Problem #23, p. 230: Let \(T_n \) be the game on which the better team wins its \(n \)th game. Then, in first case, the better team wins the series on the \(i \) game if and only if \(T_4 = i \) and \(4 \leq i \leq 7 \), in which case the probability that it does so is \(\Pr(T_4 = i) = \binom{1}{3}(.6)^3(.4)^{i-4} \). In particular, the probability that the stronger team wins is \(\sum_{i=4}^{7} \binom{1}{3}(.6)^3(.4)^{i-4} \). In the second case one should calculate \(\Pr(T_2 = i) = \binom{1}{2}(.6)^2(.4)^{i-2} \) for \(i \in \{2,3\} \) and conclude that, in this case, the stronger team wins with probability \(\sum_{i=2}^{3} \binom{1}{2}(.6)^2(.4)^{i-2} \).

Problem #5, p. 228: We are looking for \(x \in (0,1) \) so that

\[
.01 = 5 \int_{x}^{1} (1-t)^4 \, dt = (1-x)^5.
\]

Equivalently, \(1 - x = (0.1)^{\frac{1}{5}} \), and so \(x = 1 - (0.1)^{\frac{1}{5}} \).

Problem #10, p. 229: In both cases, out of each fifteen minute period, there are ten minutes during which the it will take train \(A \): in case (a), the initial five minutes in each period, and, in case (b), the middle five minute period. Hence, in both cases, the probability of taking train \(A \) is \(\frac{2}{5} \).

Problem #15, p. 229: Let \(X_0 \) be a standard, normal random variable.

(a) \(\Pr(X > 5) = \Pr(6X_0 + 10 > 5) = \Pr(X_0 > -\frac{5}{6}) \Pr(X_0 < \frac{5}{6}) \approx .7976 \).

(b) \(\Pr(4 < X < 16) = \Pr(X < 16) - \Pr(X < 4) = \Pr(X_0 < 1) - \Pr(X_0 < -1) = \Pr(X_0 < 1) - \Pr(X_0 > 1) = 2\Pr(X_0 < 1) - 1 \approx .6824 \).

(c) \(\Pr(X < 8) = \Pr(X_0 < -\frac{4}{6}) = \Pr(X_0 > \frac{4}{6}) = 1 - \Pr(X_0 \leq \frac{4}{6}) \approx .3694 \).

(d) \(\Pr(X < 20) = \Pr(X_0 < \frac{2}{6}) \approx .9521 \).

(e) \(\Pr(X > 16) = \Pr(X_0 > 1) = 1 - \Pr(X_0 \leq 1) \approx .1587 \).

Problem #23, p. 230: Let \(X_0 \) be a standard, normal random variable, and let \(N_6 \) be the number of 6’s which occur in \(10^4 \) rolls. Then, by the C.L.T.,

\[
\Pr \left(\frac{150 - 10^3}{\sqrt{10^3 \times \frac{5}{36}}} \leq \frac{N_6 - 10^3}{\sqrt{10^3 \times \frac{5}{36}}} \leq \frac{200 - 10^3}{\sqrt{10^3 \times \frac{5}{36}}} \right) \approx \Pr \left(\frac{150 - 10^3}{\sqrt{10^3 \times \frac{5}{36}}} \leq X_0 \leq \frac{200 - 10^3}{\sqrt{10^3 \times \frac{5}{36}}} \right)
\]

\[
= \Pr(-2\sqrt{.5} \leq X_0 \leq 4\sqrt{.5}) = \Pr(X_0 \leq 4\sqrt{.5}) + \Pr(X_0 \leq 2\sqrt{.5}) - 1.
\]

Given that \(N_6 = 200 \), the conditional probability that \(N_5 \leq 150 \) is the same as the probability that a five sided die comes up 5 on 150 out of 800 rolls. Thus, by the C.L.T., this conditional probability is approximately

\[
\Pr \left(X_0 \leq \frac{150 - \frac{800}{8}}{\sqrt{800 \times \frac{5}{8}}} \right) = \Pr \left(X_0 < -\frac{5\sqrt{2}}{8} \right) = 1 - \Pr \left(X_0 < \frac{5\sqrt{2}}{8} \right).
\]