_i^{(k)} \geq 0, d_i \geq 0, \) and \(u_i^{(k)} \geq 0 \), then \(A \) is TN as a product of TN matrices, see (10).

Theorem 7.2 (Gasca, Peña). A nonsingular matrix \(A \) is TN if and only if it can be uniquely factored as

\[
A = L^{(1)} \cdots L^{(n-1)} \cdot D \cdot U^{(n-1)} \cdots U^{(1)}
\]

where \(D = \text{diag}(d_1, d_2, \ldots, d_n) \), and \(L^{(k)} \) and \(U^{(k)} \) are lower and upper unit bidiagonal matrices, respectively, such that

1. \(d_i > 0 \) for all \(i \);
2. \(l_1^{(k)} = u_1^{(k)} = 0 \) for \(i < n - k \);
3. \(l_i^{(k)} \geq 0, u_i^{(k)} \geq 0 \) for \(i \geq n - k \), \(l_i^{(k)} > 0, u_i^{(k)} > 0 \) for \(i \geq n - k \) if \(A \) is TP.
(4) \(i^{(k)} = 0 \) implies \(i^{(k-s)} = 0 \) for \(s = 1, \ldots, k - 1 \); and \(u_i^{(k)} = 0 \) implies
\(u_{i+s}^{(k-s)} = 0 \) for \(s = 1, \ldots, k - 1 \). This is equivalent to (7) and is automatically
satisfied if \(A \) is TP.

Definition 7.3. A minor of a matrix \(A \) is called initial if it is contiguous and
includes the first row or the first column. Namely, it looks like \(A(i : j, k : l) \),
\(j - i = k - l \), where \(i = 1 \) or \(k = 1 \).

Clearly the expressions (14), (15), and (16) include only (and all) initial minors
of \(A \).

Therefore in order to test if a matrix is TP, it suffices to verify that its initial
minors are positive. In practice, one computes the Neville elimination of a matrix.
If it completes successfully with all pivots and multipliers being positive, then \(A \) is
TP.

8. **Properties of Nonsingular Totally Nonnegative Matrices**

The total nonnegativity is preserved under a number of matrix operations: multiplication,
Schur complementation, taking a converse, etc. It is easiest to see these properties
starting from the bidiagonal decomposition.

There are four elementary transformations, which we call **Elementary Elimination
Transformations** (EET), each of which preserve the total nonnegativity. Most
matrix operations that preserve the total nonnegativity can typically be represented
as a sequence of EET. The EET are:

- **EET1:** Subtracting a multiple of a row from the next in order to create a zero in
a process of reducing a matrix to upper triangular form;
- **EET2:** Adding a multiple of a row (column) to the previous one;
- **EET3:** Adding a multiple of a row (column) to the next one;
- **EET4:** Scaling by a positive diagonal matrix.

Theorem 8.1. Each EET preserves the total nonnegativity of a nonsingular TN
matrix.

Proof. EET 2-4 clearly preserve the TN—they a multiplication of a TN matrix by
another TN matrix—\(E_i(x), E^T_i(x) \), or \(D > 0 \).

For EET1 we will only prove that the very first step in an elimination process
preserves the TN, the rest is analogous.

Subtracting a multiple of the \((n - 1)\)st row from the \(n\)th in order to create a zero in
position \((n, 1)\) in \(A \) is equivalent to forming

\[
E_n \left(-\frac{a_{n1}}{a_{n-1,1}} \right) A \\
= E_n(-m_{n1})A \\
= \left(\prod_{k=1}^{n-1} \prod_{j=n-k+1}^{n} E_j(n_{j,k+j-n}) \right) \left(\prod_{k=1}^{n-1} \prod_{j=n-k+1}^{n} E^T_j(m_{k+j-n,j}) \right)
\]

which is a product of TN matrices, and is thus TN.

\(\square \)
A Givens rotation \(G \) applied the process of reducing a matrix to upper triangular form preserves the TN.

The trick is to represent \(G \) as a sequence of two EETs. Indeed, applying a Givens rotation to create a zero in position (say) \((n,1)\) is equivalent to (1) subtracting a (positive) multiple of the \((n-1)\)st row from the \(n\)th in order to create a zero in position \((n,1)\), followed by (2) adding a positive multiple of the \(n\)th row to the \((n-1)\)st and finally (3) scaling the last two rows.

Let
\[
G = \begin{bmatrix} c & s \\ -s & c \end{bmatrix},
\]
where \(s^2 + c^2 = 1 \), be a Givens rotation used to set the \((n,1)\) entry of \(A \) to zero. Then
\[
G \cdot \begin{bmatrix} a_{n-1,1} & a_{n-1,2} \\ a_{n1} & a_{n2} \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \cdot \begin{bmatrix} a_{n-1,1} & a_{n-1,2} \\ a_{n1} & a_{n2} \end{bmatrix} = \begin{bmatrix} a_{(1)n-1,1}^{(1)} & a_{(1)n-1,2}^{(1)} \\ 0 & a_{n2}^{(1)} \end{bmatrix}.
\]

A simple calculation shows that \(c = 1/\sqrt{1 + x^2} \) and \(s = x/\sqrt{1 + x^2} \), where
\[
x = a_{n1}/a_{n-1,1} = m_{n1} = l_{n-1}^{(1)}
\]
is the only nonzero offdiagonal entry in \(L^{(1)} \). Now write \(G \) as
\[
G = \begin{bmatrix} 1/c & cx \\ 0 & c \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -x & 1 \end{bmatrix}
\]
\[
G = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1/c & 0 \\ -x & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -x & 1 \end{bmatrix} = E_n(m_{n1}) \cdot \begin{bmatrix} 1/c & 0 \\ -x & 1 \end{bmatrix} \cdot E_n(-m_{n1}).
\]

This is a product of three EET, each of which preserve the total nonnegativity.

Theorem 8.2. Let \(A \) and \(B \) be nonsingular, square TN matrices. The following matrices are also nonsingular and TN.

1. \(A \cdot B \)
2. The Schur complement of the \((1,1)\) entry in \(A \).
3. The J-inverse of \(A: A^* = JAJ \), where \(J = \text{diag}((-1)^i)_{i=1}^n \)
4. The converse of \(A: A^# = [a_{n+1-j,n+1-i}]_{i,j=1}^n = YAY \), where \(Y \) is the reverse identity, \(Y_{n+1-i,j} = 1 \).
5. The matrix \(R \), where \(A = QR \) is the QR decomposition of \(A \)

Proof. We use the bidiagonal decomposition of \(A \) (10) to prove that any of the matrices in question are products of positive diagonal matrices, \(E_t(x) \) or \(E_t^T(x) \), \(x > 0 \).

1. Cauchy–Binet
(2) Let A' be obtained from A after one step of Gaussian elimination. We have $A' = KA$, where

\[
K = \begin{bmatrix}
\frac{a_{21}}{a_{11}} & 1 & 1 \\
\frac{a_{31}}{a_{11}} & 1 & 1 \\
\vdots & \ddots & \ddots \\
\frac{a_{n1}}{a_{11}} & 1 & \frac{a_{n-11}}{a_{n-1-1}} \\
1 & \frac{a_{n1}}{a_{21}} & 1 \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 & \frac{a_{11}}{a_{11}} \\
1 & \frac{a_{11}}{a_{11}} & 1 \\
\vdots & \ddots & \ddots \\
1 & \frac{a_{n1}}{a_{n1}} & 1 \\
\end{bmatrix}
\]

\[
\times \begin{bmatrix}
1 & 1 & \frac{a_{11}}{a_{11}} \\
\frac{a_{21}}{a_{21}} & 1 & 1 \\
\vdots & \ddots & \ddots \\
\frac{a_{n1}}{a_{n1}} & 1 & \frac{a_{n-11}}{a_{n-1-1}} \\
1 & \frac{a_{n1}}{a_{n1}} & 1 \\
\end{bmatrix}
\]

\[
= \prod_{i=3}^{n} E_i(m_{i1}) \times \prod_{i=2}^{n} E_i(-m_{i1}).
\]

Using (10) we get

\[
KA = \prod_{i=3}^{n} E_i(m_{i1}) \times \prod_{i=2}^{n} E_i(-m_{i1}) \times A
\]

\[
= \prod_{i=3}^{n} E_i(m_{i1}) \times \prod_{i=2}^{n} E_i(-m_{i1})
\]

\[
\times \left(\prod_{k=1}^{n-1} \prod_{j=n-k+1}^{n} E_j(n_{j,k+j-n}) \right) D \left(\prod_{k=1}^{n-1} \prod_{j=n-k+1}^{n} E_j^T(m_{k+j-n,j}) \right)
\]

\[
= \prod_{i=3}^{n} E_i(m_{i1})
\]

\[
\times \left(\prod_{k=1}^{n-1} \prod_{j=n-k+2}^{n} E_j(n_{j,k+j-n}) \right) D \left(\prod_{k=1}^{n-1} \prod_{j=n-k+1}^{n} E_j^T(m_{k+j-n,j}) \right).
\]
(3) $A^* \equiv ((-1)^{i+j}a_{ij})^{-1} = (JAJ)^{-1} = JA^{-1}J$.

We have $J^2 = I$, $(E_i(x))^{-1} = E_i(-x)$, and $JE_i(-x)J = E_i(x)$. We use (10) to write

$$A^* = J \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n E_j^T (-b_{i+j-n,j}) \right) D^{-1} \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n E_j (-b_{i+j-n,j}) \right) J$$

$$= \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n (JE_j^T (-b_{i+j-n,j})J) \right) J D^{-1} \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n (JE_j (-b_{i+j-n,j})J) \right)$$

$$= \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n E_j^T (b_{i+j-n,j}) \right) D^{-1} \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n E_j (b_{i+j-n,j}) \right).$$

(4) $A^\# \equiv (a_{n+1-i,n+1-j})_{i,j=1}^n$.

Let $Y_k \equiv (\delta_{n+1-i,j})_{i,j=1}^n$ be the reverse identity. Using $Y^2 = I$ and $E_i^\#(x) = YE_i(x)Y = E_i^{n+2-i}(x)$ we obtain

$$A^\# = YAY$$

$$= Y \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n E_j (m_{j,i+j-n}) \right) D \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n E_j^T (m_{j,i+j-n}) \right) Y$$

$$= \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n YE_j (m_{j,i+j-n})Y \right) YDY \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n YE_j^T (m_{j,i+j-n})Y \right)$$

$$= \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n E_j^{n+2-j} (m_{j,i+j-n}) \right) D^\# \left(\prod_{i=1}^{n-1} \prod_{j=n-i+1}^n E_j^{n+2-j} (m_{j,i+j-n}) \right).$$

where $D^\# = YDY$ is diagonal, $D_{ii}^\# = D_{n+1-i,n+1-i}$, $i = 1, 2, \ldots, n$.

(5) A single Givens rotation, designed to reduce A to upper triangular form preserves the total nonnegativity. Therefore the resulting R matrix will still be TN.