Some Recurrence Criteria

We give several criteria with which to test when a state is recurrent. Throughout, we will think of functions \(u \) on the state space as column vectors. Thus, the transition probability matrix \(P \) acts on the left of functions: \(Pu \) is the function such that \((Pu)_i = \sum_j P_{ij} u_j\).

Theorem (A). If \(u \) is a non-negative function which satisfies \(Pu \leq u \) and \((Pu)_j < u_j \), then \(j \) is transient.

Proof. Set \(f = u - Pu \), and note that

\[
 u_j \geq u_j - (P^nu)_j = \sum_{m=0}^{n-1} ((P^m u)_j - (P^{m+1} u)_j) = \sum_{m=0}^{n-1} (P^m f)_j \geq f_j \sum_{m=0}^{n-1} (P^m)_{jj}.
\]

Thus \(\mathbb{E}[T_j] = \sum_{n=0}^{\infty} (P^n)_{jj} \leq \frac{\nu_j}{f_j} < \infty \). □

Lemma 1. Let \(u \) be a non-negative function and \(S \) a non-empty subset of the state space. If \((Pu)_i \leq u_i \) for all \(i \notin S \) and \(\zeta = \inf\{n \geq 1 : X_n \in S\} \), then

\[
 \mathbb{E}[u_{X_{n \wedge \zeta}} \mid X_0 = i] \leq u_i \quad \text{for all } i.
\]

Moreover, if the inequality in the hypothesis is replaced by equality, the the inequality in the conclusion can be replaced by equality.

Proof. Set \(A_n = \{ \zeta > n \} \). Then, by the Markov property, for any \(i \),

\[
 \mathbb{E}[u_{X_{n+1 \wedge \zeta}} \mid X_0 = i] = \mathbb{E}[u_{X_{n+1} \wedge \zeta} 1_{A_n} \mid X_0 = i] + \sum_{k \notin S} \mathbb{E}[u_{X_{n+1} \wedge \zeta} 1_{A_k} | (X_n) \mid X_0 = i] \\
 = \mathbb{E}[u_{X_{n+1} \wedge \zeta} 1_{A_n} \mid X_0 = i] + \sum_{k \notin S} \mathbb{E}[(Pu)_k 1_{A_k} \mid X_n, X_0 = i] \\
 \leq \mathbb{E}[u_{X_{n+1} \wedge \zeta} 1_{A_n} \mid X_0 = i] + \mathbb{E}[u_{X_{n+1}} 1_{A_n} \mid X_0 = i] = \mathbb{E}[u_{X_{n \wedge \zeta}} \mid X_0 = i].
\]

Clearly, the same argument works just as well in the case of equality. □

Theorem (B). Let \(j \) be given, and set \(C = \{i : i \mapsto j\} \). If \(j \) is recurrent, then the only bounded functions \(u \) which satisfy \(u_i = (Pu)_i \) for all \(i \in C \setminus \{j\} \) are constant on \(C \). On the other hand, if \(j \) is transient, then the function \(u \) given by

\[
 u_i = \begin{cases}
 1 & \text{if } i = j \\
 \mathbb{P}(\rho_j < \infty \mid X_0 = i) & \text{if } i \neq j
 \end{cases}
\]

is a bounded, non-constant solution for \(u_i = (Pu)_i \) for all \(i \neq j \).

Proof. In proving the first part, we will assume, without loss in generality, that the \(P \) is irreducible and therefore that \(C \) is the whole of the state space. By applying Lemma 1 with \(S = \{j\} \), we see that, for \(i \neq j \),

\[
 u_i = u_j \mathbb{P}(\rho_j \leq n \mid X_0 = i) + \mathbb{E}[u_{X_n} 1_{\rho_j > n} \mid X_0 = i].
\]

Hence, since \(\mathbb{P}(\rho_j < \infty \mid X_0 = i) = 1 \) and \(u \) is bounded, we get \(u_i = u_j \) after letting \(n \to \infty \).

To prove the second part, let \(u \) be given by the above prescription, and begin by observing that, because \(j \) is transient,

\[
 1 > \mathbb{P}(\rho_j < \infty \mid X_0 = j) = P_{jj} + \sum_{i \neq j} P_{ji} u_i \geq P_{jj} + (1 - P_{jj}) \inf_{i \neq j} u_i.
\]

From this, one sees first that \(P_{jj} < 1 \) and then \(\inf_{i \neq j} u_i < 1 = u_j \). That is, \(u \) is bounded and non-constant. At the same time, when \(i \neq j \), by conditioning on what happens at time 1, we know that

\[
 u_i = \mathbb{P}(\rho_j < \infty \mid X_0 = i) = P_{ij} + \sum_{k \neq j} P_{ik} \mathbb{P}(\rho_j < \infty \mid X_0 = k) = (P u)_i.
\]
Theorem (C). Let \(\{B_m : m \geq 0\} \) be a non-decreasing sequence of subsets of the state space with the property that

\[
\mathbb{P}(\exists n \in \mathbb{N} \ X_n \notin B_m \ | \ X_0 = j) = 1 \quad \text{for some } j \in B_0 \text{ and all } m \geq 0.
\]

If there exists a non-negative solution \(u \) to \((Pu)_i \leq u_i, \ i \neq j\), for which \(a_m \equiv \inf_{i \notin B_m} u_i \to \infty \) as \(m \to \infty \), then \(j \) is recurrent.

Proof. For each \(m \geq 0 \), set \(S_m = \{j\} \cup B_m^C \), and take \(\zeta_m = \inf\{n \geq 1 : X_n \in S_m\} = \rho_j \wedge \tau_m \), where \(\tau_m \equiv \inf\{n \geq 1 : X_n \notin B_m\} \). By Lemma 3,

\[
u_j \geq \mathbb{E}[u_{X_n \wedge \zeta_m} \ | \ X_0 = j] \geq a_m \mathbb{P}(\tau_m \leq n \wedge \rho_j \ | \ X_0 = j)
\]

for all \(n \geq 0 \). Hence, because \(\mathbb{P}(\tau_m < \infty \ | \ X_0 = j) = 1 \), we conclude, after letting \(n \to \infty \), that \(u_j \geq a_m \mathbb{P}(\tau_m \leq \rho_j \ | \ X_0 = j) \) for all \(m \geq 0 \). Thus, \(\lim_{m \to \infty} \mathbb{P}(\tau_m \leq \rho_j \ | \ X_0 = j) = 0 \). But this means that

\[
\mathbb{P}(\rho_j < \infty \ | \ X_0 = j) \geq \mathbb{P}(\rho_j < \tau_m \ | \ X_0 = j) = 1 - \mathbb{P}(\tau_m \leq \rho_j \ | \ X_0 = j) > 1,
\]

and so \(j \) is recurrent. \(\Box \)

Corollary. Assume that \(\mathbf{P} \) is irreducible, and let \(\{F_m : m \geq 0\} \) be a non-decreasing sequence of finite subsets of the state space. If \(j \in F_0 \) and there exists \(u \) is a non-negative solution to \((Pu)_i \leq u_i, \ i \neq j\) with \(\inf_{i \notin F_m} u_i \to \infty \), then \(j \) is recurrent.

Proof. In view of Theorem (C), it suffices for us to check that \(\mathbb{P}(\exists n \in \mathbb{N} \ X_n \notin F_m \ | \ X_0 = j) = 1 \) for all \(m \geq 0 \). To this end, let \(\tau_m = \inf\{n \geq 1 : X_n \notin F_m\} \). By irreducibility, \(\mathbb{P}(\tau_m < \infty \ | \ X_0 = i) > 0 \) for all \(m \) and \(i \). Hence, because \(F_m \) is finite, for each \(m \) there exists a \(\theta_m \in (0, 1) \) and \(N_m \geq 1 \) such that \(\mathbb{P}(\tau_m > N_m \ | \ X_0 = i) \leq \theta_m \) for all \(i \in F_m \). But this means that

\[
\mathbb{P}(\tau_m > (\ell + 1)N_m \ | \ X_0 = j) = \sum_{i \in F_m} \mathbb{P}(\tau_m > (\ell + 1)N_m \ & \ X_{\ell N_m} = i \ | \ X_0 = j)
\]

\[
= \sum_{i \in F_m} \mathbb{P}(\tau_m > N_m \ | \ X_0 = i) \mathbb{P}(\tau_m > \ell N_m \ & \ X_{\ell N_m} = i \ | \ X_0 = j) \leq \theta_m \mathbb{P}(\tau_m > \ell N_m \ | \ X_0 = j).
\]

Thus, \(\mathbb{P}(\tau_m > \ell N_m \ | \ X_0 = j) \leq \theta_m^\ell \), and so \(\mathbb{P}(\tau_m = \infty \ | \ X_0 = j) = 0 \). \(\Box \)