Hodge Theory

Victor Guillemin
Notes, Spring 1997

Contents

1 Definition and properties of \star. 1
2 Exterior and interior multiplication. 3
3 The case of B symmetric positive definite. 5
4 The case of B symplectic. 6
5 Graded $\operatorname{sl}(2)$. 7
6 Hermitian vector spaces. 10
7 Symplectic Hodge theory. 13
8 Excursus on $s l(2)$ modules. 15
9 The strong Lefschetz property. 19
10 Riemannian Hodge theory. 22
11 Kaehler Hodge theory. 23

1 Definition and properties of \star.

Let V be an n-dimensional vector space over \mathbf{R} and B a bilinear form on $V . B$ induces a bilinear form on $\wedge^{p} V$, also denoted by B determined by its value on decomposable elements as

$$
B(\mu, \nu):=\operatorname{det}\left(B\left(u_{i}, v_{j}\right)\right), \quad \mu=u_{1} \wedge \cdots u_{p}, \quad \nu=v_{1} \wedge \cdots v_{p}
$$

Suppose we also have fixed an element $\Omega \in \wedge^{n} V$ which identifies $\wedge^{n} V$ with R. Exterior multiplication then identifies $\wedge^{n-p} V$ with $\left(\wedge^{p} V\right)^{*}$ and B maps $\wedge^{p} V \rightarrow\left(\wedge^{p} V\right)^{*}$. We thus get a composite map

$$
\star: \wedge^{p} V \rightarrow \wedge^{n-p} V
$$

characterized by

$$
\begin{equation*}
\alpha \wedge \star \beta=B(\alpha, \beta) \Omega \tag{1}
\end{equation*}
$$

Properties of \star.

- Dependence on Ω. If $\Omega_{1}=\lambda \Omega$ then

$$
\star_{1}=\lambda \star
$$

as follows immediately from the definition.

- Dependence on B. Suppose that

$$
B_{1}(v, w)=B(v, J w), \quad J \in \text { End } V
$$

Extend J to an element of $\wedge V$ by $J\left(v_{1} \wedge \cdots v_{p}\right):=J v_{1} \wedge \cdots \wedge J v_{p}$. Thus the extended bilinear forms are also related by

$$
B_{1}(\mu, \nu)=B(\mu, J \nu)
$$

and hence

$$
\star_{1}=\star \circ J .
$$

- Behavior under direct sums. Suppose

$$
V=V_{1} \oplus V_{2}, B=B_{1} \oplus B_{2}, \Omega=\Omega_{1} \wedge \Omega_{2}
$$

under the identification

$$
\wedge V=\wedge V_{1} \otimes \wedge V_{2}
$$

Then for $\alpha_{1}, \beta_{1} \in \wedge^{r} V_{1}, \alpha_{1}, \beta_{2} \in \wedge^{s} V_{2}$ we have

$$
B\left(\alpha_{1} \wedge \alpha_{2}, \beta_{1} \wedge \beta_{2}\right)=B\left(\alpha_{1}, \beta_{1}\right) B\left(\alpha_{2}, \beta_{2}\right)
$$

and
$\left(\alpha_{1} \wedge \alpha_{2}\right) \wedge \star\left(\beta_{1} \wedge \beta_{2}\right)=B\left(\alpha_{1} \wedge \alpha_{2}, \beta_{1} \wedge \beta_{2}\right) \Omega=B\left(\alpha_{1}, \beta_{1}\right) \Omega_{1} \wedge B\left(\alpha_{2}, \beta_{2}\right) \Omega_{2}$
while

$$
\alpha_{1} \wedge \star_{1} \beta_{1}=B\left(\alpha_{1}, \beta_{1}\right) \Omega_{1}, \quad \alpha_{2} \wedge \star_{2} \beta_{1}=B\left(\alpha_{2}, \beta_{2}\right) \Omega_{2}
$$

Hence

$$
\star\left(\omega_{1} \wedge \omega_{2}\right)=(-1)^{\left.n_{1}-r\right) s} \star_{1} \omega_{1} \wedge \star_{2} \omega_{2} \quad \text { for } \omega_{1} \in \wedge^{r} V_{1}, \omega_{2} \in \wedge^{s} V_{2}
$$

Since $\star_{1} \omega_{1} \wedge \star_{2} \omega_{2}=(-1)^{\left(n_{1}-r\right)\left(n_{2}-s\right)} \star 2 \omega_{2} \wedge \star_{1} \omega_{1}$ we can rewrite the preceding equation as

$$
\star\left(\omega_{1} \wedge \omega_{2}\right)=(-1)^{\left(n_{1}-r\right) n_{2}} \star_{2} \omega_{2} \wedge \star_{1} \omega_{1} .
$$

In particular, if n_{2} is even we get the simpler looking formula

$$
\star\left(\omega_{1} \wedge \omega_{2}\right)=\star_{2} \omega_{2} \wedge \star_{1} \omega_{1} .
$$

So, by induction, if

$$
V=V_{1} \oplus \cdots \oplus V_{m}
$$

is a direct sum of even dimensional subspaces and $\Omega=\Omega_{1} \wedge \cdots \wedge \Omega_{m}$ then

$$
\begin{equation*}
\star\left(\omega_{1} \wedge \cdots \wedge \omega_{m}\right)=\omega_{m} \wedge \cdots \wedge \omega_{1}, \quad \omega_{i} \in \wedge\left(V_{i}\right) \tag{2}
\end{equation*}
$$

2 Exterior and interior multiplication.

Suppose that B is non-degenerate. For $u \in V$ we let $e_{u}: \wedge V \rightarrow \wedge V$ denote exterior multiplication by u. For $\gamma \in V^{*}$ we let $i_{\gamma}: \wedge V \rightarrow \wedge V$ denote interior multiplication by γ. We can also consider the transposes of these operators with respect to B :

$$
e_{v}^{\dagger}: \wedge^{p} V \rightarrow \wedge^{p-1} V,
$$

defined by

$$
B\left(e_{v} \alpha, \beta\right)=B\left(\alpha, e_{v}^{\dagger} \beta\right), \quad \alpha \in \wedge^{p-1} V, \beta \in \wedge^{p} V
$$

and

$$
i_{\gamma}^{\dagger}: \wedge^{p-1} V \rightarrow \wedge^{p} V
$$

defined by

$$
B\left(i_{\gamma} \alpha, \beta\right)=B\left(\alpha, i_{\gamma}^{\dagger} \beta\right), \quad \alpha \in \wedge^{p+1} V, \beta \in \wedge^{p} V
$$

We claim that

$$
\begin{align*}
e_{v}^{\dagger} & =(-1)^{p-1} \star^{-1} e_{v} \star \tag{3}\\
& \text { and } \\
i_{\gamma}^{\dagger} & =(-1)^{p} \star^{-1} i_{\gamma} \star \tag{4}
\end{align*}
$$

on $\wedge^{p} V$.
Proof of (3). For $\alpha \in \wedge^{p-1} V, \beta \in \wedge^{p} V$ we have

$$
\begin{aligned}
B\left(e_{v} \wedge \alpha, \beta\right) \Omega & =e_{v} \alpha \wedge \star \beta \\
& =(-1)^{p-1} \alpha \wedge v \wedge \star \beta \\
& =(-1)^{p-1} \alpha \wedge \star \star^{-1} e_{v} \star \beta \\
& =(-1)^{p-1} B\left(\alpha, \star^{-1} e_{v} \star \beta\right) \Omega
\end{aligned}
$$

Proof of (4). Let $\alpha \in \wedge^{p+1} V, \beta \in \wedge^{p} V$ so that

$$
\alpha \wedge \star \beta=0 .
$$

We have

$$
\begin{aligned}
0 & =i_{\gamma}(\alpha \wedge \star \beta) \\
& =\left(i_{\gamma} \alpha\right) \wedge \star \beta+(-1)^{p-1} \alpha \wedge i_{\gamma} \star \beta \\
& =\left(i_{\gamma} \alpha\right) \wedge \star \beta+(-1)^{p-1} \alpha \wedge \star\left(\star^{-1} i_{\gamma} \star\right) \beta \quad \text { so } \\
B\left(i_{\gamma} \alpha, \beta\right) \Omega & =(-1)^{p} B\left(\alpha, \star^{-1} i_{\gamma} \star \beta\right) \Omega .
\end{aligned}
$$

There are alternative formulas for e_{v}^{\dagger} and i_{γ}^{\dagger} which are useful, and involve dualities between V and V^{*} induced by B. We let \langle,$\rangle denote the pairing of V$ and V^{*}, so

$$
\langle v, \ell\rangle
$$

denotes the value of the linear function, $\ell \in V^{*}$ on $v \in V$. Define the maps

$$
L=L_{B}, \quad \text { and } L^{o p}=L_{B}^{o p}: V \rightarrow V^{*}
$$

by

$$
\begin{equation*}
\langle v, L w\rangle=B(v, w), \quad\left\langle v, L^{o p} w\right\rangle=B(w, v), \quad v, w \in V \tag{5}
\end{equation*}
$$

We claim that

$$
\begin{align*}
e_{v}^{\dagger} & =i_{L^{o p} v} \tag{6}\\
i_{L v}^{\dagger} & =e_{v} \tag{7}
\end{align*}
$$

Proof. We may suppose that $v \neq 0$ and extend it to a basis v_{1}, \ldots, v_{n} of V, with $v_{1}=v$. Let w_{1}, \ldots, w_{n} be the basis of V determined by

$$
B\left(v_{i}, w_{j}\right)=\delta_{i j}
$$

Let $\gamma^{1}, \ldots, \gamma^{n}$ be the basis of V^{*} dual to w_{1}, \ldots, w_{n} and set $\gamma:=\gamma_{1}$. Then

$$
\begin{aligned}
\left\langle w_{i}, L^{o p} v\right\rangle & =B\left(v, w_{i}\right) \\
& =\delta_{1 i} \\
& =\left\langle w_{i}, \gamma\right\rangle \quad \text { so } \\
\gamma & =L^{o p} v .
\end{aligned}
$$

If $J=\left(j_{1}, \ldots, j_{p}\right)$ and $K=\left(k_{1}, \ldots, k_{p+1}\right.$ are (increasing) multi-indices then

$$
B\left(e_{v} v^{J}, w^{K}\right)=0
$$

unless $k_{1}=1$ and $k_{r+1}=i_{r}, \quad r=1, \ldots, p$, in which case

$$
B\left(e_{v} v^{J}, w^{K}\right)=1
$$

The same is true for

$$
B\left(v^{J}, i_{\gamma} w^{K}\right)
$$

Hence

$$
e_{v}^{\dagger}=i_{\gamma}
$$

which is the content of (6).
Similarly, let $w=w_{1}$ and $\beta=L(w)$ so that

$$
i_{\beta} v_{j}=B\left(v_{j}, w_{1}\right)=\delta_{1 j} .
$$

Then

$$
B\left(i_{\beta}\left(v^{K}\right), w^{J}\right)=0
$$

unless $k_{1}=1$ and $k_{r+1}=j_{r}, \quad r=1, \ldots, p$ in which case

$$
B\left(i_{\beta}\left(v^{K}\right), w^{J}\right)=1
$$

and the same holds for $B\left(v^{K}, w \wedge w^{J}\right)$. This proves (7).
Combining (3) and (6) gives

$$
\begin{equation*}
\star^{-1} e_{v} \star=(-1)^{p-1} i_{L^{o p} v} \tag{8}
\end{equation*}
$$

while combining (4) and (7) gives

$$
\begin{equation*}
\star^{-1} i_{L v} \star=(-1)^{p} e_{v} . \tag{9}
\end{equation*}
$$

On any vector space, independent of any choice of bilinear form we always have the identity

$$
i_{\gamma} e_{w}+e_{w} i_{\gamma}=\langle w, \gamma\rangle, \quad v \in V, \gamma \in V^{*}
$$

If $\gamma=L^{o p} v$, then $\langle w, \gamma\rangle=B(v, w)$ so (3) implies

$$
\begin{equation*}
e_{v}^{\dagger} e_{w}+e_{w} e_{v}^{\dagger}=B(v, w) I \tag{10}
\end{equation*}
$$

3 The case of B symmetric positive definite.

In this case it is usual to choose Ω such that $\|\Omega\|=1$. The only choice left is then of an orientation. Suppose we have fixed an orientation and so a choice of Ω. To compute \star it is enough to compute it on decomposable elements. So let U be a p-dimensional subspace of V and $u_{1} \wedge \cdots \wedge w_{p}$ an orthonormal basis of U. Let W be the orthogonal complement of U and let w_{1}, \ldots, w_{q} be an orthonormal basis of W where $q:=n-p$. Then

$$
u_{1} \wedge \cdots \wedge u_{p} \wedge w_{1} \wedge \cdots \wedge w_{q}= \pm \Omega
$$

We claim that

$$
\star\left(u_{1} \wedge \cdots \wedge u_{p}\right)= \pm w_{1} \wedge \cdots \wedge w_{q} .
$$

We need only check that

$$
B\left(\alpha, u_{1} \wedge \cdots \wedge u_{p}\right) \Omega= \pm \alpha \wedge w_{1} \wedge \cdots \wedge w_{q}
$$

for $\alpha \in \wedge^{p} V$ which are wedge products of u_{i} and w_{j} since $u_{1}, \ldots, u_{p}, w_{1}, \ldots, w_{q}$ form a basis of V. Now if any w 's are involved in this product decomposition
both sides vanish. And if $\alpha={ }_{1} \wedge \cdots \wedge u_{p}$ then this is the definition of the \pm occurring in the formula.

Suppose we have chosen both bases so that $\pm=+$. Then

$$
\star\left(u_{1} \wedge \cdots \wedge u_{p}\right)=w_{1} \wedge \cdots \wedge w_{q}
$$

while

$$
\star\left(w_{1} \wedge \cdots w_{q}\right)= \pm u_{1} \wedge \cdots u_{p}
$$

where \pm is the sign of the permutation involved in moving all the w 's past the u 's. This sign is $(-1)^{p(n-p)}$. We conclude

$$
\begin{equation*}
\star^{2}=(-1)^{p(n-p)} \quad \text { on } \quad \wedge^{p} V . \tag{11}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\star^{2}=(-1)^{p} \quad \text { on } \quad \wedge^{p} V \quad \text { if } n \text { is even. } \tag{12}
\end{equation*}
$$

4 The case of B symplectic.

Suppose $n=2 m$ and $e_{1}, \ldots, e_{m}, f_{1}, \ldots, f_{m}$ is a basis of V with

$$
B\left(e_{i}, f_{j}\right)=\delta_{i j}, \quad B\left(e_{i}, e_{j}\right)=B\left(f_{i}, f_{j}\right)=0
$$

We take

$$
\Omega:=e_{1} \wedge f_{1} \wedge e_{2} \wedge f_{2} \cdots \wedge e_{m} \wedge f_{m}
$$

which is clearly independent of the choice of basis with the above properties. If we let V_{i} denote the two dimensional space spanned by e_{i}, f_{i} with B_{i} the restriction of B to V_{i} and $\Omega_{i}:=e_{i} \wedge f_{i}$ then we are in the direct sum situation and so can apply (2).

So to compute \star in the symplectic situation it is enough to compute it for a two dimensional vector space with basis e, f satisfying

$$
B(e, f)=1, \quad e \wedge f=\Omega
$$

Now

$$
B(e, e)=0=e \wedge e, \quad B(f, e) \Omega=-\Omega=f \wedge e
$$

so

$$
\star e=e
$$

Similarly

$$
\star f=f .
$$

On any vector space the "induced bilinear form" on \wedge^{0} is given by

$$
B(1,1)=1
$$

so

$$
\star 1=\Omega .
$$

On the other hand,

$$
B(e \wedge f, e \wedge f)=\operatorname{det}\left(\begin{array}{cc}
B(e, e) & B(e, f) \\
B(f, e) & B(f, f)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=1
$$

So

$$
\star(e \wedge f)=1
$$

This computes \star is all cases for a two dimensional symplectic vector space. We conclude that

$$
\begin{equation*}
\star^{2}=\mathrm{id} \tag{13}
\end{equation*}
$$

first for a two dimensional symplectic vector space and then, from (2), for all symplectic vector spaces.

5 Graded $s l(2)$.

We consider the three dimensional graded Lie algebra

$$
g=g_{-2} \oplus g_{0} \oplus g_{2}
$$

where each summand is one dimensional with basis F, H, E respectively and bracket relations

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

For example, $g=s l(2)$ with

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let V be a symplectic vector space with symplectic form, B and symplectic basis

$$
u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}
$$

So

$$
B\left(u_{i}, u_{j}\right)=0,=B\left(v_{i}, v_{j}\right), \quad B\left(u_{i}, v_{j}\right)=\delta_{i j}
$$

Let

$$
\omega:=u_{1} \wedge v_{1}+\cdots+u_{m} \wedge v_{m}
$$

This element is independent of the choice of symplectic basis. (It is the image in $\wedge^{2} V$ of B under the identification of $\wedge^{2} V^{*}$ with $\wedge^{2} V$ induced by B.)

Let $E(\omega): \wedge V \rightarrow \wedge V$ denote the operation of exterior multiplication by ω. So

$$
E(\omega)=\sum e_{u_{i}} e_{v_{i}}
$$

Let

$$
F(\omega):=E(\omega)^{\dagger}
$$

so

$$
F(\omega)=\sum e_{v_{i}}^{\dagger} e_{u_{i}}^{\dagger}
$$

For $\alpha \in \wedge^{p} V$ we have, by (3),

$$
e_{v}^{\dagger} e_{u}^{\dagger} \alpha=(-1)^{p-1}(-1)^{p-2} \star v e_{v} e_{u} \star \alpha=-\star e_{v} e_{u} \star \alpha=\star e_{u} e_{v} \star \alpha
$$

so

$$
\begin{equation*}
F(\omega)=\star E(\omega) \star . \tag{14}
\end{equation*}
$$

Alternatively, if $\mu^{1}, \ldots, \mu^{m}, \nu^{1}, \ldots, \nu^{m}$ is the basis of V^{*} dual to u_{1}, \ldots, v_{m} then

$$
\begin{equation*}
F(\omega)=\sum i_{\nu_{j}} i_{\mu_{j}} . \tag{15}
\end{equation*}
$$

We now prove the Kaehler-Weil identity

$$
\begin{equation*}
[E(\omega), F(\omega)] \alpha=(p-m) \alpha, \quad \alpha \in \wedge^{p} V \tag{16}
\end{equation*}
$$

Write

$$
E(\omega)=E_{1}+\cdots+E_{m}, \quad E_{j}:=e_{u_{j}} e_{v_{j}}
$$

and

$$
F(\omega)=F_{1}+\cdots F_{m}, \quad F_{j}=i_{\nu_{j}} i_{\mu_{j}} .
$$

Let V_{j} be the two dimensional space spanned by u_{j}, v_{j} and write

$$
\alpha=\alpha_{1} \wedge \cdots \wedge \alpha_{p}, \quad \alpha_{j} \in \wedge V_{j}
$$

Then E_{i} really only affects the i-th factor since we are multiplying by an even element:

$$
E_{i}(\alpha)=\alpha_{1} \wedge \cdots \wedge E_{i} \alpha_{i} \wedge \cdots \wedge \alpha_{p}
$$

and F_{i} annihilates all but the i-th factor:

$$
F_{i}(\alpha)=\alpha_{1} \wedge \cdots \wedge F_{i} \alpha_{i} \wedge \cdots \wedge \alpha_{p} .
$$

So if $i<j$

$$
E_{i} F_{j}(\alpha)=F_{j} E_{i}(\alpha)=\alpha_{1} \wedge \cdots \wedge E_{i} \alpha_{i} \wedge \cdots \wedge F_{j} \alpha_{j} \wedge \cdots \wedge \alpha_{p}
$$

In other words,

$$
\left[E_{i}, F_{j}\right]=0, \quad i \neq j
$$

So

$$
[E(\omega), F(\omega)] \alpha=\sum \alpha_{1} \wedge \cdots \wedge\left[E_{i}, F_{i}\right] \alpha_{i} \wedge \cdots \wedge \alpha_{p}
$$

Since the sum of the degrees of the α_{i} add up to p, it is sufficient to prove (16) for the case of a two dimensional symplectic vector space with symplectic basis u, v. We need consider three cases, according the possible values of $p=0,1,2$. Let us write E for $F(\omega)$. When $p=2$, if we apply E to $u \wedge v$ we get 0 . So

$$
[E, F](u \wedge v)=(E F)(u \wedge v)=E 1=u \wedge v=(2-1) u \wedge v
$$

For $p=0$ we have $F 1=0$ so

$$
[E, F] 1=-F E 1=-F[u \wedge v]=-1=(0-1) \cdot 1
$$

For $p=1$ we have $E u=E v=F u=F v=0$ so

$$
[E, F]=0=(1-1) \text { id } \quad \text { on } \quad \wedge^{1} V
$$

Let H act on $\wedge V$ by

$$
\begin{equation*}
H=(p-m) \text { id } \quad \text { on } x \wedge^{p} V \tag{17}
\end{equation*}
$$

Then, we can write (16) as

$$
\begin{equation*}
[E(\omega), F(\omega)]=H \tag{18}
\end{equation*}
$$

Notice that since $E(\omega)$ raises degree by two,

$$
H E(\omega)=(p+2-m) E(\omega), \quad E(\omega) H=(p-m) E(\omega)
$$

on $\wedge^{p} V$ so

$$
[H, E(\omega)]=2 E(\omega)
$$

and similarly

$$
[H, F(\omega)]=-2 F(\omega)
$$

So we can summarize are computations by saying that the assignments

$$
F \mapsto F(\omega), \quad H \mapsto H, \quad E \mapsto E(\omega)
$$

give a representation of g on $\wedge V$.
¿From now on we shall drop the ω and simply write E and F.
We can enlarge our graded $s l(2)$ to a graded superalgebra as follows: Consider the space $V \otimes \mathbf{R}^{2}$ (or the space $V \otimes \mathbf{C}^{2}$ if we are over the complex numbers). The space \mathbf{R}^{2} (or \mathbf{C}^{2}) has has a symplectic structure which is invariant under $s l(2)$. Since V has a symplectic structure, the tensor product, as the tensor product of two symplectic vector spaces, has an orthogonal structure. Call the corresponding symmetric form, S. Thus, if we choose

$$
e:=\binom{1}{0}, \quad f:=\binom{0}{1}
$$

as a symplectic basis of \mathbf{R}^{2}, then
$S(u \otimes e, v \otimes e)=0=S(u \otimes f, v \otimes f), \quad S(u \otimes e, v \otimes f)=B(u \otimes v)=S(v \otimes f, u \otimes e)$,
where $u, v \in V$. Then we can form the superalgebra whose even part is \mathbf{R} (commuting with everything) and whose odd part is $V \otimes \mathbf{R}^{2}$ with brackets

$$
\left[w, w^{\prime}\right]=-S\left(w, w^{\prime}\right), \quad w, w^{\prime} \in V \otimes \mathbf{R}^{2}
$$

(This Lie algebra is a super analogue of the Heisenberg algebra.) In particular,

$$
u \otimes e, v \otimes e]=0=[u \otimes f, v \otimes f], \quad[u \otimes e, v \otimes f]=-B(u, v)
$$

This Lie superalgebra is clearly invariant under the action of the orthogonal group of $V \otimes \mathbf{R}^{2}$. Put another way, this orthogonal group acts as automorphisms of the superalgebra structure. In particular, $s l(2)$ acts as infinitesimal automorphisms(derivations) of this algebra, and so we can take the semi-direct product of $s l(2)$ with this Lie superalgebra. If we define

$$
h_{1}:=V \otimes e, \quad h_{1}:=V \otimes f
$$

then we obtain a Lie superalgebra

$$
\begin{equation*}
g_{2} \oplus h_{-1} \oplus(\mathbf{R} H \oplus \mathbf{R}) \oplus h_{1} \oplus g_{2} \tag{19}
\end{equation*}
$$

Then the map

$$
\begin{array}{rll}
u \otimes e & \mapsto & e_{u} \\
u \otimes f & \mapsto & e_{U}^{\dagger} \\
r \in \mathbf{R} & \mapsto & \text { mutliplication by } r
\end{array}
$$

extends the action of our graded $s l(2)$ to a representation of the Lie superalgebra (19) on $\wedge V$, as can be directly checked. In particular, we have the identity

$$
\left[e_{v}^{\dagger}, E\right]=e_{v}
$$

6 Hermitian vector spaces.

Let V be a $2 m$ dimensional real vector space equipped with a positive definite symmetric bilinear form, B_{s} and an alternating form B_{a} which are related by

$$
\begin{equation*}
B_{a}(v, w)=B_{s}(v, J w) \tag{20}
\end{equation*}
$$

where

$$
J: V \rightarrow V
$$

satisfies

$$
\begin{equation*}
J^{2}=-I \tag{21}
\end{equation*}
$$

The fact that B_{a} is alternating and B_{s} is symmetric implies that

$$
\begin{equation*}
B_{s}(v, J w)+B_{s}(J v, w)=0 \tag{22}
\end{equation*}
$$

which says that J infinitesimally preserves B_{s}. Replacing w by $J w$ in this equation gives

$$
B_{s}(J v, J w)=-B_{s}\left(v, J^{2} w\right)=B_{s}(v, w)
$$

so J preserves B_{s}, i.e. belongs to the orthogonal group associated with B_{s}. Also

$$
B_{a}(J v, J w)=B_{s}\left(J v, J^{2} w\right)=-B_{s}(J v, w)=B_{s}(v, J w)=B_{a}(J v, J w)
$$

so J belongs to the symplectic group associated to B_{a}.
Decompose

$$
V=V_{1} \oplus \cdots \oplus V_{m}
$$

into two dimensional subspaces invariant under J and mutually perpendicular under B_{s}. For each $i=1, \ldots, m$ pick a vector $e_{i} \in V_{i}$ which satisfies $B_{s}\left(e_{i}, e_{i}\right)=$ 1 , i.e. is a unit vector for the orthogonal form. Let $f_{i}:=-J e_{i}$. Then

$$
B_{s}\left(e_{i}, f_{i}\right)=0, \quad B_{s}\left(f_{i}, f_{i}\right)=1
$$

and

$$
B_{a}\left(e_{i}, f_{i}\right)=-B_{s}\left(e_{i}, J^{2} e_{i}\right)=B_{s}\left(e_{i}, e_{i}\right)=1
$$

while

$$
B_{a}\left(e_{i}, e_{j}\right)=B_{a}\left(e_{i}, f_{j}\right)=B_{a}\left(f_{i}, f_{j}\right)=0, \quad i \neq j
$$

so $e_{1}, \ldots, e_{m}, f_{1} \ldots, f_{m}$ is a symplectic basis (for B_{a}) and an orthonormal basis (for B_{s}). We take

$$
\Omega:=e_{1} \wedge f_{1} \wedge c \cdots \wedge e_{m} \wedge f_{m}
$$

as our basis of $\wedge^{2 m}(V)$ as is our symplectic prescription, and use this to fix the orientation of V as far as the orthogonal form B_{s} is concerned. We now have two star operators, \star_{a} corresponding to the symplectic form, B_{a} and \star_{s} corresponding to the orthogonal form, B_{s}. Since J preserves B_{s} and B_{a}, and since B_{a} is related to B_{s} by (20) we conclude that

$$
\begin{array}{rcc}
J \star_{s} & = & \star_{s} J \\
J \star_{a} & = & \star_{a} J \\
\star_{a} & =\star_{s} \circ J & \tag{25}
\end{array}
$$

hold, where we have extended J as usual to act on $\wedge V$. This extended J preserves the (extended) form B_{s}, i.e.

$$
J J^{\dagger}=I
$$

On the other hand, $J^{2}=(-1)^{p}$ on $\wedge^{p} V$ so

$$
\begin{equation*}
J^{\dagger}=J^{-1}=(-1)^{p} J \quad \text { on } \quad \wedge^{p} V \tag{26}
\end{equation*}
$$

In this formula, J^{\dagger} can mean either the transpose of J with respect to B_{s} or with respect to B_{a} since J is orthogonal with respect to B_{s} and symplectic with respect to B_{a}.

Direct verification shows that $J \omega=\omega$ where

$$
\omega=e_{1} \wedge f_{1}+\cdots+e_{m} \wedge f_{m}
$$

is the element of $\wedge^{2} V$ corresponding to B_{a} and hence that

$$
\begin{equation*}
[J, E]=0 \tag{27}
\end{equation*}
$$

where E acts by multiplication by ω. Recall that F acts as the transpose of E with respect to B_{a}. Taking the transpose with respect to B_{a} of (27) gives

$$
\left[F, J^{-1}\right]=0
$$

Multiplying on the right and left by J gives

$$
\begin{equation*}
[J, F]=0 \tag{28}
\end{equation*}
$$

Since E and F generate g, we conclude from (27) and (28) that J commutes with the entire $s l(2)$ action.

According to (14)

$$
F=\star_{a} E \star_{a}=\star_{a}^{-1} E \star_{a}
$$

since $\star_{a}^{2}=I$. From (28) and (25) we conclude that

$$
\begin{equation*}
F=\star_{s}^{-1} E \star_{s} \tag{29}
\end{equation*}
$$

Since J lies in the Lie algebra of the orthogonal group of B_{s}, the one parameter group $t \mapsto \exp t J$ is a one parameter group of orthogonal transformations of V and so extends to a one parameter group of one parameter group of orthogonal transformations of $\wedge V$ which commute with \star_{s} :

$$
(\exp t J) \star_{s}=\star_{s}(\exp t J)
$$

Differentiating this equation with respect to t and setting $t=0$ gives

$$
\begin{equation*}
J^{\sharp} \star_{s}=\star_{s} J^{\sharp} \tag{30}
\end{equation*}
$$

where J^{\sharp} is the derivation induced by J on the exterior algebra, i.e.
$J^{\sharp}\left(v_{1} \wedge \cdots \wedge v_{p}\right)=J v_{1} \wedge v_{2} \wedge \cdots \wedge v_{p}+v_{1} \wedge J v_{2} \wedge \cdots \wedge v_{p}+\cdots+v_{1} \wedge \cdots \wedge J v_{p}$.
Let $V_{\mathbf{C}}:=V \otimes \mathbf{C}$ denote the complexification of V and extend all maps from V to $V_{\mathbf{C}}$ or from $\wedge V$ to $\wedge V_{\mathbf{C}}$ so as to be complex linear. For example, J has eigenvalues i and $-i$ on $V_{\mathbf{C}}$ and we can write

$$
V_{\mathbf{C}}=V^{1,0} \oplus V^{0,1}
$$

where $V^{1,0}$ consist of all vectors of the form $v-i J v, v \in V$ and is the eigenspace with eigenvalue i for J and $V^{0,1}$ consist of all vectors of the form $v+i J v, v \in V$ and is the eigenspace with eigenvalue $-i$. Both of these are complex subspaces of $V_{\mathbf{C}}$ and hence we have the complex decomposition of the complex exterior algebra

$$
\wedge V_{\mathbf{C}}=\bigoplus \wedge^{p, q}, \quad \wedge^{p, q}:=\wedge^{p}\left(V^{1,0}\right) \otimes \wedge^{q}\left(V^{0,1}\right)
$$

For example,

$$
J=i^{p-q} I \quad \text { on } \quad \wedge^{p, q}
$$

so that since $J \omega=\omega$ and $\omega \in \wedge^{2} V_{\mathbf{C}}$ we conclude that

$$
\omega \in \wedge^{1,1}
$$

Therefore

$$
\begin{equation*}
E: \wedge^{p, q} \rightarrow \wedge^{p+1, q+1} \tag{31}
\end{equation*}
$$

Similarly,

$$
J^{\sharp}=(p-q) i I \quad \text { on } \quad \wedge^{p, q}
$$

Since $\star_{s}: \wedge^{k}\left(V_{\mathbf{C}}\right) \rightarrow \wedge^{2 m-k}\left(V_{\mathbf{C}}\right.$ and (30) holds we conclude that

$$
\begin{equation*}
\star_{s}: \wedge^{p, q} \rightarrow \wedge^{m-q, m-p} . \tag{32}
\end{equation*}
$$

Finally, it follows from (31), (29), and (32) that

$$
\begin{equation*}
F: \wedge^{p, q} \rightarrow \wedge^{p-1, q-1} \tag{33}
\end{equation*}
$$

7 Symplectic Hodge theory.

Let (X, ω) be a $2 m$-dimensional symplectic manifold. For $\alpha, \beta \in \Omega(X)_{0}^{p}$ define

$$
\langle\alpha, \beta\rangle:=\int_{X} \alpha \wedge \star \beta
$$

For $\gamma \in \Omega^{p-1}(X)_{0}$ we have

$$
\begin{aligned}
d(\gamma \wedge \star \beta) & =d \gamma \wedge \star \beta+(-1)^{p-1} \gamma \wedge d \star \beta \\
& =d \gamma \wedge \star \beta+(-1)^{p-1} \gamma \wedge \star(\star d \star) \beta \quad \text { so } \\
\langle d \gamma, \beta\rangle & =\left\langle\gamma, d^{\dagger} \beta\right\rangle
\end{aligned}
$$

with, d^{\dagger}, the transpose of d with respect to \langle,$\rangle given by$

$$
d^{\dagger}=(-1)^{p} \star d \star .
$$

We define

$$
\begin{equation*}
\delta:=d^{\dagger}=(-1)^{p} \star d \star . \tag{34}
\end{equation*}
$$

The symbol of the first order differential operator, d, is given by

$$
\sigma(d)(\xi)=e_{\xi}, \quad \xi \in T^{*}(X)_{x}
$$

Hence the symbol of δ is given by

$$
\sigma(\delta)(\xi)=e_{\xi}^{\dagger}
$$

Let E act on $\Omega(X)_{0}$ pointwise as $E(\omega)$, that is as the operator consisting of exterior multiplication by ω. We claim that

$$
\begin{equation*}
[\delta, E]=d \tag{35}
\end{equation*}
$$

Proof. Since δ is a first order differential operator, and E is a zeroth order differential operator, the symbol of $[\delta, E]$ is given by

$$
\sigma([\delta, E])(\xi)=[\sigma(\delta)(\xi), E]=\left[e_{\xi}^{\dagger}, E\right]=e_{\xi}=\sigma(d)(\xi)
$$

Thus

$$
d-[\delta, E]
$$

is a zeroth order differential operator. So to show that it vanishes, it is enough to find local coordinates, $w^{1}, \ldots, w^{2 m}$ about each point such that this zeroth order differential operator annihilates all the $d w^{I}$. Now the operator d annihilates the $d w^{I}$ in any coordinate system. By Darboux's theorem, we may choose local coordinates such that

$$
\omega=d w^{1} \wedge d w^{m+1}+\cdots+d w^{m} \wedge d w^{2 m}
$$

In these coordinates, the operator \star has constant coefficients when applied to any of the $d w^{I}$, and hence it follows from (34) that $\delta d w^{I}=0$ as well. Thus both sides of (35) vanish when applied to $d w^{I}$, completing the proof of (35).

We let F act as E^{\dagger}. Taking the transpose of (35) we get

$$
\begin{equation*}
\delta=[d, F] . \tag{36}
\end{equation*}
$$

Next we prove that

$$
\begin{equation*}
\delta^{\dagger}=-d \tag{37}
\end{equation*}
$$

Proof. Let $\alpha \in \Omega(X)_{0}^{p-1}, \quad \beta \in \Omega^{p}(X)_{0}$. Then

$$
\begin{aligned}
\langle\delta \beta, \alpha\rangle & =(-1)^{p-1}\langle\alpha, \delta \beta\rangle \\
& =(-1)^{p-1}\langle d \alpha, \beta\rangle \\
& =(-1)^{p-1}(-1)^{p}\langle\beta, d \alpha\rangle \\
& =\langle\beta,-d \alpha\rangle .
\end{aligned} .
$$

Thus

$$
\begin{align*}
(E \delta)^{\dagger} & =-d F \tag{38}\\
(\delta E)^{\dagger} & =-F d \tag{39}\\
\delta d=\delta[\delta, E] & =\delta(\delta E-D \delta)=-\delta E \delta \\
d \delta=[\delta, E] \delta & =\delta E \delta \text { so } \\
d \delta+\delta d & =0 . \tag{40}
\end{align*}
$$

We can view the last of these equations as saying that the symplectic analogue of the (Hodge) Laplacian vanishes.

We can summarize all the results in this section by introducing a large superalgebra: Let $\mathcal{V}=\mathcal{V}(X)$ denote the space of all vector fields on X, and let $\left.\Omega^{1}=\Omega^{(} X\right)$ denote the space of one forms. The symplectic form induces an isomorphism

$$
\mathcal{V} \rightarrow \Omega^{1}, \quad \xi \mapsto \gamma
$$

such that

$$
i_{\xi}^{\dagger}=e_{\gamma} .
$$

Let $\mathcal{F}=\mathcal{F}(X)=\Omega^{0}(X)$ denote the space of smooth functions on X. Then we get a Lie superalgebra \hat{g} acting on $\Omega(M)$ where

$$
\begin{aligned}
\hat{g}_{-2} & :=\mathbf{R} F \\
\hat{g}_{-1} & :=\mathcal{V} \oplus \mathbf{R} \delta \\
\hat{g}_{0} & :=\mathcal{V} \oplus \mathbf{R} H \oplus \mathcal{F} \\
\hat{g}_{1} & :=\Omega^{1} \oplus \mathbf{R} d \\
\hat{g}_{2} & :=\mathbf{R} E .
\end{aligned}
$$

We list several of the bracket relations, the others have already been given, or can be obtained by taking the transpose: The element of $\mathcal{V} \subset \hat{g}_{0}$ corresponding to the element $\xi \in \mathcal{V}$ will be denoted by L_{ξ} and acts by Lie derivative. The element of \hat{g}_{-1} corresponding to ξ is denoted by i_{ξ} and acts by interior product. We have the bracket relation

$$
\left[i_{\xi}, d\right]=L_{\xi}
$$

which is just the Weil identity. The element of $\Omega^{1} \subset \hat{g}_{1}$ corresponding to $\gamma \in \Omega^{1}$ is denoted by e_{γ}. As already mention, it acts pointwise as exterior multiplication by γ. We have

$$
\left[i_{\xi}, e_{\gamma}\right]=\gamma(\xi) \in \mathcal{F} \subset \hat{g}_{0}
$$

It acts by pointwise multiplication.

8 Excursus on $\operatorname{sl}(2)$ modules.

Will will need some facts about $\operatorname{sl}(2)$ modules for our study of the Lefschetz theorem in the next section. The action of $s l(2)$ on $\Omega(X)$ described in the preceding section is such that H acts as multiplication by $p-m$ on $\Omega^{p}(X)$. Thus although $\Omega(X)$ is an infinite dimensional vector space, it is a finite direct sum of (infinite dimensional) vector spaces on each of which H acts as a scalar. We axiomatize this property, recalling that g denotes the graded $s l(2)$, in particular it denotes $s l(2)$ with a specific choice of H :

Definition. $A g$ module A is of finite H type if V is a finite direct sum of vector spaces,

$$
V=V_{1} \oplus \cdots \oplus V_{k}
$$

such that H acts as scalar multiplication by λ_{i} on V_{i} and

$$
\lambda_{i} \neq \lambda_{j}, \quad i \neq j
$$

The projection $\pi_{i}: V \rightarrow V_{i}$ corresponding to this decomposition is given by

$$
\frac{1}{\prod_{i \neq n j j}\left(\lambda_{i}-\lambda_{j}\right)} \prod\left(H-\lambda_{i}\right)
$$

Therefore, π_{i} carries every g submodule into itself. In particular, any submodule and any quotient module of a g-module of finite H type is again of finite H type.

If an element v in any H module satisfies $H v=\lambda v$, then the bracket relations imply that

$$
H E v=(\lambda+2) E v, \quad \text { and } \quad H F v=(\lambda-2) F v
$$

Since $[E, F]=H$, it follows that $[E, F] v=\lambda v$ and then by induction on k that

$$
\begin{equation*}
\left[E, F^{k}\right] v=k(\lambda-k+1) F^{k-1} v \tag{41}
\end{equation*}
$$

Indeed, for $k=1$ this is just the assertion $[E, F] v=\lambda v$, and assuming the result for k, we have

$$
\begin{aligned}
{\left[E, F^{k+1}\right] v } & =E F^{k+1} v-F^{k+1} E v \\
& =(E F) F^{k} v-(F E) F^{k} v+F\left[E, F^{k}\right] v \\
& =H F^{k} v+k(\lambda-k+1) F^{k} v \\
& =(\lambda-2 k+k(\lambda-k+1)) Y^{k} v \\
& =(k+1)(\lambda-k) F^{k} v .
\end{aligned}
$$

¿From this we can conclude that

Every cyclic g-module of finite H type is finite dimensional.

Proof. Let v generate V as a $U(g)$ module. Decompose v into its components of various types:

$$
v=v_{1}+\cdots+v_{k}, \quad v_{i} \in V_{i}
$$

It is enough to show that the submodule generated each v_{r} is finite dimensional. By Poincaré-Birkhhoff-Witt, this module is spanned by the vectors $F^{i} E^{j} H^{k} v_{i}$. Since $H v$ is a multiple of v, it is enough to consider $F^{i} E^{j} v_{r}$. Now $H E^{j} v_{r}=$ $\left(\lambda_{r}+2 j\right) E^{j} v_{r}$. Since there are only finitely many possible eigenvalues of H (by the definition of finite H type) it follows that $E^{j} v=0$ for $j \gg 0$. If j is such that $E^{j} v \neq 0$, then $H\left(F^{i} E^{j} v_{r}\right)=\left(\lambda_{r}+2 j-2 i\right) F^{i} E^{j} v_{r}$, so we conclude that for each such j there are only finitely many i with $F^{i} E^{j} v_{r} \neq 0$. In short, there are only finitely many non-zero $F^{i} E^{j} v_{r}$, proving that the submodule generated by v_{r} is finite dimensional.

If we don't want to use the Poincaré-Birkhhoff-Witt theorem, we can proceed as follows: We have shown that there are only finitely many non-zero $F^{i} E^{j} v_{r}$. We must show that they span the submodule generated by v_{r}. Applying F gives $F^{i+1} E^{j} v_{r}$ which is of the same type. Applying H carries each such term into a multiple of itself. So we need only check what happens when we apply E. We have

$$
E F^{i} E^{j}=F^{i} E^{j+1} v_{r}+i\left(\lambda_{r}+2 j-i+1\right) F^{i-1} E^{j} v_{r}
$$

by (41).
As immediate consequences of this result we can deduce that

- Every irreducible g-module of finite H type is finite dimensional.
- Every cyclic g-module of finite H type is a finite direct sum of irreducibles.
(The second statement is true for any finite dimensional g-module.)
Suppose the λ_{i} are real and we have labeled them in decreasing order. Then, if $v \in V_{1}$ we must have $E v=0$ and, by (41),

$$
E F^{r} v=f\left(\lambda_{1}-r+1\right) F^{r-1} v
$$

This shows that the vectors $F^{r} v$ span a submodule of V. Now suppose that V is irreducible. Then the submodule spanned by these vectors is all of V. We have

$$
H F^{r} v=(\lambda-2 r) F^{r} v
$$

and, since V is of finite H type, we must have $F^{\ell} v=0$ for some ℓ. Let ℓ_{0} be the smallest such ℓ, so that $F^{\ell} v=0, \quad \forall \ell \geq \ell_{0}$, but $F^{\ell_{0}-1} v \neq 0$. Set $j:=\ell_{0}-1$ and

$$
v_{i}:=F^{i} v, \quad i=0, \ldots, j .
$$

These vectors are linearly independent since they correspond to different eigenvalues of H, and they span all of V; i.e. they are a basis of V. Also,

$$
F v_{j}=F^{\ell_{0}} v=0
$$

Applying E to this equation and using (41) we conclude that

$$
(j+1)\left(\lambda_{1}-j\right) v_{j}=0
$$

implying that

$$
\lambda_{1}=j
$$

In terms of this basis we have,

$$
\begin{aligned}
H v_{i} & =(j-2 i) v_{i} \\
F v_{i} & =v_{i+1} \\
E v_{i} & =i(j-i+1) v_{i-1}
\end{aligned}
$$

for $i=0, \ldots, j$. These equations completely determine the representation. Conversely every finite dimensional representation of g is of this form, as can easily be verified from the above equations. We have just repeated some well known facts about the irreducible finite dimensional representations of $s l(2)$.

We now return to the consideration of a (possibly infinite dimensional) g module V of finite H type

$$
V=V_{1} \oplus \cdots \oplus V_{k}
$$

Let us call an element homogeneous if it belongs to one of the summands in this decomposition. Let us call an element $v \in V$ primitive if it is homogeneous and satisfies

$$
E v=0
$$

Repeating the same proof given above (which only used the finite H type property) we see that eventually $F^{\ell} v=0$ if v is primitive and that the cyclic module generated by v is finite dimensional and that

$$
H v=k v
$$

where $k+1$ is the dimension of the cyclic submodule of V generated by the primitive element v.

We can now state and prove some important structural properties of a g module V of finite H type:

1. Every $v \in V$ can be written as a finite sum

$$
\begin{equation*}
v=\sum F^{r} v_{r}, \quad v_{r} \text { primitive } \tag{42}
\end{equation*}
$$

2. The eigenvalues of H are all integers. Hence by relabeling, we may decompose

$$
V=\bigoplus V_{r}, \quad H=r \mathrm{Id} \quad \text { on } V_{r}
$$

We may then write

$$
V=V_{\text {even }} \oplus V_{\text {odd }}
$$

where

$$
V_{\text {even }}:=\bigoplus_{r \text { even }} V_{r}, \quad V_{o d d}:=\bigoplus_{r \text { odd }} V_{r}
$$

3. The map

$$
F^{k}: V_{k} \rightarrow V_{-k}
$$

is bijective.
4. an element $v \in V_{r}, \quad r \geq 0$ is primitive if and only if

$$
F^{r+1} v=0
$$

Proofs.

1. We may replace V by the cyclic module generated by v in proving 1. This is a submodule of V and hence of finite H type. Being also cyclic, it is finite dimensional. We may therefore decompose it into a finite sum of irreducibles, and write v as a sum of its components in these irreducibles. But each element of an irreducible is a sum of the desired form as proved above. Hence v is.
2. The decomposition in 1 . and its proof show that the only possible eigenvalues for H are integers, since this is true for finite dimensional irreducible representations.
3. We know that this is true for irreducibles, hence for any direct sum of irreducibles, hence for any cyclic module of finite H type. Now consider the general case: If $v \in V_{-k}$, consider the cyclic module generated by v. The bijectivity property for this submodule implies that there is some $w \in V_{k}$ such that $F^{k} w=v$. This shows that the map $F^{K}: V_{k} \rightarrow V_{-k}$ is surjective. Similarly, to prove that this map is injective, consider the cyclic submodule generated by $v \in V_{k}$. If $F^{k} v=0$ we conclude that $v=0$. Hence the map is injective as well.
4. If v is primitive, the submodule it generates is finite dimensional of dimension $r+1$ as we have seen above. Hence the necessity follows from the structure of finite dimensional irreducibles. To prove the sufficiency, decompose v as in 1 . Let u be the term corresponding to $\ell=0$ in this decomposition, so $u \in V_{r}$ is primitive, and this decomposition implies that

$$
v=u+F w, \quad w \in V_{r+2} .
$$

Since $u \in V_{r}$ is primitive, we know that $F^{r+1} u=0$. Hence

$$
0=F^{r+1} v=F^{r+2} w
$$

Since $w \in V_{r+2}$ and $F^{r+2}: V_{r+2} \rightarrow F_{-r-2}$ is bijective, we conclude that $w=0$. Hence $v=u$ is primitive.

We will also want to use items 2) and 3) with the roles of E and F interchanged (which can be arranged by an automorphism of $s l(2)$ so that

$$
\begin{equation*}
E^{k}: V_{m-k} \rightarrow V_{m+k} \quad \text { is bijective } \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { If } v \in V_{m-k} \text { then } E^{k+1} v=0 \Leftrightarrow F v=0 \tag{44}
\end{equation*}
$$

9 The strong Lefschetz property.

We return the study of a $2 m$ dimensional symplectic manifold, X and the action of g on $\Omega=\Omega(X)$. Since $[E, d]=0, E$ carries closed forms into closed forms and exact forms into exact forms, and hence induces a map on cohomology which we shall denote by $[E]$. so

$$
[E]: H^{p}(X) \rightarrow H^{p+2}(X)
$$

In particular,

$$
[E]^{k}: H^{m-k}(X) \rightarrow H^{m+k}(X)
$$

We say that X has the strong Lefschetz property if this map is surjective for all k.

A form α is called harmonic if

$$
d \alpha=0=\delta \alpha
$$

We shall denote the space of all harmonic forms by $\Omega_{h a r}$. Suppose that α is harmonic. Since $[d, E]=0$, we conclude that $d E \alpha=0$. Since $[d, F]=\delta$, and $\delta \alpha=0$, we conclude that $d F \alpha=0$. A similar argument from the bracket relations $[\delta, F]=0,[\delta, E]=d$ shows that $\delta E \alpha=0=\delta F \alpha$. In short,

$$
\Omega_{\text {har }} \text { is a } g \text { submodule of } \Omega \text {. }
$$

In particular, it is of finite H type and hence

$$
\begin{equation*}
E^{k}: \Omega_{h a r}^{m-k} \rightarrow \Omega_{h a r}^{m+k} \quad \text { is bijective } \tag{45}
\end{equation*}
$$

for all k. Furthermore, for $\mu \in \Omega^{m-k}$,

$$
\begin{equation*}
E^{k+1} \mu=0 \Leftrightarrow F \mu=0 \tag{46}
\end{equation*}
$$

A symplectic manifold X is said to satisfy the Brylinski condition if every cohomology class has a representative which is harmonic.

Theorem (Mathieu).A symplectic manifold satisfies the Brylinski condition if an only if it has the strong Lefschetz property.

Proof (Dang Yan).
Brylinski \Rightarrow Lefschetz. Consider the commutative diagram

$$
\square\left[\Omega_{h a r}^{m-k} \cdot \Omega_{h a r}^{m+k}{ }^{\prime} H^{m-k}(X)^{`} \cdot H^{m+k}(X) ; E^{k} "[E]^{k}\right] .
$$

The Brylinski condition says that the vertical arrows are surjective, and (45) says that the top line is bijective. Hence the bottom row is surjective.

Lefschetz \Rightarrow Brylinksi. Let $c \in H^{m-k}(X)$. Consider $[E]^{k+1} c \in H^{m+k+2}(X)$. By the strong Lefschetz condition, we can write $[E]^{k+1} c=[E]^{k+2} c_{2}$ where $c_{2} \in H^{m-k-1}(X)$. We can therefore write any element of $H^{m-k}(X)$ as

$$
\begin{equation*}
c=c_{1}+[E] c_{2}, \quad c_{2} \in H^{m-k-1}(X), \quad[E] c_{1}=0 \tag{47}
\end{equation*}
$$

where we take $c_{1}=c-[E] c_{2}$.
Next observe that it is enough to prove that cohmology classes in degree $\leq m$ have harmonic representatives. Indeed, if $c \in H^{m+k}(X)$ then $c=[E] c^{\prime}, \quad c^{\prime} \in$ $H^{m-k}(X)$ and a harmonic representative for c^{\prime} is carried by E^{k} into a harmonic representative for c. If $c \in H^{0}(X)$ or $H^{1}(X)$, then $[F] c=0$ since $[F]$ lowers degree by two. If μ is a closed form representing c, so that $d \mu=0$, the $\delta \mu=$ $[d, F] \mu=0$ and μ is harmonic. So we need only prove the Brylinski propoerty for cohomology classes of degree $2 \leq p \leq m$. We will proceed by induction on
p usin (47). By induction, c_{2} has a harmonic representative, call it θ, so that $E \theta$ is a harmonic representative of $[E] c_{2}$. So we need only prove that c_{1} has a harmonic representative.

In other words, dropping the subscript, we need only prove that any $c \in$ $H^{p}(X), p=m-k$ satisfying $[E]^{k+1} c=0$ has a harmonic representative. Let $\mu \in \Omega^{m-k}(X)$ be a representative of c. So $d \mu=0$ and $E^{k+1} \mu=d \beta, \beta \in$ $\Omega^{m+k+1}(X)$. Since

$$
E^{k+1}: \Omega^{m-k-1}(X) \rightarrow \Omega^{m+k+1}(X)
$$

is bijective, $\beta=E^{k+1} \alpha$ where $\alpha \in \Omega^{m-k-1}(X)$ and

$$
E^{k+1} \mu=d \beta=E^{k+1} d \alpha
$$

Replkace μ by $\nu:=\mu-d \alpha$. Then ν is again a reperesentative of c, and

$$
E^{k+1} \nu=E^{k+1} \mu-E^{k+1} d \alpha=0
$$

so

$$
F \nu=0
$$

by (44). But then

$$
\delta \nu=[d, F] \nu=0
$$

so ν is a harmonic representative for c.

Remarks.

1. If X is compact, Poincaré duality implies that $\operatorname{dim} H^{m-k}(X)=\operatorname{dim}$ $H^{m+k}(X)$. So the strong Lefschetz condition asserts that

$$
[E]^{k}: H^{m-k}(X) \rightarrow H^{m+k}(X)
$$

is bijective.
2. In particular, if X is compact and satisfies the strong Lefschetz condition, we may define a bilinear pairing on $H^{m-k}(X)$ by mapping the pair $\left(c_{1}, c_{2}\right)$ into $H^{2 m}(X)$ by

$$
\left(c_{1}, c_{2}\right) \mapsto[E]^{k}\left(c_{1} \cdot c_{2}\right)=\left([E]^{k} c_{1}\right) \cdot c_{2}
$$

(recall that E^{k} is just multiplication by ω^{k}). We may identify $H^{2 m}(H)$ with \mathbf{R} (or \mathbf{C}) using the symplectic volume form,. Composing the this identification with the above bilinear map, we get a bilinear form, call it K. We claim that K is non-degenerate. Indeed, if $E^{k} c_{1} \cdot c_{2}=0$ for all c_{2}, then, by Poincaré duality, $E^{k} c_{1}=0$ and hence, by Strong Lefschetz, $c_{1}=0$.
3. By construction, the bilinear form K is alternating when $m-k$ is odd and symmetric when $m-k$ is even. For an alternating form to be nondegenerate, the underlying vector space must be even dimensional. So, if X is compact and satisfies the strong Lefschetz condition, all its odd degree Betti numbers are even.
4. We will see below that a Kaehler manifold always satisfies the Brylinski condition, by showing that a form is harmonic with respect to the symplectic piece of the Kaehler form if and only if it harmonic in the Riemannian sense, and using the fact that in a Riemannian manifold, every cohomology class has a harmonic representative. Thus Kaheler manifolds always satisfy the strong Lefschetz condition.
5. Many years ago Thurston produced an example of a sympletic four manifold whose first Betti number is odd. This shows that the Brylinski condition does not hold for all symplectic manifolds.
6. On a symplectic manifold we can replace the de Rham cohomology by defining $H^{p}(X)_{s y m p} \subset H^{p}(X)$ to consist of those classes which are the images of harmonic forms. It follows from the preceding discussion that the strong Lefschetz condition holds when we replace H^{p} by $H_{s y m p}^{p}$.

10 Riemannian Hodge theory.

Let X be a compact oriented Riemann manifold of dimension n. We denote the metric by B or (in the next section) by B_{s}. The \star operator acting pointwise on $\wedge T^{*}(X)$ gives an operator, also denoted by \star (or by \star_{s} in the next section)

$$
: \star: \Omega^{p}(X) \rightarrow \Omega^{n-p}(X)
$$

satisfying

$$
\star^{2}=(-1)^{p(n-p)} I . \quad \text { on } \Omega^{p} .
$$

There is an l^{2} inner product on forms given by

$$
\langle\alpha, \beta\rangle=\int_{X}\left(B(\alpha, \beta)_{x} d x=\int_{X} \alpha \wedge \star \beta, \quad \alpha, \beta \in \Omega^{p}(X)\right.
$$

where $d x$ denotes the volume form (and where forms of differing degrees are orthogonal).

If $\alpha \in \Omega^{p-1}, \beta \in \omega^{p}$ then

$$
d\left(\alpha \wedge \star \beta=d \alpha \wedge \beta+(-1)^{p-1} \alpha \wedge \star\left(\star^{-1} d \star\right) \beta\right.
$$

Integrating this over X and using Stokes gives

$$
\langle d \alpha, \beta\rangle=\left\langle\alpha, d^{\dagger} \beta\right\rangle
$$

where

$$
d^{\dagger}=(-1)^{p} \star^{-1} d \star .
$$

We define

$$
\delta:=d^{\dagger}, \quad \Delta:=d \delta+\delta d
$$

and observe that Δ is self adjoint. The symbol of d at $\xi \in T^{*} X_{x}$ is given by e_{ξ} and the symbol of δ is given by e_{ξ}^{\dagger} so the symbol of Δ at ξ is

$$
\sigma(\Delta)(\xi)=e_{\xi} e_{\xi}^{\dagger}+e_{\xi}^{\dagger} e_{\xi}=B(\xi, \xi)_{x} I
$$

so Δ is elliptic. We may apply the theory of elliptic operators to conclude that

- The kernel of Δ is finite dimensional.
- There exists a Greens operator $G: \Omega^{p} \rightarrow \Omega^{p}$ which is self adjoint and whose image is orthogonal to ker Δ and a projection $H: \Omega^{p} \rightarrow$ ker Δ and such that

$$
u=\Delta G u+H u, \quad \forall u \in \Omega^{p} .
$$

- This gives the Hodge decomposition of $u \in \Omega^{p}$ into three mututally orthogonal pieces:

$$
u=u_{1}+u_{2}+u_{3}, \quad \forall u \in \Omega^{p}
$$

where

$$
u_{1}:=H u \quad \text { is harmonic }
$$

i.e. lies in ker Δ,

$$
u_{2}:=d \delta G u
$$

is exact, and

$$
u_{3}:=\delta d G u
$$

is coexact.

- In particular, since the image of δ is orthogonal to the closed forms, we see that $u_{3}=0$ is u is closed, and hence every cohomology class has a unique harmonic representative.

11 Kaehler Hodge theory.

Let X be a compact kaehler manifold of dimension $n=2 m$. This means that we are given three pieces of data: 1) a Riemann metric, which we may conisider as providing a poisitive definite symmetric form, $B_{s}(,)_{x}$ on each cotangent space, $T^{*} X_{x}$, an antisymmetric form $B_{a}(,)_{x}$ and

$$
J: T * X \rightarrow T^{X}
$$

which is a bundle map satsifying

$$
J^{2}=-I
$$

These pieces are related (at each cotangent space) as in section 6 . In addition there is the Kaehler integrability condition, one consequence (version) of which is

$$
d \omega=0
$$

where ω is the two form (section of $\wedge^{2} T^{*} X$) associated with B_{a} as in section 6 . We will return to this doncition of integrability later.

Thus X is both a Riemannian manifold and a symplectic manifold. So it has a star operator, \star_{s} associated to the Riemann metric, and and a star operator \star_{a} associated to the symplectic form, both map

$$
\Omega^{p} \rightarrow \Omega^{n-p}
$$

and are related by

$$
\star_{a}=\star_{s} \circ J
$$

We have

$$
\langle\alpha, \beta\rangle_{s}:=\int_{X} \alpha \wedge \star_{s} \beta
$$

and

$$
\langle\alpha, \beta\rangle_{a}:=\int_{X} \alpha \wedge \star_{a} \beta
$$

which, in view of the pointwise relation between \star_{a} and \star_{a} are related by

$$
\langle\alpha, \beta\rangle_{a}=\langle\alpha, J \beta\rangle_{s}
$$

or, equivalently

$$
\langle\alpha, \beta\rangle_{s}=\left\langle\alpha, J^{-1} \beta\right\rangle_{a}
$$

Let $\delta=\delta_{s}$ denote the transpose of d with repsect to \langle,\rangle_{s} and let δ_{a} denote the transpose of d with respect to \langle,\rangle_{a}. They are related by

$$
\begin{equation*}
\delta=J \delta_{a} J^{-1} \tag{48}
\end{equation*}
$$

Indeed, if $\alpha \in \Omega^{p-1}, \beta \in \Omega^{p}$,

$$
\begin{aligned}
\langle d \alpha, \beta\rangle_{s} & =\left\langle d \alpha, J^{-1} \beta\right\rangle_{a} \\
& =\left\langle\alpha, \delta_{a} J^{-1} \beta\right\rangle_{a} \\
& =\left\langle\alpha, J^{-1}\left(J \delta_{a} J^{-1}\right) \beta\right\rangle_{a} \\
& =\left\langle\alpha,\left(J \delta_{a} J^{-1}\right) \beta\right\rangle_{s}
\end{aligned}
$$

Now

$$
J^{-1}=(-1)^{p} J \quad \text { on } \Omega^{p}
$$

So, on Ω^{p},

$$
\begin{aligned}
\delta & =(-1)^{p} J \delta_{a} J \\
& =(-1)^{p}(-1)^{p-1} J^{-1} \delta_{a} J \\
& =-J^{-1} \delta_{a} J
\end{aligned}
$$

so we can also write (48) as

$$
\begin{equation*}
\delta=-J^{-1} \delta_{a} J \tag{49}
\end{equation*}
$$

Recall that $g=s l(2)$ acts on $\Omega(X)$ with E acting as multiplication by ω and that J commutes with this action. We have

$$
d=\left[\delta_{a}, E\right]
$$

Conjugating by J^{-1} gives

$$
J^{-1} d J=\left[J^{-1} \delta_{a} J, E\right]=-[\delta, E]
$$

Setting

$$
d^{c}:=J^{-1} d J
$$

we obtain

$$
\begin{equation*}
[\delta, E]=-d^{c} \tag{50}
\end{equation*}
$$

We recall from section 6 that $F=E^{\dagger}$ where the transpose is taken either with respect to B_{s} or B_{a} and

$$
F=E^{\dagger}=\star_{r}^{-1} E \star_{r}
$$

Since $J^{\dagger}=J^{-1}$ we have, taking transposes with respect to the Riemann structure, B_{s},

$$
\left(d^{c}\right)^{\dagger}=\left(J^{-1} d J\right)^{\dagger}=J^{-1} \delta J
$$

So if we define

$$
\delta^{c}:=J^{-1} \delta J
$$

we have

$$
\begin{equation*}
[d, F]=\delta^{c} \tag{51}
\end{equation*}
$$

To summarize, we have

$$
\begin{aligned}
{[d, E] } & =0 \\
{[d, F] } & =\delta^{c} \\
{[\delta, E] } & =-d^{c} \\
{[\delta, F] } & =0
\end{aligned}
$$

We also recall that we have a decomposition

$$
\Omega(X) \otimes \mathbf{C}=\bigoplus \Omega^{p, q}
$$

and

$$
E: \Omega p, q \rightarrow \Omega^{p+1, q+1}, \quad F: \Omega^{p, q} \rightarrow \Omega^{p-1, q-1}
$$

Up until now, we have not made use of integrability. Now let us assume that X is indeed a complex manifold and that in terms of holomorphic local coordinates J is equivalent to the standard complex structure on \mathbf{C}^{m}. Then in terms of such coordinates, z^{1}, \ldots, z^{m} every $\alpha \in \Omega^{p, q}$ can be written as

$$
\alpha=\sum \alpha_{K, L} d z^{K} \wedge d \bar{z}^{L}
$$

where

$$
K=\left(k_{1}, \ldots, k_{p}\right), \quad k_{1}<\cdots<k_{p}
$$

and

$$
L=\left(\ell_{1}, \ldots, \ell_{q}\right), \quad \ell_{1}<\cdots<\ell_{q} .
$$

¿From this we deduce that

$$
\begin{equation*}
d \alpha=\partial \alpha+\bar{\partial} \alpha, \quad \partial \alpha \in \Omega^{p+1, q}, \quad \bar{\partial} \alpha \in \Omega^{p, q+1} \tag{52}
\end{equation*}
$$

This is the key property that we will use. Continuing with the assumption that $\alpha \in \Omega^{p, q}$, we have

$$
\begin{aligned}
d^{c} \alpha & :=J^{-1} d J \alpha \\
& =i^{p-q}\left(J^{-1} \partial \alpha+J^{-1} \bar{\partial} \alpha\right) \\
& =i^{p-q}\left(i^{q-p-1} \partial \alpha+i^{q+1-p} \bar{\partial} \alpha\right) \\
& =(1 / i)(\partial \alpha-\bar{\partial} \alpha) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
i d^{c}=\partial-\bar{\partial} \tag{53}
\end{equation*}
$$

Now $d^{2}=0$ implies that $\partial^{2}=\bar{\partial}^{2}=0$. Thus

$$
\begin{aligned}
i d d^{c} & =(\partial+\bar{\partial})(\partial-\bar{\partial}) \\
& =\bar{\partial} \partial-\partial \bar{\partial} \\
i d^{c} d & =(\partial-\bar{\partial})(\partial+\bar{\partial}) \\
& =\partial \bar{\partial}-\bar{\partial} \partial
\end{aligned}
$$

so

$$
\begin{equation*}
d d^{c}+d^{c} d=0 . \tag{54}
\end{equation*}
$$

Also, since $[E, d]=0$,

$$
\begin{aligned}
{[E, d \delta] } & =d[E, \delta] \\
& =d d^{c} \\
{[E, \delta d] } & =[E, \delta] d \\
& =d^{c} d \quad \mathrm{so} \\
{[E, d \delta+\delta d] } & =0 .
\end{aligned}
$$

In other words,

$$
\begin{equation*}
[E, \Delta]=0 \tag{55}
\end{equation*}
$$

Now

$$
[E, \delta]=\left[E, d^{\dagger}\right]=\left[E, \partial^{\dagger}\right]+\left[E, \bar{\partial}^{\dagger}\right]
$$

Since ∂^{\dagger} is of bidegree $(-1,0)$ and E is of bidegree $(1,1)$ the first term on the right of the preceding equation is of bidegree $(0,1)$ and similarly the second is of bidegree $(1,0)$. On the other hand, by (50) we have

$$
[E, \delta]=d^{c}=-i \partial+i \bar{\partial}
$$

Comparing the terms of the same bidegree we obtain

$$
\begin{align*}
{\left[E, \partial^{\dagger}\right] } & =i \bar{\partial} \tag{56}\\
{\left[E, \bar{\partial}^{\dagger}\right] } & =-i \partial . \tag{57}
\end{align*}
$$

Now $\delta^{2}=\left(\partial^{\dagger}+\bar{\partial}^{\dagger}\right)^{2}=0$ implies that

$$
\begin{aligned}
\partial^{\dagger 2} & =0 \\
\bar{\partial}^{\dagger 2} & =0 \\
\partial^{\dagger} \bar{\partial}^{\dagger}+\bar{\partial}^{\dagger} \partial^{\dagger} & =0
\end{aligned}
$$

by looking at the terms of differing bidegree. Bracketing the first of these equations with E and using (56) gives

$$
0=\left[E, \partial^{\dagger 2}\right]=\left[E, \partial^{\dagger}\right] \partial^{\dagger}+\partial^{\dagger}\left[E, \partial^{\dagger}\right]
$$

or

$$
\begin{equation*}
\bar{\partial} \partial^{\dagger}+\partial^{\dagger} \bar{\partial}=0 . \tag{58}
\end{equation*}
$$

Taking complex conjugates gives

$$
\begin{equation*}
\partial \bar{\partial}^{\dagger}+\bar{\partial}^{\dagger} \partial=0 \tag{59}
\end{equation*}
$$

Define

$$
\begin{aligned}
\Delta_{\partial} & :=\partial \partial^{\dagger}+\partial^{\dagger} \partial \\
\Delta_{\bar{\partial}} & :=\overline{\partial \partial}^{\dagger}+\bar{\partial}^{\dagger} \bar{\partial} \\
& \text { so } \\
\Delta & =d \delta+\delta d \\
& =(\partial+\bar{\partial})\left(\partial^{\dagger}+\bar{\partial}^{\dagger}\right)+\left(\partial^{\dagger}+\bar{\partial}^{\dagger}\right)(\partial+\bar{\partial}) \\
& =\Delta_{\partial}+\Delta_{\bar{\partial}}+\partial \bar{\partial}^{\dagger}+\bar{\partial}^{\dagger} \partial++\partial^{\dagger} \bar{\partial}+\bar{\partial} \partial^{\dagger} \\
& =\Delta_{\partial}+\Delta_{\bar{\partial}},
\end{aligned}
$$

In short

$$
\begin{equation*}
\Delta=\Delta_{\partial}+\Delta_{\bar{\partial}} . \tag{60}
\end{equation*}
$$

No let us bracket E with the left side of (59). We have

$$
\begin{aligned}
{\left[E, \partial^{\dagger} \bar{\partial}^{\dagger}\right] } & =\left[E, \partial^{\dagger}\right] \bar{\partial}^{\dagger}+\partial^{\dagger}\left[E, \bar{\partial}^{\dagger}\right] \\
& =i\left(\overline{\partial \partial}^{\dagger}-\partial^{\dagger} \partial\right) \\
{\left[E, \bar{\partial}^{\dagger} \partial^{\dagger}\right] } & =\left[E, \bar{\partial}^{\dagger}\right] \partial^{\dagger}+\bar{\partial}^{\dagger}\left[E, \partial^{\dagger}\right] \\
& =i\left(\bar{\partial}^{\dagger} \bar{\partial}-\partial \partial^{\dagger}\right) \\
0 & =i\left(\Delta_{\bar{\partial}}-\Delta_{\partial}\right) \quad \text { or } \\
\Delta_{\bar{\partial}} & =\Delta_{\partial}
\end{aligned}
$$

In other words

$$
\begin{equation*}
\Delta_{\partial}=\Delta_{\bar{\partial}}=\frac{1}{2} \Delta . \tag{61}
\end{equation*}
$$

Up to the inessential factor of $\frac{1}{2}$ all three Laplacians are the same. In particular, the harmonic forms are bigraded:

$$
\begin{equation*}
H_{\Delta}^{k}=\bigoplus_{p+q=k} H_{\Delta}^{p, q}, \quad H_{\Delta}^{p, q}=H_{\Delta \overline{\bar{\sigma}}}^{p, q} \tag{62}
\end{equation*}
$$

But

$$
H_{\Delta}^{k}=H^{k}(X, \mathbf{C})
$$

by what we know for Riemannian manifolds, and

$$
H_{\Delta \bar{\partial}}^{p, q}=H_{D o l}^{p, q}:=H^{q}\left(X, \tilde{\Omega}^{p}\right)
$$

where $\tilde{\Omega}^{p}$ is the sheaf of holomorphic p forms. Thus

$$
\begin{equation*}
H^{k}(X, \mathbf{C})=\bigoplus_{p+q=k} H^{q}\left(X, \tilde{\Omega}^{p}\right) \tag{63}
\end{equation*}
$$

Also observe, that if $u \in H_{\Delta}^{p, q}$ then

$$
d u=\delta u=0
$$

but $\delta u=(-1)^{p-q} J^{-1} \delta_{a} u$. So

$$
\delta_{a} u=0
$$

In other words, u is harmonic in the symplectic sense. Thus the Brylinski condition and hence the Strong Lefschetz property holds for Kaehler manifolds.

