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1 Definition and properties of ?.

Let V be an n-dimensional vector space over R and B a bilinear form on V . B
induces a bilinear form on ∧pV , also denoted by B determined by its value on
decomposable elements as

B(µ, ν) := det(B(ui, vj)), µ = u1 ∧ · · ·up, ν = v1 ∧ · · · vp.

Suppose we also have fixed an element Ω ∈ ∧nV which identifies ∧nV with
R. Exterior multiplication then identifies ∧n−pV with (∧pV )∗ and B maps
∧pV → (∧pV )∗. We thus get a composite map

? : ∧pV → ∧n−pV
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characterized by
α ∧ ?β = B(α, β)Ω. (1)

Properties of ?.

• Dependence on Ω. If Ω1 = λΩ then

?1 = λ?

as follows immediately from the definition.

• Dependence on B. Suppose that

B1(v, w) = B(v, Jw), J ∈ End V.

Extend J to an element of ∧V by J(v1 ∧ · · · vp) := Jv1 ∧ · · · ∧ Jvp. Thus
the extended bilinear forms are also related by

B1(µ, ν) = B(µ, Jν)

and hence
?1 = ? ◦ J.

• Behavior under direct sums. Suppose

V = V1 ⊕ V2, B = B1 ⊕ B2, Ω = Ω1 ∧ Ω2

under the identification

∧V = ∧V1 ⊗ ∧V2.

Then for α1, β1 ∈ ∧rV1, α1, β2 ∈ ∧sV2 we have

B(α1 ∧ α2, β1 ∧ β2) = B(α1, β1)B(α2, β2)

and

(α1∧α2)∧?(β1 ∧β2) = B(α1 ∧α2, β1∧β2)Ω = B(α1, β1)Ω1∧B(α2, β2)Ω2

while
α1 ∧ ?1β1 = B(α1, β1)Ω1, α2 ∧ ?2β1 = B(α2, β2)Ω2.

Hence

?(ω1 ∧ ω2) = (−1)n1−r)s ?1 ω1 ∧ ?2ω2 for ω1 ∈ ∧rV1, ω2 ∈ ∧sV2.

Since ?1ω1 ∧ ?2ω2 = (−1)(n1−r)(n2−s) ? 2ω2 ∧ ?1ω1 we can rewrite the
preceding equation as

?(ω1 ∧ ω2) = (−1)(n1−r)n2 ?2 ω2 ∧ ?1ω1.
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In particular, if n2 is even we get the simpler looking formula

?(ω1 ∧ ω2) = ?2ω2 ∧ ?1ω1.

So, by induction, if
V = V1 ⊕ · · · ⊕ Vm

is a direct sum of even dimensional subspaces and Ω = Ω1 ∧ · · ·∧Ωm then

?(ω1 ∧ · · · ∧ ωm) = ωm ∧ · · · ∧ ω1, ωi ∈ ∧(Vi). (2)

2 Exterior and interior multiplication.

Suppose that B is non-degenerate. For u ∈ V we let eu : ∧V → ∧V denote
exterior multiplication by u. For γ ∈ V ∗ we let iγ : ∧V → ∧V denote interior
multiplication by γ. We can also consider the transposes of these operators with
respect to B:

e†v : ∧pV → ∧p−1V,

defined by
B(evα, β) = B(α, e†vβ), α ∈ ∧p−1V, β ∈ ∧pV

and
i†γ : ∧p−1V → ∧pV

defined by
B(iγα, β) = B(α, i†γβ), α ∈ ∧p+1V, β ∈ ∧pV.

We claim that

e†v = (−1)p−1 ?−1 ev ? (3)

and

i†γ = (−1)p ?−1 iγ? (4)

on ∧pV .
Proof of (3). For α ∈ ∧p−1V, β ∈ ∧pV we have

B(ev ∧ α, β)Ω = evα ∧ ?β

= (−1)p−1α ∧ v ∧ ?β

= (−1)p−1α ∧ ? ?−1 ev ? β

= (−1)p−1B(α, ?−1ev ? β)Ω. �

Proof of (4). Let α ∈ ∧p+1V, β ∈ ∧pV so that

α ∧ ?β = 0.
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We have

0 = iγ(α ∧ ?β)

= (iγα) ∧ ?β + (−1)p−1α ∧ iγ ? β

= (iγα) ∧ ?β + (−1)p−1α ∧ ?(?−1iγ?)β so

B(iγα, β)Ω = (−1)pB(α, ?−1iγ ? β)Ω. �

There are alternative formulas for e†v and i†γ which are useful, and involve
dualities between V and V ∗ induced by B. We let 〈 , 〉 denote the pairing of V
and V ∗, so

〈v, `〉

denotes the value of the linear function, ` ∈ V ∗ on v ∈ V . Define the maps

L = LB, and Lop = Lop
B : V → V ∗

by
〈v, Lw〉 = B(v, w), 〈v, Lopw〉 = B(w, v), v, w ∈ V. (5)

We claim that

e†v = iLopv (6)

i†Lv = ev (7)

Proof. We may suppose that v 6= 0 and extend it to a basis v1, . . . , vn of V ,
with v1 = v. Let w1, . . . , wn be the basis of V determined by

B(vi, wj) = δij .

Let γ1, . . . , γn be the basis of V ∗ dual to w1, . . . , wn and set γ := γ1. Then

〈wi, L
opv〉 = B(v, wi)

= δ1i

= 〈wi, γ〉 so

γ = Lopv.

If J = (j1, . . . , jp) and K = (k1, . . . , kp+1 are (increasing) multi-indices then

B(evv
J , wK) = 0

unless k1 = 1 and kr+1 = ir, r = 1, . . . , p, in which case

B(evvJ , wK) = 1.

The same is true for
B(vJ , iγwK).

Hence
e†v = iγ
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which is the content of (6).
Similarly, let w = w1 and β = L(w) so that

iβvj = B(vj , w1) = δ1j .

Then
B(iβ(vK), wJ ) = 0

unless k1 = 1 and kr+1 = jr, r = 1, . . . , p in which case

B(iβ(vK), wJ ) = 1

and the same holds for B(vK , w ∧ wJ ). This proves (7).
Combining (3) and (6) gives

?−1ev? = (−1)p−1iLopv , (8)

while combining (4) and (7) gives

?−1iLv? = (−1)pev. (9)

On any vector space, independent of any choice of bilinear form we always
have the identity

iγew + ewiγ = 〈w, γ〉, v ∈ V, γ ∈ V ∗.

If γ = Lopv, then 〈w, γ〉 = B(v, w) so (3) implies

e†vew + ewe†v = B(v, w)I. (10)

3 The case of B symmetric positive definite.

In this case it is usual to choose Ω such that ‖Ω‖ = 1. The only choice left is
then of an orientation. Suppose we have fixed an orientation and so a choice of
Ω. To compute ? it is enough to compute it on decomposable elements. So let
U be a p-dimensional subspace of V and u1∧· · ·∧wp an orthonormal basis of U .
Let W be the orthogonal complement of U and let w1, . . . , wq be an orthonormal
basis of W where q := n − p. Then

u1 ∧ · · · ∧ up ∧ w1 ∧ · · · ∧ wq = ±Ω.

We claim that
?(u1 ∧ · · · ∧ up) = ±w1 ∧ · · · ∧ wq .

We need only check that

B(α, u1 ∧ · · · ∧ up)Ω = ±α ∧ w1 ∧ · · · ∧ wq

for α ∈ ∧pV which are wedge products of ui and wj since u1, . . . , up, w1, . . . , wq

form a basis of V . Now if any w’s are involved in this product decomposition
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both sides vanish. And if α =1 ∧ · · · ∧ up then this is the definition of the ±
occurring in the formula.

Suppose we have chosen both bases so that ± = +. Then

?(u1 ∧ · · · ∧ up) = w1 ∧ · · · ∧ wq

while
?(w1 ∧ · · ·wq) = ±u1 ∧ · · ·up

where ± is the sign of the permutation involved in moving all the w’s past the
u’s. This sign is (−1)p(n−p). We conclude

?2 = (−1)p(n−p) on ∧p V. (11)

In particular
?2 = (−1)p on ∧p V if n is even. (12)

4 The case of B symplectic.

Suppose n = 2m and e1, . . . , em, f1, . . . , fm is a basis of V with

B(ei, fj) = δij , B(ei, ej) = B(fi, fj) = 0.

We take
Ω := e1 ∧ f1 ∧ e2 ∧ f2 · · · ∧ em ∧ fm

which is clearly independent of the choice of basis with the above properties.
If we let Vi denote the two dimensional space spanned by ei, fi with Bi the
restriction of B to Vi and Ωi := ei ∧ fi then we are in the direct sum situation
and so can apply (2).

So to compute ? in the symplectic situation it is enough to compute it for a
two dimensional vector space with basis e, f satisfying

B(e, f) = 1, e ∧ f = Ω.

Now
B(e, e) = 0 = e ∧ e, B(f, e)Ω = −Ω = f ∧ e

so
?e = e.

Similarly
?f = f.

On any vector space the “induced bilinear form” on ∧0 is given by

B(1, 1) = 1

so
?1 = Ω.
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On the other hand,

B(e ∧ f, e ∧ f) = det

(

B(e, e) B(e, f)
B(f, e) B(f, f)

)

= det

(

0 1
−1 0

)

= 1.

So
?(e ∧ f) = 1.

This computes ? is all cases for a two dimensional symplectic vector space. We
conclude that

?2 = id (13)

first for a two dimensional symplectic vector space and then, from (2), for all
symplectic vector spaces.

5 Graded sl(2).

We consider the three dimensional graded Lie algebra

g = g−2 ⊕ g0 ⊕ g2

where each summand is one dimensional with basis F, H, E respectively and
bracket relations

[H, E] = 2E, [H, F ] = −2F, [E, F ] = H.

For example, g = sl(2) with

E =

(

0 1
0 0

)

, F =

(

0 0
1 0

)

, H =

(

1 0
0 −1

)

.

Let V be a symplectic vector space with symplectic form, B and symplectic
basis

u1, . . . , um, v1, . . . , vm

so
B(ui, uj) = 0, = B(vi, vj), B(ui, vj) = δij .

Let
ω := u1 ∧ v1 + · · · + um ∧ vm.

This element is independent of the choice of symplectic basis. (It is the image
in ∧2V of B under the identification of ∧2V ∗ with ∧2V induced by B.)

Let E(ω) : ∧V → ∧V denote the operation of exterior multiplication by ω.
So

E(ω) =
∑

eui
evi

.

Let
F (ω) := E(ω)†
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so
F (ω) =

∑

e†vi
e†ui

.

For α ∈ ∧pV we have, by (3),

e†ve
†
uα = (−1)p−1(−1)p−2 ? veveu ? α = − ? eveu ? α = ?euev ? α

so
F (ω) = ?E(ω) ? . (14)

Alternatively, if µ1, . . . , µm, ν1, . . . , νm is the basis of V ∗ dual to u1, . . . , vm then

F (ω) =
∑

iνj
iµj

. (15)

We now prove the Kaehler-Weil identity

[E(ω), F (ω)]α = (p − m)α, α ∈ ∧pV. (16)

Write
E(ω) = E1 + · · · + Em, Ej := euj

evj

and
F (ω) = F1 + · · ·Fm, Fj = iνj

iµj
.

Let Vj be the two dimensional space spanned by uj , vj and write

α = α1 ∧ · · · ∧ αp, αj ∈ ∧Vj .

Then Ei really only affects the i-th factor since we are multiplying by an even
element:

Ei(α) = α1 ∧ · · · ∧ Eiαi ∧ · · · ∧ αp

and Fi annihilates all but the i-th factor:

Fi(α) = α1 ∧ · · · ∧ Fiαi ∧ · · · ∧ αp.

So if i < j

EiFj(α) = FjEi(α) = α1 ∧ · · · ∧ Eiαi ∧ · · · ∧ Fjαj ∧ · · · ∧ αp.

In other words,
[Ei, Fj ] = 0, i 6= j.

So
[E(ω), F (ω)]α =

∑

α1 ∧ · · · ∧ [Ei, Fi]αi ∧ · · · ∧ αp

Since the sum of the degrees of the αi add up to p, it is sufficient to prove (16)
for the case of a two dimensional symplectic vector space with symplectic basis
u, v . We need consider three cases, according the possible values of p = 0, 1, 2.
Let us write E for F (ω). When p = 2, if we apply E to u ∧ v we get 0. So

[E, F ](u ∧ v) = (EF )(u ∧ v) = E1 = u ∧ v = (2 − 1)u ∧ v.
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For p = 0 we have F1 = 0 so

[E, F ]1 = −FE1 = −F [u ∧ v] = −1 = (0 − 1) · 1.

For p = 1 we have Eu = Ev = Fu = Fv = 0 so

[E, F ] = 0 = (1 − 1)id on ∧1 V. �

Let H act on ∧V by
H = (p − m)id on x ∧p V. (17)

Then, we can write (16) as

[E(ω), F (ω)] = H. (18)

Notice that since E(ω) raises degree by two,

HE(ω) = (p + 2 − m)E(ω), E(ω)H = (p − m)E(ω)

on ∧pV so
[H, E(ω)] = 2E(ω)

and similarly
[H, F (ω)] = −2F (ω).

So we can summarize are computations by saying that the assignments

F 7→ F (ω), H 7→ H, E 7→ E(ω)

give a representation of g on ∧V .
¿From now on we shall drop the ω and simply write E and F .
We can enlarge our graded sl(2) to a graded superalgebra as follows: Con-

sider the space V ⊗ R2 (or the space V ⊗ C2 if we are over the complex num-
bers).The space R2 (or C2) has has a symplectic structure which is invariant
under sl(2). Since V has a symplectic structure, the tensor product, as the
tensor product of two symplectic vector spaces, has an orthogonal structure.
Call the corresponding symmetric form, S. Thus, if we choose

e :=

(

1
0

)

, f :=

(

0
1

)

as a symplectic basis of R2, then

S(u⊗e, v⊗e) = 0 = S(u⊗f, v⊗f), S(u⊗e, v⊗f) = B(u⊗v) = S(v⊗f, u⊗e),

where u, v ∈ V . Then we can form the superalgebra whose even part is R
(commuting with everything) and whose odd part is V ⊗R2 with brackets

[w, w′] = −S(w, w′), w, w′ ∈ V ⊗R2.
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(This Lie algebra is a super analogue of the Heisenberg algebra.) In particular,

u⊗ e, v ⊗ e] = 0 = [u ⊗ f, v ⊗ f ], [u ⊗ e, v ⊗ f ] = −B(u, v).

This Lie superalgebra is clearly invariant under the action of the orthogonal
group of V ⊗ R2. Put another way, this orthogonal group acts as automor-
phisms of the superalgebra structure. In particular, sl(2) acts as infinitesimal
automorphisms(derivations) of this algebra, and so we can take the semi-direct
product of sl(2) with this Lie superalgebra. If we define

h1 := V ⊗ e, h1 := V ⊗ f

then we obtain a Lie superalgebra

g2 ⊕ h−1 ⊕ (RH ⊕R) ⊕ h1 ⊕ g2. (19)

Then the map

u ⊗ e 7→ eu

u ⊗ f 7→ e†U
r ∈ R 7→ mutliplication by r

extends the action of our graded sl(2) to a representation of the Lie superalgebra
(19) on ∧V , as can be directly checked. In particular, we have the identity

[e†v , E] = ev.

6 Hermitian vector spaces.

Let V be a 2m dimensional real vector space equipped with a positive definite
symmetric bilinear form, Bs and an alternating form Ba which are related by

Ba(v, w) = Bs(v, Jw) (20)

where
J : V → V

satisfies
J2 = −I. (21)

The fact that Ba is alternating and Bs is symmetric implies that

Bs(v, Jw) + Bs(Jv, w) = 0 (22)

which says that J infinitesimally preserves Bs. Replacing w by Jw in this
equation gives

Bs(Jv, Jw) = −Bs(v, J2w) = Bs(v, w)

10



so J preserves Bs, i.e. belongs to the orthogonal group associated with Bs. Also

Ba(Jv, Jw) = Bs(Jv, J2w) = −Bs(Jv, w) = Bs(v, Jw) = Ba(Jv, Jw)

so J belongs to the symplectic group associated to Ba.
Decompose

V = V1 ⊕ · · · ⊕ Vm

into two dimensional subspaces invariant under J and mutually perpendicular
under Bs. For each i = 1, . . . , m pick a vector ei ∈ Vi which satisfies Bs(ei, ei) =
1, i.e. is a unit vector for the orthogonal form. Let fi := −Jei. Then

Bs(ei, fi) = 0, Bs(fi, fi) = 1

and
Ba(ei, fi) = −Bs(ei, J

2ei) = Bs(ei, ei) = 1

while
Ba(ei, ej) = Ba(ei, fj) = Ba(fi, fj) = 0, i 6= j

so e1, . . . , em, f1 . . . , fm is a symplectic basis (for Ba) and an orthonormal basis
(for Bs). We take

Ω := e1 ∧ f1 ∧ c · · · ∧ em ∧ fm

as our basis of ∧2m(V ) as is our symplectic prescription, and use this to fix
the orientation of V as far as the orthogonal form Bs is concerned. We now
have two star operators, ?a corresponding to the symplectic form, Ba and ?s

corresponding to the orthogonal form, Bs. Since J preserves Bs and Ba, and
since Ba is related to Bs by (20) we conclude that

J?s = ?sJ (23)

J?a = ?aJ (24)

?a = ?s ◦ J (25)

hold, where we have extended J as usual to act on ∧V . This extended J
preserves the (extended) form Bs, i.e.

JJ† = I.

On the other hand, J2 = (−1)p on ∧pV so

J† = J−1 = (−1)pJ on ∧p V. (26)

In this formula, J†can mean either the transpose of J with respect to Bs or
with respect to Ba since J is orthogonal with respect to Bs and symplectic with
respect to Ba.

Direct verification shows that Jω = ω where

ω = e1 ∧ f1 + · · · + em ∧ fm
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is the element of ∧2V corresponding to Ba and hence that

[J, E] = 0 (27)

where E acts by multiplication by ω. Recall that F acts as the transpose of E
with respect to Ba. Taking the transpose with respect to Ba of (27) gives

[F, J−1] = 0.

Multiplying on the right and left by J gives

[J, F ] = 0. (28)

Since E and F generate g, we conclude from (27) and (28) that J commutes
with the entire sl(2) action.

According to (14)
F = ?aE?a = ?−1

a E?a

since ?2
a = I . From (28) and (25) we conclude that

F = ?−1
s E ?s . (29)

Since J lies in the Lie algebra of the orthogonal group of Bs, the one param-
eter group t 7→ exp tJ is a one parameter group of orthogonal transformations of
V and so extends to a one parameter group of one parameter group of orthogonal
transformations of ∧V which commute with ?s:

(exp tJ)?s = ?s(exp tJ).

Differentiating this equation with respect to t and setting t = 0 gives

J]?s = ?sJ
] (30)

where J ] is the derivation induced by J on the exterior algebra, i.e.

J](v1 ∧ · · · ∧ vp) = Jv1 ∧ v2 ∧ · · · ∧ vp + v1 ∧ Jv2 ∧ · · · ∧ vp + · · ·+ v1 ∧ · · · ∧ Jvp.

Let VC := V ⊗C denote the complexification of V and extend all maps from
V to VC or from ∧V to ∧VC so as to be complex linear. For example, J has
eigenvalues i and −i on VC and we can write

VC = V 1,0 ⊕ V 0,1

where V 1,0 consist of all vectors of the form v−iJv, v ∈ V and is the eigenspace
with eigenvalue i for J and V 0,1 consist of all vectors of the form v+iJv, v ∈ V
and is the eigenspace with eigenvalue −i. Both of these are complex subspaces
of VC and hence we have the complex decomposition of the complex exterior
algebra

∧VC =
⊕

∧p,q , ∧p,q := ∧p(V 1,0) ⊗ ∧q(V 0,1).
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For example,
J = ip−qI on ∧p,q

so that since Jω = ω and ω ∈ ∧2VC we conclude that

ω ∈ ∧1,1.

Therefore
E : ∧p,q → ∧p+1,q+1. (31)

Similarly,
J] = (p − q)iI on ∧p,q

Since ?s : ∧k(VC) → ∧2m−k(VC and (30) holds we conclude that

?s : ∧p,q → ∧m−q,m−p. (32)

Finally, it follows from (31), (29), and (32) that

F : ∧p,q → ∧p−1,q−1. (33)

7 Symplectic Hodge theory.

Let (X, ω) be a 2m-dimensional symplectic manifold. For α, β ∈ Ω(X)p
0 define

〈α, β〉 :=

∫

X

α ∧ ?β.

For γ ∈ Ωp−1(X)0 we have

d(γ ∧ ?β) = dγ ∧ ?β + (−1)p−1γ ∧ d ? β

= dγ ∧ ?β + (−1)p−1γ ∧ ?(?d?)β so

〈dγ, β〉 = 〈γ, d†β〉

with, d†, the transpose of d with respect to 〈 , 〉 given by

d† = (−1)p ? d ? .

We define
δ := d† = (−1)p ? d ? . (34)

The symbol of the first order differential operator , d, is given by

σ(d)(ξ) = eξ, ξ ∈ T ∗(X)x.

Hence the symbol of δ is given by

σ(δ)(ξ) = e†ξ.
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Let E act on Ω(X)0 pointwise as E(ω), that is as the operator consisting of
exterior multiplication by ω. We claim that

[δ, E] = d. (35)

Proof. Since δ is a first order differential operator, and E is a zeroth order
differential operator, the symbol of [δ, E] is given by

σ ([δ, E]) (ξ) = [σ(δ)(ξ), E] = [e†ξ, E] = eξ = σ(d)(ξ).

Thus
d − [δ, E]

is a zeroth order differential operator. So to show that it vanishes, it is enough to
find local coordinates, w1, . . . , w2m about each point such that this zeroth order
differential operator annihilates all the dwI . Now the operator d annihilates
the dwI in any coordinate system. By Darboux’s theorem, we may choose local
coordinates such that

ω = dw1 ∧ dwm+1 + · · · + dwm ∧ dw2m.

In these coordinates, the operator ? has constant coefficients when applied to
any of the dwI , and hence it follows from (34) that δdwI = 0 as well. Thus both
sides of (35) vanish when applied to dwI , completing the proof of (35). �

We let F act as E†. Taking the transpose of (35) we get

δ = [d, F ]. (36)

Next we prove that
δ† = −d. (37)

Proof. Let α ∈ Ω(X)p−1
0 , β ∈ Ωp(X)0. Then

〈δβ, α〉 = (−1)p−1〈α, δβ〉

= (−1)p−1〈dα, β〉

= (−1)p−1(−1)p〈β, dα〉

= 〈β,−dα〉. �.

Thus

(Eδ)† = −dF (38)

(δE)† = −Fd (39)

δd = δ[δ, E] = δ(δE − Dδ) = −δEδ

dδ = [δ, E]δ = δEδ so

dδ + δd = 0. (40)

We can view the last of these equations as saying that the symplectic analogue
of the (Hodge) Laplacian vanishes.
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We can summarize all the results in this section by introducing a large su-
peralgebra: Let V = V(X) denote the space of all vector fields on X , and let
Ω1 = Ω(X) denote the space of one forms. The symplectic form induces an
isomorphism

V → Ω1, ξ 7→ γ

such that
i†ξ = eγ .

Let F = F(X) = Ω0(X) denote the space of smooth functions on X . Then we
get a Lie superalgebra ĝ acting on Ω(M) where

ĝ−2 := RF

ĝ−1 := V ⊕Rδ

ĝ0 := V ⊕RH ⊕F

ĝ1 := Ω1 ⊕Rd

ĝ2 := RE.

We list several of the bracket relations, the others have already been given, or
can be obtained by taking the transpose: The element of V ⊂ ĝ0 corresponding
to the element ξ ∈ V will be denoted by Lξ and acts by Lie derivative. The
element of ĝ−1 corresponding to ξ is denoted by iξ and acts by interior product.
We have the bracket relation

[iξ, d] = Lξ

which is just the Weil identity. The element of Ω1 ⊂ ĝ1 corresponding to γ ∈ Ω1

is denoted by eγ . As already mention, it acts pointwise as exterior multiplication
by γ. We have

[iξ, eγ ] = γ(ξ) ∈ F ⊂ ĝ0.

It acts by pointwise multiplication.

8 Excursus on sl(2) modules.

Will will need some facts about sl(2) modules for our study of the Lefschetz
theorem in the next section. The action of sl(2) on Ω(X) described in the
preceding section is such that H acts as multiplication by p−m on Ωp(X). Thus
although Ω(X) is an infinite dimensional vector space, it is a finite direct sum
of (infinite dimensional) vector spaces on each of which H acts as a scalar. We
axiomatize this property, recalling that g denotes the graded sl(2), in particular
it denotes sl(2) with a specific choice of H :

Definition. A g module A is of finite H type if V is a finite direct sum

of vector spaces,

V = V1 ⊕ · · · ⊕ Vk

such that H acts as scalar multiplication by λi on Vi and

λi 6= λj , i 6= j.
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The projection πi : V → Vi corresponding to this decomposition is given by

1
∏

i6=njj (λi − λj)

∏

(H − λi).

Therefore, πi carries every g submodule into itself. In particular, any submodule
and any quotient module of a g-module of finite H type is again of finite H type.

If an element v in any H module satisfies Hv = λv, then the bracket relations
imply that

HEv = (λ + 2)Ev, and HFv = (λ − 2)Fv.

Since [E, F ] = H , it follows that [E, F ]v = λv and then by induction on k that

[E, F k]v = k(λ − k + 1)F k−1v. (41)

Indeed, for k = 1 this is just the assertion [E, F ]v = λv, and assuming the result
for k, we have

[E, F k+1]v = EF k+1v − F k+1Ev

= (EF )F kv − (FE)F kv + F [E, F k]v

= HF kv + k(λ − k + 1)F kv

= (λ − 2k + k(λ − k + 1)) Y kv

= (k + 1)(λ − k)F kv. �

¿From this we can conclude that

Every cyclic g-module of finite H type is finite dimensional.

Proof. Let v generate V as a U(g) module. Decompose v into its components
of various types:

v = v1 + · · · + vk, vi ∈ Vi.

It is enough to show that the submodule generated each vr is finite dimensional.
By Poincaré-Birkhhoff-Witt, this module is spanned by the vectors F iEjHkvi.
Since Hv is a multiple of v, it is enough to consider F iEjvr. Now HEjvr =
(λr + 2j)Ejvr. Since there are only finitely many possible eigenvalues of H (by
the definition of finite H type) it follows that Ejv = 0 for j >> 0. If j is such
that Ejv 6= 0, then H(F iEjvr) = (λr +2j− 2i)F iEjvr, so we conclude that for
each such j there are only finitely many i with F iEjvr 6= 0. In short, there are
only finitely many non-zero F iEjvr, proving that the submodule generated by
vr is finite dimensional.

If we don’t want to use the Poincaré-Birkhhoff-Witt theorem, we can proceed
as follows: We have shown that there are only finitely many non-zero F iEjvr.
We must show that they span the submodule generated by vr. Applying F gives
F i+1Ejvr which is of the same type. Applying H carries each such term into a
multiple of itself. So we need only check what happens when we apply E. We
have

EF iEj = F iEj+1vr + i(λr + 2j − i + 1)F i−1Ejvr

16



by (41). �

As immediate consequences of this result we can deduce that

• Every irreducible g-module of finite H type is finite dimensional.

• Every cyclic g-module of finite H type is a finite direct sum of irreducibles.

(The second statement is true for any finite dimensional g-module.)
Suppose the λi are real and we have labeled them in decreasing order. Then,

if v ∈ V1 we must have Ev = 0 and, by (41),

EF rv = f(λ1 − r + 1)F r−1v.

This shows that the vectors F rv span a submodule of V . Now suppose that V
is irreducible. Then the submodule spanned by these vectors is all of V . We
have

HF rv = (λ − 2r)F rv

and, since V is of finite H type, we must have F `v = 0 for some `. Let `0 be
the smallest such `, so that F `v = 0, ∀` ≥ `0,, but F `0−1v 6= 0. Set j := `0 − 1
and

vi := F iv, i = 0, . . . , j.

These vectors are linearly independent since they correspond to different eigen-
values of H , and they span all of V ; i.e. they are a basis of V . Also,

Fvj = F `0v = 0.

Applying E to this equation and using (41) we conclude that

(j + 1)(λ1 − j)vj = 0,

implying that
λ1 = j.

In terms of this basis we have,

Hvi = (j − 2i)vi

Fvi = vi+1

Evi = i(j − i + 1)vi−1

for i = 0, . . . , j. These equations completely determine the representation. Con-
versely every finite dimensional representation of g is of this form, as can easily
be verified from the above equations. We have just repeated some well known
facts about the irreducible finite dimensional representations of sl(2).

We now return to the consideration of a (possibly infinite dimensional) g-
module V of finite H type

V = V1 ⊕ · · · ⊕ Vk.
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Let us call an element homogeneous if it belongs to one of the summands in this
decomposition. Let us call an element v ∈ V primitive if it is homogeneous
and satisfies

Ev = 0.

Repeating the same proof given above (which only used the finite H type
property) we see that eventually F `v = 0 if v is primitive and that the cyclic
module generated by v is finite dimensional and that

Hv = kv

where k + 1 is the dimension of the cyclic submodule of V generated by the
primitive element v.

We can now state and prove some important structural properties of a g
module V of finite H type:

1. Every v ∈ V can be written as a finite sum

v =
∑

F rvr, vr primitive. (42)

2. The eigenvalues of H are all integers. Hence by relabeling, we may de-
compose

V =
⊕

Vr, H = rId on Vr.

We may then write
V = Veven ⊕ Vodd

where
Veven :=

⊕

r even

Vr, Vodd :=
⊕

r odd

Vr .

3. The map
F k : Vk → V−k

is bijective.

4. an element v ∈ Vr, r ≥ 0 is primitive if and only if

F r+1v = 0.

Proofs.

1. We may replace V by the cyclic module generated by v in proving 1. This
is a submodule of V and hence of finite H type. Being also cyclic, it is
finite dimensional. We may therefore decompose it into a finite sum of
irreducibles, and write v as a sum of its components in these irreducibles.
But each element of an irreducible is a sum of the desired form as proved
above. Hence v is.

18



2. The decomposition in 1. and its proof show that the only possible eigen-
values for H are integers, since this is true for finite dimensional irreducible
representations.

3. We know that this is true for irreducibles, hence for any direct sum of
irreducibles, hence for any cyclic module of finite H type. Now consider
the general case: If v ∈ V−k, consider the cyclic module generated by
v. The bijectivity property for this submodule implies that there is some
w ∈ Vk such that F kw = v. This shows that the map F K : Vk → V−k

is surjective. Similarly, to prove that this map is injective, consider the
cyclic submodule generated by v ∈ Vk. If F kv = 0 we conclude that v = 0.
Hence the map is injective as well.

4. If v is primitive, the submodule it generates is finite dimensional of di-
mension r + 1 as we have seen above. Hence the necessity follows from
the structure of finite dimensional irreducibles. To prove the sufficiency,
decompose v as in 1. Let u be the term corresponding to ` = 0 in this
decomposition, so u ∈ Vr is primitive, and this decomposition implies that

v = u + Fw, w ∈ Vr+2.

Since u ∈ Vr is primitive, we know that F r+1u = 0. Hence

0 = F r+1v = F r+2w.

Since w ∈ Vr+2 and F r+2 : Vr+2 → F−r−2 is bijective, we conclude that
w = 0. Hence v = u is primitive. �

We will also want to use items 2) and 3) with the roles of E and F interchanged
(which can be arranged by an automorphism of sl(2) so that

Ek : Vm−k → Vm+k is bijective (43)

and
If v ∈ Vm−k then Ek+1v = 0 ⇔ Fv = 0. (44)

9 The strong Lefschetz property.

We return the study of a 2m dimensional symplectic manifold, X and the action
of g on Ω = Ω(X). Since [E, d] = 0, E carries closed forms into closed forms and
exact forms into exact forms, and hence induces a map on cohomology which
we shall denote by [E]. so

[E] : Hp(X) → Hp+2(X).

In particular,
[E]k : Hm−k(X) → Hm+k(X).
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We say that X has the strong Lefschetz property if this map is surjective
for all k.

A form α is called harmonic if

dα = 0 = δα.

We shall denote the space of all harmonic forms by Ωhar. Suppose that α is
harmonic. Since [d, E] = 0, we conclude that dEα = 0. Since [d, F ] = δ, and
δα = 0, we conclude that dFα = 0. A similar argument from the bracket
relations [δ, F ] = 0, [δ, E] = d shows that δEα = 0 = δFα. In short,

Ωhar is a g submodule of Ω.

In particular, it is of finite H type and hence

Ek : Ωm−k
har → Ωm+k

har is bijective (45)

for all k. Furthermore, for µ ∈ Ωm−k,

Ek+1µ = 0 ⇔ Fµ = 0. (46)

A symplectic manifold X is said to satisfy the Brylinski condition if every
cohomology class has a representative which is harmonic.

Theorem (Mathieu).A symplectic manifold satisfies the Brylinski condition

if an only if it has the strong Lefschetz property.

Proof (Dang Yan).
Brylinski ⇒ Lefschetz. Consider the commutative diagram

�[Ωm−k
har ‘Ωm+k

har ‘Hm−k(X)‘Hm+k(X); Ek“‘[E]
k
].

The Brylinski condition says that the vertical arrows are surjective, and (45)
says that the top line is bijective. Hence the bottom row is surjective.

Lefschetz ⇒ Brylinksi. Let c ∈ Hm−k(X). Consider [E]k+1c ∈ Hm+k+2(X).
By the strong Lefschetz condition, we can write [E]k+1c = [E]k+2c2 where
c2 ∈ Hm−k−1(X). We can therefore write any element of Hm−k(X) as

c = c1 + [E]c2, c2 ∈ Hm−k−1(X), [E]c1 = 0, (47)

where we take c1 = c − [E]c2.
Next observe that it is enough to prove that cohmology classes in degree ≤ m

have harmonic representatives. Indeed, if c ∈ Hm+k(X) then c = [E]c′, c′ ∈
Hm−k(X) and a harmonic representative for c′ is carried by Ek into a harmonic
representative for c. If c ∈ H0(X) or H1(X), then [F ]c = 0 since [F ] lowers
degree by two. If µ is a closed form representing c, so that dµ = 0, the δµ =
[d, F ]µ = 0 and µ is harmonic. So we need only prove the Brylinski propoerty
for cohomology classes of degree 2 ≤ p ≤ m. We will proceed by induction on
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p usin (47). By induction, c2 has a harmonic representative, call it θ, so that
Eθ is a harmonic representative of [E]c2. So we need only prove that c1 has a
harmonic representative.

In other words, dropping the subscript, we need only prove that any c ∈
Hp(X), p = m − k satisfying [E]k+1c = 0 has a harmonic representative. Let
µ ∈ Ωm−k(X) be a representative of c. So dµ = 0 and Ek+1µ = dβ, β ∈
Ωm+k+1(X). Since

Ek+1 : Ωm−k−1(X) → Ωm+k+1(X)

is bijective, β = Ek+1α where α ∈ Ωm−k−1(X) and

Ek+1µ = dβ = Ek+1dα.

Replkace µ by ν := µ − dα. Then ν is again a reperesentative of c, and

Ek+1ν = Ek+1µ − Ek+1dα = 0

so
Fν = 0

by (44). But then
δν = [d, F ]ν = 0

so ν is a harmonic representative for c. �

Remarks.

1. If X is compact, Poincaré duality implies that dim Hm−k(X) = dim
Hm+k(X). So the strong Lefschetz condition asserts that

[E]k : Hm−k(X) → Hm+k(X)

is bijective.

2. In particular, if X is compact and satisfies the strong Lefschetz condition,
we may define a bilinear pairing on Hm−k(X) by mapping the pair (c1, c2)
into H2m(X) by

(c1, c2) 7→ [E]k(c1 · c2) =
(

[E]kc1

)

· c2

(recall that Ek is just multiplication by ωk). We may identify H2m(H)
with R (or C) using the symplectic volume form,. Composing the this
identification with the above bilinear map, we get a bilinear form, call it
K. We claim that K is non-degenerate. Indeed, if Ekc1 · c2 = 0 for all
c2, then, by Poincaré duality, Ekc1 = 0 and hence, by Strong Lefschetz,
c1 = 0.
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3. By construction, the bilinear form K is alternating when m − k is odd
and symmetric when m− k is even. For an alternating form to be nonde-
generate, the underlying vector space must be even dimensional. So, if X
is compact and satisfies the strong Lefschetz condition, all its odd degree
Betti numbers are even.

4. We will see below that a Kaehler manifold always satisfies the Brylinski
condition, by showing that a form is harmonic with respect to the symplec-
tic piece of the Kaehler form if and only if it harmonic in the Riemannian
sense, and using the fact that in a Riemannian manifold, every cohomol-
ogy class has a harmonic representative. Thus Kaheler manifolds always
satisfy the strong Lefschetz condition.

5. Many years ago Thurston produced an example of a sympletic four man-
ifold whose first Betti number is odd. This shows that the Brylinski con-
dition does not hold for all symplectic manifolds.

6. On a symplectic manifold we can replace the de Rham cohomology by
defining Hp(X)symp ⊂ Hp(X) to consist of those classes which are the
images of harmonic forms. It follows from the preceding discussion that
the strong Lefschetz condition holds when we replace Hp by Hp

symp.

10 Riemannian Hodge theory.

Let X be a compact oriented Riemann manifold of dimension n. We denote the
metric by B or (in the next section) by Bs. The ? operator acting pointwise on
∧T ∗(X) gives an operator, also denoted by ? (or by ?s in the next section)

: ? : Ωp(X) → Ωn−p(X)

satisfying
?2 = (−1)p(n−p)I. onΩp.

There is an l2 inner product on forms given by

〈α, β〉 =

∫

X

(B(α, β)xdx =

∫

X

α ∧ ?β, α, β ∈ Ωp(X),

where dx denotes the volume form (and where forms of differing degrees are
orthogonal).

If α ∈ Ωp−1, β ∈ ωp then

d(α ∧ ?β = dα ∧ β + (−1)p−1α ∧ ?(?−1d?)β.

Integrating this over X and using Stokes gives

〈dα, β〉 = 〈α, d†β〉

where
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d† = (−1)p ?−1 d ? .

We define
δ := d†, ∆ := dδ + δd

and observe that ∆ is self adjoint. The symbol of d at ξ ∈ T ∗Xx is given by eξ

and the symbol of δ is given by e†ξ so the symbol of ∆ at ξ is

σ(∆)(ξ) = eξe
†
ξ + e†ξeξ = B(ξ, ξ)xI,

so ∆ is elliptic. We may apply the theory of elliptic operators to conclude that

• The kernel of ∆ is finite dimensional.

• There exists a Greens operator G : Ωp → Ωp which is self adjoint and
whose image is orthogonal to ker ∆ and a projection H : Ωp → ker ∆ and
such that

u = ∆Gu + Hu, ∀u ∈ Ωp.

• This gives the Hodge decomposition of u ∈ Ωp into three mututally
orthogonal pieces:

u = u1 + u2 + u3, ∀u ∈ Ωp

where
u1 := Hu is harmonic

i.e. lies in ker ∆,
u2 := dδGu

is exact, and
u3 := δdGu

is coexact.

• In particular, since the image of δ is orthogonal to the closed forms, we
see that u3 = 0 is u is closed, and hence every cohomology class has a
unique harmonic representative.

11 Kaehler Hodge theory.

Let X be a compact kaehler manifold of dimension n = 2m. This means that
we are given three pieces of data: 1) a Riemann metric, which we may conisider
as providing a poisitive definite symmetric form, Bs( , )x on each cotangent
space, T ∗Xx, an antisymmetric form Ba( , )x and

J : T ∗ X → T X
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which is a bundle map satsifying

J2 = −I.

These pieces are related (at each cotangent space) as in section 6. In addition
there is the Kaehler integrability condition, one consequence (version) of which
is

dω = 0

where ω is the two form (section of ∧2T ∗X) associated with Ba as in section 6.
We will return to this doncition of integrability later.

Thus X is both a Riemannian manifold and a symplectic manifold. So it has
a star operator, ?s associated to the Riemann metric, and and a star operator
?a associated to the symplectic form, both map

Ωp → Ωn−p

and are related by
?a = ?s ◦ J.

We have

〈α, β〉s :=

∫

X

α ∧ ?sβ

and

〈α, β〉a :=

∫

X

α ∧ ?aβ

which, in view of the pointwise relation between ?a and ?a are related by

〈α, β〉a = 〈α, Jβ〉s

or, equivalently
〈α, β〉s = 〈α, J−1β〉a.

Let δ = δs denote the transpose of d with repsect to 〈 , 〉s and let δa denote the
transpose of d with respect to 〈 , 〉a. They are related by

δ = JδaJ−1. (48)

Indeed,if α ∈ Ωp−1, β ∈ Ωp,

〈dα, β〉s = 〈dα, J−1β〉a

= 〈α, δaJ−1β〉a

= 〈α, J−1(JδaJ−1)β〉a

= 〈α, (JδaJ−1)β〉s. �

Now
J−1 = (−1)pJ on Ωp.
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So, on Ωp,

δ = (−1)pJδaJ

= (−1)p(−1)p−1J−1δaJ

= −J−1δaJ

so we can also write (48) as
δ = −J−1δaJ. (49)

Recall that g = sl(2) acts on Ω(X) with E acting as multiplication by ω and
that J commutes with this action. We have

d = [δa, E]

Conjugating by J−1 gives

J−1dJ = [J−1δaJ, E] = −[δ, E].

Setting
dc := J−1dJ

we obtain
[δ, E] = −dc. (50)

We recall from section 6 that F = E† where the transpose is taken either
with respect to Bs or Ba and

F = E† = ?−1
r E ?r .

Since J† = J−1 we have, taking transposes with respect to the Riemann struc-
ture, Bs,

(dc)
†

=
(

J−1dJ
)†

= J−1δJ.

So if we define
δc := J−1δJ

we have
[d, F ] = δc. (51)

To summarize, we have

[d, E] = 0

[d, F ] = δc

[δ, E] = −dc

[δ, F ] = 0.

We also recall that we have a decomposition

Ω(X) ⊗C =
⊕

Ωp,q
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and
E : Ωp, q → Ωp+1,q+1, F : Ωp,q → Ωp−1,q−1.

Up until now, we have not made use of integrability. Now let us assume
that X is indeed a complex manifold and that in terms of holomorphic local
coordinates J is equivalent to the standard complex structure on Cm. Then in
terms of such coordinates, z1, . . . , zm every α ∈ Ωp,q can be written as

α =
∑

αK,LdzK ∧ dzL

where
K = (k1, . . . , kp), k1 < · · · < kp

and
L = (`1, . . . , `q), `1 < · · · < `q .

¿From this we deduce that

dα = ∂α + ∂α, ∂α ∈ Ωp+1,q , ∂α ∈ Ωp,q+1. (52)

This is the key property that we will use. Continuing with the assumption that
α ∈ Ωp,q, we have

dcα := J−1dJα

= ip−q
(

J−1∂α + J−1∂α
)

= ip−q
(

iq−p−1∂α + iq+1−p∂α
)

= (1/i)
(

∂α − ∂α
)

.

Thus
idc = ∂ − ∂. (53)

Now d2 = 0 implies that ∂2 = ∂
2

= 0. Thus

iddc = (∂ + ∂)(∂ − ∂)

= ∂∂ − ∂∂

idcd = (∂ − ∂)(∂ + ∂)

= ∂∂ − ∂∂

so
ddc + dcd = 0. (54)

Also, since [E, d] = 0,

[E, dδ] = d[E, δ]

= ddc

[E, δd] = [E, δ]d

= dcd so

[E, dδ + δd] = 0.
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In other words,
[E, ∆] = 0. (55)

Now
[E, δ] = [E, d†] = [E, ∂†] + [E, ∂

†
].

Since ∂† is of bidegree (−1, 0) and E is of bidegree (1, 1) the first term on the
right of the preceding equation is of bidegree (0, 1) and similarly the second is
of bidegree (1, 0). On the other hand, by (50) we have

[E, δ] = dc = −i∂ + i∂.

Comparing the terms of the same bidegree we obtain

[E, ∂†] = i∂ (56)

[E, ∂
†
] = −i∂. (57)

Now δ2 = (∂† + ∂
†
)2 = 0 implies that

∂†2 = 0

∂
†2

= 0

∂†∂
†
+ ∂

†
∂† = 0

by looking at the terms of differing bidegree. Bracketing the first of these
equations with E and using (56) gives

0 = [E, ∂†2] = [E, ∂†]∂† + ∂†[E, ∂†]

or
∂∂† + ∂†∂ = 0. (58)

Taking complex conjugates gives

∂∂
†
+ ∂

†
∂ = 0. (59)

Define

∆∂ := ∂∂† + ∂†∂

∆∂ := ∂∂
†
+ ∂

†
∂

so

∆ = dδ + δd

= (∂ + ∂)(∂† + ∂
†
) + (∂† + ∂

†
)(∂ + ∂)

= ∆∂ + ∆∂ + ∂∂
†
+ ∂

†
∂ + +∂†∂ + ∂∂†

= ∆∂ + ∆∂ ,

In short
∆ = ∆∂ + ∆∂ . (60)
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No let us bracket E with the left side of (59). We have

[E, ∂†∂
†
] = [E, ∂†]∂

†
+ ∂†[E, ∂

†
]

= i
(

∂∂
†
− ∂†∂

)

[E, ∂
†
∂†] = [E, ∂

†
]∂† + ∂

†
[E, ∂†]

= i
(

∂
†
∂ − ∂∂†

)

so

0 = i
(

∆∂ − ∆∂

)

or

∆∂ = ∆∂ .

In other words

∆∂ = ∆∂ =
1

2
∆. (61)

Up to the inessential factor of 1
2 all three Laplacians are the same. In particular,

the harmonic forms are bigraded:

Hk
∆ =

⊕

p+q=k

Hp,q
∆ , Hp,q

∆ = Hp,q
∆∂

. (62)

But
Hk

∆ = Hk(X,C)

by what we know for Riemannian manifolds, and

Hp,q
∆∂

= Hp,q
Dol := Hq(X, Ω̃p),

where Ω̃p is the sheaf of holomorphic p forms. Thus

Hk(X,C) =
⊕

p+q=k

Hq(X, Ω̃p). (63)

Also observe, that if u ∈ Hp,q
∆ then

du = δu = 0.

but δu = (−1)p−qJ−1δau. So
δau = 0.

In other words, u is harmonic in the symplectic sense. Thus the Brylinski
condition and hence the Strong Lefschetz property holds for Kaehler manifolds.
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