Basic Doeblin Theorem

Let \(P = ((p_{ij}))_{1 \leq i, j \leq N} \) be a transition probability matrix with \(\{1, \ldots, N\} \) as its state space, and use \(\|\rho\|_1 \) to denote \(\sum_{i=1}^{N} |\rho_i| \) for \(\rho = (\rho_1, \ldots, \rho_N) \).

Lemma 1. If \(p_{ij} \geq \frac{\epsilon}{N} \) for all \((i, j)\) and some \(\epsilon > 0 \), then \(\|\rho P^n\|_1 \leq (1-\epsilon)^n \|\rho\|_1 \) for all \(n \in \mathbb{N} \) and \(\rho \) satisfying \(\sum_{i=1}^{N} \rho_i = 0 \).

Proof. First note that \(\sum_{j=1}^{N}(\rho P)_j = \sum_{i=1}^{N} \rho_i \). Thus, it suffices to handle \(n = 1 \). Second, if \(\sum_{i=1}^{N} \rho_i = 0 \), then

\[
\|\mu P\|_1 = \sum_{j=1}^{N} \left| \sum_{i=1}^{N} \rho_i p_{ij} \right| = \sum_{j=1}^{N} \sum_{i=1}^{N} \rho_i (p_{ij} - \frac{\epsilon}{N}) \\
\leq \sum_{i=1}^{N} \sum_{j=1}^{N} |\rho_i| (p_{ij} - \frac{\epsilon}{N}) = (1-\epsilon)\|\rho\|_1.
\]

Theorem (A) (Doeblin’s). Under the conditions in Lemma 1, there exists exactly one probability vector \(\mu \) such that \(\mu P = \mu \). Moreover, for any probability vector \(\nu \) and all \(n \geq 1 \), \(\|\nu P^n - \mu\|_1 \leq 2(1-\epsilon)^n \).

Proof. Let \(\nu \) be a probability vector, and take \(\nu^{(n)} = \nu P^n \). Given \(n \geq 1 \), set \(\rho^{(n)} = \nu^{(n)} - \nu \), and observe that \(\sum_{i=1}^{N} \rho^{(n)}_i = 0 \) and \(\|\rho^{(n)}\|_1 \leq 2 \). Hence, since \(\nu^{(m+n)} - \nu^{(m)} = \rho^{(n)} P^m \), the lemma says that \(\|\nu^{(m+n)} - \nu^{(m)}\|_1 \leq 2(1-\epsilon)^m \) for all \(m, n \in \mathbb{N} \). Thus, by Cauchy’s convergence criterion, there exists a \(\mu \) to which \(\{\nu^{(n)}\}_n \) converges. Furthermore, because each \(\nu^{(n)} \) is a probability vector, so is \(\mu \). In addition,

\[
\mu P = \lim_{n \to \infty} \nu^{(n)} P = \lim_{n \to \infty} \nu P^{n+1} = \lim_{n \to \infty} \nu^{(n+1)} = \mu.
\]

That is, \(\mu P = \mu \). Finally, for any probability vector \(\nu \), \(\nu P^n - \mu = \nu P^n - \mu P^n = \rho P^n \), where \(\rho = \nu - \mu \), and so \(\|\nu P^n - \mu\|_1 \leq 2(1-\epsilon)^n \). In particular, if \(\nu P = \nu \), then \(\|\nu - \mu\|_1 = \|\nu P^n - \mu\|_1 \leq 2(1-\epsilon)^n \) for all \(n \geq 1 \), and so \(\|\nu - \mu\|_1 = 0 \).

Corollary. Suppose that, for some \(M \geq 1 \) and \(\epsilon > 0 \), \((P^M)_{ij} \geq \frac{\epsilon}{N} \) for all \((i, j)\). Then again there is a unique probability vector \(\mu \) satisfying \(\mu P = \mu \). Moreover, for any probability vector \(\nu \), \(\|\nu P^n - \mu\|_1 \leq 2(1-\epsilon)\frac{n}{N} \).

Proof. By applying the preceding to \(P^M \), we know that there is a unique probability vector \(\mu \) such that \(\mu P^M = \mu \). Hence, since \(\mu P \) is a probability vector and \((\mu P)P^M = (\mu P^M)P = \mu P \), it follows that \(\mu = \mu P \). In addition, again by the preceding, \(\|\nu (P^M) - \mu\|_1 \leq 2(1-\epsilon)^m \) for all probability vectors \(\nu \) and all \(m \geq 0 \). Hence, if \(n = mM + r \), where \(0 \leq r < M \), then \(\|\nu P^n - \mu\|_1 = \|(\nu P^n)P^r\| - \|\mu\|_1 \leq 2(1-\epsilon)^m \).

To handle general irreducible \(P \)'s, we introduce matrices \(A_n \equiv \frac{1}{N} \sum_{m=0}^{n-1} P^m \) for \(n \geq 1 \). Observe that, for each \(n \geq 1 \), \(A_n \) is again a transition probability matrix. In addition, note that all the matrices \(A_n \) and \(P^m \) commute with one another. Finally, because the state space is finite, it is clear that \(P \) is irreducible if and only if there exists a \(M > 1 \) and an \(\epsilon > 0 \) such that \(A_M \geq \frac{\epsilon}{N} \) for all \((i, j)\).

Lemma 2. For any probability vector \(\nu \), \(\|\nu A_n A_m - \nu A_m\|_1 \leq \frac{m-1}{n} \) for all \(m, n \geq 1 \).

Proof. First observe that

\[
\|\nu A_n A_m - \nu A_m\|_1 = \frac{1}{m} \left\| \sum_{k=0}^{m-1} (\nu P^k A_n - \nu A_n) \right\|_1 \\
\leq \frac{1}{m} \left\| \nu P^k A_n - \nu A_n \right\|_1.
\]
Second, for each $k \geq 0$,

$$\nu P^k A_n - \nu A_n = \frac{1}{n} \sum_{\ell=0}^{n-1} (\nu P^{k+\ell} - \nu P^n) = \frac{1}{n} \sum_{\ell=k}^{k+n-1} \nu P^\ell - \frac{1}{n} \sum_{\ell=0}^{n-1} \nu P^\ell,$$

from which it is easy to see first that $\|\nu P^k A_n - \nu A_n\|_1 \leq \frac{2k}{n}$ and then that

$$\|\nu A_n A_m - \nu A_m\|_1 \leq \frac{2}{mn} \sum_{k=0}^{m-1} k = \frac{m-1}{n}.$$ \hfill \Box

Theorem (B). Assume that $(A_M)_{ij} \geq \frac{\epsilon}{N}$ for some $M \geq 1$ and $\epsilon > 0$ and all (i,j). Then there is exactly one probability vector μ satisfying $\mu P = \mu$. In fact, for any probability vector ν and $n \geq 1$,

$$\|\nu A_n - \mu\|_1 \leq M - \frac{1}{n}.$$

Proof. First, note that, by Doeblin’s Theorem, there is precisely one μ such that $\mu A_M = \mu$. In particular, because $\mu PA_M = \mu A_M P = \mu P$, this shows that $\mu = \mu P$. On the other, if $\nu P = \nu$, then $\nu = \nu A_M$, and so, $\nu = \mu$. In other words, μ is the one and only ν satisfying $\nu P = \nu$.

To finish the proof, note that, by Lemmas 1 & 2,

$$\|\nu A_n - \mu\|_1 \leq \|\nu A_n - \nu A_M A_n\|_1 + \|\nu A_M A_n - \mu A_M\|_1 \leq \frac{M-1}{n} + (1-\epsilon)\|\nu A_n - \mu\|_1.$$ \hfill \Box

Remark: It is important to realize this last theorem is as well as one can do when P is irreducible but does not satisfy the conditions of the Corollary to Doeblin’s Theorem. To see this, consider the case when $N = 2$ and

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

It is then easy to check that P^n is either the identity I or P depending on whether n is even or odd. Hence P^n isn’t converging to anything as $n \to \infty$. On the other hand, A_n equals

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \text{ or } \begin{bmatrix} \frac{1}{2} - \frac{1}{n} & \frac{1}{2} + \frac{1}{n} \\ \frac{1}{2} + \frac{1}{n} & \frac{1}{2} - \frac{1}{n} \end{bmatrix}$$

depending on whether n is even or odd. In particular,

$$\|(1,0)A_n - \left(\frac{1}{2}, \frac{1}{2}\right)\|_1 = \frac{1}{n} \text{ when } n \text{ is odd.}$$

Interpretation of μ

Throughout this section, we will be assuming that $\{1, \ldots, N\}$ is the state space and that, for some $M \geq 1$ and $\epsilon > 0$,

$$(A_M)_{ij} \geq \frac{\epsilon}{N} \text{ for all } (i,j).$$

In addition, we will be using $\rho_j = \inf\{m \geq 1 : X_m = j\} (\equiv \infty \text{ if } X_m \neq j \text{ for any } m \geq 1)$ to denote the first time of return to the state j. Our goal is to prove that $\mu_j = \frac{1}{R_j}$, where $R_j \equiv \mathbb{E}[\rho_j|X_0 = j]$.

Theorem (C) (Mean Ergodic). If \(\mu \) is the distribution of \(X_0 \), then

\[
\max_j \mathbb{E} \left[\left(\frac{1}{n} \sum_{m=0}^{n-1} 1_{(j)}(X_m) - \mu_j \right)^2 \right] \leq \frac{2M}{n\epsilon}.
\]

Proof. Set \(f = (1_{(j)}(1) - \mu_j, \ldots, 1_{(j)}(N) - \mu_j) \). Then

\[
\frac{1}{n} \sum_{m=0}^{n-1} 1_{(j)}(X_m) - \mu_j = \frac{1}{n} \sum_{m=0}^{n-1} f_{X_m},
\]
and so

\[
\mathbb{E} \left[\left(\frac{1}{n} \sum_{m=0}^{n-1} 1_{(j)}(X_m) - \mu_j \right)^2 \right] = \frac{2}{n^2} \sum_{k=0}^{n-1} \sum_{\ell=0}^{n-k-1} \mathbb{E}[f_{X_k} f_{X_{k+\ell}}] - \frac{1}{n^2} \sum_{m=0}^{n-1} \mathbb{E}[f_\mu^2]
\]

\[
\leq \frac{2}{n^2} \sum_{k=0}^{n-1} \mathbb{E} \left[f_{X_k} \sum_{\ell=0}^{n-k-1} (P^\ell f)_{X_k} \right] = \frac{2}{n^2} \sum_{k=0}^{n-1} (n-k) \mathbb{E}[f_{X_k} (A_{n-k} f)_{X_k}].
\]

But, by the Corollary to Theorem (A),

\[
|\langle A_n f \rangle_i| = |\langle A_n \rangle_i - \mu_j| \leq \frac{M}{m\epsilon},
\]
and so the preceding leads to

\[
\mathbb{E} \left[\left(\frac{1}{n} \sum_{m=0}^{n-1} 1_{(j)}(X_m) - \mu_j \right)^2 \right] \leq \frac{2M}{n\epsilon} \quad \square.
\]

Lemma 3. For every initial distribution and \(\alpha < - \log \left(1 - \frac{\epsilon}{N} \right) \),

\[
\mathbb{E} \left[e^{\alpha u_{ij}} \right] \leq 2 + (e^\alpha - 1) \left(1 - e^\alpha \left(1 - \frac{\epsilon}{N} \right) \right)^{-1}.
\]

In particular, all moments of \(\rho_j \) are finite.

Proof. Set \(u_{ij}(m) = \mathbb{P}(\rho_j > mM \mid X_0 = i) \). Then \(u_{ij}(0) = 1 \) and

\[
u_{ij}(m + 1) = \sum_{k=1}^{N} \mathbb{P}(\rho_j > (m+1)M \& X_{m+M} = k \mid X_0 = i)
\]

\[
= \sum_{k=1}^{N} \mathbb{P}(\rho_j > M \mid X_0 = k) \mathbb{P}(\rho_j > mM \& X_{m+M} = k \mid X_0 = i)
\]

\[
\leq \max_k u_{kj}(1) \sum_{k=1}^{N} \mathbb{P}(\rho_j > mM \& X_{m+M} = k \mid X_0 = i) \leq \left(\max_k u_{kj} \right) u_{ij}(m).
\]

Hence, if \(u \equiv \max_k u_{kj}(1) \), then \(u_{ij}(m) \leq u^m \) for all \(m \geq 0 \) and \((i, j)\). Finally,

\[
1 - u_{ij}(1) = \mathbb{P}(\rho_j \leq M \mid X_0 = i) \geq \max_{1 \leq m \leq M} (P^m)_{ij} \geq (A_M)_{ij} \geq \frac{\epsilon}{N},
\]
and so \(u \leq 1 - \frac{\epsilon}{N} \). Equivalently, \(\mathbb{P}(\frac{\rho_j}{M} > m) \leq (1 - \frac{\epsilon}{N})^m \), from which the asserted estimates are easy. \(\square \)

Set \(\rho_j^{(0)} = 0 \) and, for \(n \geq 1 \), \(\rho_j^{(n)} = \inf \{ m \mid \rho_j^{(n-1)} : X_m = j \} \). That is, for \(n \geq 1 \), \(\rho_j^{(n)} \) is the time of the \(n \)th return to \(j \).
Lemma 4. As \(n \to \infty \),
\[
\max_j \mathbb{E} \left[\left(\frac{\rho_j(n)}{n} - R_j \right)^2 \mid X_0 = j \right] \to 0,
\]
and so, for each \(\delta > 0 \),
\[
\lim_{n \to \infty} \max_j \mathbb{P} \left(\left| \frac{\rho_j(n)}{n} - R_j \right| \geq \delta \mid X_0 = j \right) = 0.
\]

Proof. Set \(\tau_n(j) = \rho_j(n) - \rho_j(n-1) \) for \(n \geq 1 \). Then, because
\[
\mathbb{P}(\tau_{n+1}(j) = m_{n+1} \mid \tau_1(j) = m_1, \ldots, \tau_n(j) = m_n)
= \mathbb{P}(\tau_{n+1}(j) = m_{n+1} \mid \rho_j(n) = m_1 + \cdots + m_n) = \mathbb{P}(\rho_j = m_{n+1} \mid X_0 = j).
\]
This proves that, conditioned on \(X_0 = j \), \(\{\tau_n(j) : n \geq 1\} \) is a sequence of mutually independent random variables which have the same distribution as \(\rho_j \). Hence, just as in the proof of the weak law of large numbers,
\[
\mathbb{E} \left[\left(\frac{\rho_j(n)}{n} - R_j \right)^2 \mid X_0 = j \right] = \mathbb{E} \left[\left(\frac{1}{n} \sum_{m=1}^{n} (\tau_m(j) - R_j) \right)^2 \mid X_0 = j \right] = \frac{1}{n} \text{var}(\rho_j \mid X_0 = j)
\]
and
\[
\mathbb{P} \left(\left| \frac{\rho_j(n)}{n} - R_j \right| \geq \delta \mid X_0 = j \right) \leq \frac{\text{var}(\rho_j \mid X_0 = j)}{n\delta^2}.
\]

Theorem (D). For each \(j \), \(\mu_j = \pi_j = \frac{1}{R_j} \).

Proof. First note that, because \(\mu_j = (\mu A_M)_j \), \(\mu_j \geq \frac{2}{N} \) for all \(j \). Hence, from by Theorem (C),
\[
\frac{2M}{nc} \geq \sum_j \mathbb{E} \left[\left(\frac{1}{n} \sum_{m=0}^{n-1} \mathbf{1}_{(j)}(X_m) - \mu_j \right)^2 \mid X_0 = j \right] \mu_j
\geq \frac{c}{N} \max_j \mathbb{E} \left[\left(\frac{1}{n} \sum_{m=0}^{n-1} \mathbf{1}_{(j)}(X_m) - \mu_j \right)^2 \mid X_0 = j \right],
\]
and so
\[
(*) \quad \lim_{n \to \infty} \max_j \mathbb{E} \left[\left(\frac{1}{n} \sum_{m=0}^{n-1} \mathbf{1}_{(j)}(X_m) - \mu_j \right)^2 \mid X_0 = j \right] = 0.
\]
Next, use \([x]\) is the integral part (i.e., the largest integer dominated by \(x \in \mathbb{R} \)), and observe that, when \(X_0 = j \),
\[
\left| \frac{1}{[nR_j]} \sum_{m=0}^{[nR_j]-1} \mathbf{1}_{(j)}(X_m) - \frac{1}{R_j} \right| = \left| \frac{1}{[nR_j]} \sum_{m=0}^{[nR_j]-1} \mathbf{1}_{(j)}(X_m) - \frac{n}{[nR_j]} \right| + \frac{1}{n}
= \frac{1}{[nR_j]} \left| \sum_{m=0}^{[nR_j]-1} \mathbf{1}_{(j)}(X_m) - \rho_j^{(n)} \right| + \frac{1}{n}
\leq \frac{[nR_j] - \rho_j^{(n)}}{[nR_j]} + \frac{1}{n} \leq \left| R_j - \frac{\rho_j^{(n)}}{n} \right| + \frac{2}{n}.
where. Thus, by Lemma 4,

\[
\lim_{n \to \infty} E \left[\left| \frac{1}{n R_j} \sum_{m=0}^{[n R_j] - 1} 1_\{j\}(X_m) - \frac{1}{R_j} \right|^2 \bigg| X_0 = j \right] = 0.
\]

At the same time, by (*),

\[
\lim_{n \to \infty} E \left[\left(\frac{1}{n R_j} \sum_{m=0}^{[n R_j] - 1} 1_\{j\}(X_m) - \mu_j \right)^2 \bigg| X_0 = j \right] = 0,
\]

and so we are done. \(\square\)