Esercizio 1. Find the multiplicative inverse of 22 modulo 135.

Solution
We perform the Euclidean algorithm for the GCD:

\[135 = 22 \cdot 6 + 3 \]
\[22 = 3 \cdot 7 + 1 \]

and going backwards, we get

\[1 = 22 - 3 \cdot 7 = 22 - (135 - 22 \cdot 6) \cdot 7 = 22 \cdot (1 + 6) - 135 \cdot 7 = 22 \cdot 43 - 135 \cdot 7 \]

Therefore, \(22 \cdot 43 \equiv 1 \mod (135) \), namely \([22]^{-1}_{135} = 43 \).

Esercizio 2. Compute the remainder of \(3^{64} \) in the division by 67.

Solution
We have \(64 = 2^6 \). Hence

\[3^2 = 9 \]
\[3^4 = 9^2 = 81 \equiv 14 \mod (67) \]
\[3^8 = 14^2 = 196 \equiv 62 \equiv -5 \mod (67) \]
\[3^{16} = (-5)^2 = 25 \mod (67) \]
\[3^{32} = 25^2 = 625 \equiv 22 \mod (67) \]
\[3^{64} = 22^2 = 484 \equiv 15 \mod (67) \]

Esercizio 3. Solve the following system of congruence equations:

\[\begin{cases}
 x \equiv 1 \mod (3) \\
 x \equiv 2 \mod (5) \\
 x \equiv 3 \mod (7)
\end{cases} \]

Solution
The numbers 3, 5 and 7 are pairwise coprime. Hence, by the Chinese Remainder Theorem there exists a unique solution modulo \(3 \cdot 5 \cdot 7 = 105 \), and it is

\[x = 105 \cdot \left(\frac{105}{3} \right)^{-1} \cdot 1 + 105 \cdot \left(\frac{105}{5} \right)^{-1} \cdot 2 + 105 \cdot \left(\frac{105}{7} \right)^{-1} \cdot 3 \]
\[= 35 \cdot 2 \cdot 1 + 21 \cdot 1 \cdot 2 + 15 \cdot 1 \cdot 3 = 70 + 42 + 45 = 157 \equiv 52 \mod 105 \]

Esercizio 4. Prove that the following identity holds for every \(n \in \mathbb{N} \):

\[\sum_{i=0}^{n} i \binom{n}{i} = n \cdot 2^{n-1} \]

Solution
By the Binomial Theorem we have

\[(1 + x)^n = \sum_{i=0}^{n} \binom{n}{i} x^i \]
Taking the derivative of both sides we get
\[n(1 + x)^{n-1} = \sum_{i=0}^{n} \binom{n}{i} i x^{i-1} \]

Letting \(x = 1 \) we get
\[n^{2n-1} = \sum_{i=0}^{n} \binom{n}{i} \]

Esercizio 5. For every \(k \geq 1 \) and every odd prime \(p \), find the number of solutions of the following congruence equation
\[x^3 - x^2 + x - 1 \equiv 0 \pmod{p^k}. \]

Solution
We start by solving the equation modulo \(p \), which is, after factoring \(x - 1 \),
\[(x - 1)(x^2 + 1) \equiv 0 \pmod{p} \]

This equation has one solution \(x = 1 \) for every prime \(p \), and the solutions of the equation
\[x^2 \equiv -1 \pmod{p} \]

We know that this equation has (two) solutions if and only if \(p \equiv 1 \pmod{4} \) (and they are \(x = \pm \alpha \), where \(\alpha \equiv \frac{p-1}{2} \pmod{p} \)). Hence, the congruence equation mod \(p \) has:
(i) for \(p \equiv 1 \pmod{4} \), three solutions modulo \(p \), namely \(x = 1, \pm \alpha \),
(ii) for \(p \equiv 3 \pmod{4} \), one solution modulo \(p \), namely \(x = 1 \).

Next, let us see whether these solutions are singular or not. We have
\[f'(x) = 3x^2 - 2x + 1 \]

Hence,
\[f'(1) = 3 \cdot 1^2 - 2 \cdot 1 + 1 = 2 \not\equiv 0 \pmod{p} \]

so 1 is a non-singular solution. Furthermore,
\[f'(\pm \alpha) = 3 \cdot \alpha^2 \pm 2 \cdot \alpha + 1 \equiv -3 \mp 2\alpha + 1 = -2 \mp 2\alpha = -2(\pm \alpha + 1) \not\equiv 0 \pmod{p} \]

since \(-2 \not\equiv 0 \pmod{p}\) and \(\alpha \not\equiv \pm 1 \pmod{p} \) (because \((\pm 1)^2 = 1 \neq -1 \)). Hence, also \(\pm \alpha \) are a non-singular solutions. Therefore, each of these non-singular solution lifts to a unique solution modulo \(p^k \), for every \(k \geq 1 \). In conclusion, for every \(k \geq 1 \),
(i) for \(p \equiv 1 \pmod{4} \), there are three solutions modulo \(p^k \).
(ii) for \(p \equiv 3 \pmod{4} \), there is one solution modulo \(p^k \).

Esercizio 6. Let \(P(x) \in \mathbb{Z}/p\mathbb{Z}[x] \) be a polynomial of degree \(d \). Prove that \(P(x) \) has \(d \) distinct roots in \(\mathbb{Z}/p\mathbb{Z} \) if and only if \(P(x) \) divides \(x^p - x \), namely
\[x^p - x \equiv P(x)Q(x) \pmod{p} \]

for some polynomial \(Q(x) \in \mathbb{Z}/p\mathbb{Z}[x] \).
Solution
If \(P(x) \) has \(d \) distinct solutions, say \(\alpha_1, \ldots, \alpha_d \), then by dividing by \(x - \alpha_i \) repeatedly, we immediately get that it must be
\[
P(x) \equiv a_0(x - \alpha_1)(x - \alpha_2) \ldots (x - \alpha_d) \mod (p)
\]
Therefore, since \(x^p - x = (x - 0)(x - 1)(x - 2) \ldots (x - p + 1) \), we can just take
\[
Q(x) = [a_0]^{-1}(x - \beta_1)(x - \beta_2) \ldots (x - \beta_{p-d}) \mod (p)
\]
where \(\{\beta_1, \ldots, \beta_{p-d}\} = \{0,1, \ldots, p-1\}\setminus\{\alpha_1, \ldots, \alpha_d\} \).

Conversely, suppose that \(x^p - x = P(x)Q(x) \). Then, \(Q \) must have degree \(p - d \). Moreover, each of the numbers 0,1,\ldots, p-1, being a root of \(x^p - x \), must be a root of \(P(x) \) or \(Q(x) \). Which implies that \(P(x) \) must have \(d \) roots and \(Q(x) \) must have \(p - d \) roots (modulo \(p \)).