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Figure 6.2.6: A matching satisfying Condition 2.

grid points in a row. This matches all but O(n'/*log!/?n) of the + points to
— points. (See Figure 6.2.6.) This matching is up-right since we matched each
point horizontally 7l grid points to the right, and the edges used in matching
the < points and — points to the grid points have length at most . We have
thus matched each point at least 5/ grid points to the right. Similarly, we have
matched all the — points up (except those within 71 of the right border, which
are unmatched anyway). This matching also satisfies Condition 2. If there are
two edges (a,b) and (¢,d) with b to the left of ¢, then the grid points matched
*0 a and ¢ are separated by . .east 5{ grid points, since the grid point matched
to ¢ is at worst 2/ left of that matched to b. There is a possible difference of 2!
between the vertical length of an edge and the corresponding grid point edge.
Since a is at least 5! grid points to the left of ¢, we have that the grid point
edge corresponding to (a,b) is at least 5! longer than the one for (¢, d), so that
{a.b) is at least ! longer than (¢,d). This matching therefore satisfies Condition
2. Thus MFF, and also FF, has wasted space at most O(n?**log!/*n). 1
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6.3. The Lower Bound

We prove that the algorithm First Fit gives an expected value of Q(n?/3)

wasted space when packing items which are uniformly distributed on [0, 1].

Proof: In this proof we will be considering two different sequences; the sequence
of items which are to be packed (this does not change) and the sequence of bins
which are partially full (this changes as items are packed). To avoid confusion,
we will call the sequence of items the Ilist of items and the sequence of bins the
queue of bins. A subsegquence of one of these sequences will be a subset of its
elements, in the same order as they were in the original sequence. If all these

elements are adjacent, we call it a contiguous subsequence.

Consider an item that is being packed by First Fit. Into what bins can
this item go? It can only go into a bin if this bin is less full than all previous
bins in the queue (otherwise it would have been packed in one of the previous
bins). We will call this subsequence of bins that have more empty space than
all preceding bins the greedy decreasing subsequence of bins. This subsequence
is the decreasing subsequence forraed greedily, i.e., by starting with the first bin
and always adding the next bin in the queue which will make the subsequence
decreasing. This subsequence ends with the first empty bin. First Fit can only

add items to bins in the greedy decreasing subsequence.

For this proof, we will look at the tail of the greedy decreasing subsequence
starting with the first bin less than 2 full. We call this tail Q. No item less than
5 can be in any bin later in the queue than the first bin of Q, since any items
less than % would be put in the first bin of Q or an earlier bin. Thus, any 2-item
bin after the first bin of Q is more than $ full, and thus not in Q. This shows

that ali the bins in Q, except possibly for the first one, contain only one item.

We consider the items which fill bins. Since we almost certainly use at least
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n/2 bins (the optimal packing almost certainly contains more bins than this
[Lu]), at least half of all items will be the top item of a bin in the final packing.
Thus, if we can show that % 4- 6 of the time an item leaves at least ¢ empty
space in a bin, we can conclude that én/2 bins in the final packing have ¢ empty

space.

Assume there are k bins in Q. Any item larger than : must be placed in

1
3

a bin in Q. An item which will fill a bin to higher than 1 — Flk must have size
within 1/12k of the amount of empty space in a bin in @, so the probability of
an item filling a specific bin to within 1/12k of full is at most 1/12k. Since there

are only k bins in Q, the probability of an item filling one of these to within

1/12k of full is less than k- 33 = 7;. Since an item goes into 2 bin in Q with
probability %, there is at least a § - 11—2 = % probability that an item will leave

1

a space of 57 or greater in a bin. Thus, if there are never more than k bins in

Q, with high probability the final packing will have ﬁn bins with at least T%E

empty space.

We now use Hammersley’s result [Ha| that with probability at least 1 — e~2",
a random sequence of length n has no decreasing subsequence longer than e¢n!/2,
for some ¢ > 2 and some a. After the first bin of @, the bins in Q each have
only one item in them. These bins were filled in their order in the queue of bins,
Thus, these items form a decreasing subsequence of the list of items. Let P be
the contiguous subsequence of the list of items starting with the item packed

in the first bin of @ and ending with the item packed in the last non-empty

2

5 are packed in bins by

bin of Q. All the items in P having size greater than
themselves. Assume there are n!/3 bins in Q. Applying Hammersley’s result to
each of the n — n?/3/,/¢ contiguous subsequences of the list of items of length
n?/3/,/c, we get that with probability at least 1 — ne~®*/V% none of these

contains a decreasing subsequence of length n'/3. Thus, with high probability,
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P is not contained in a consecutive subsequence of length n%/3/,/c, and thus has

length at least n?/3/,/c.
Suppose the greedy decreasing subsequence Q is never longer than n!/3,

Then, by the preceding arguments, every item had a -132- probability of leaving

Ln=1/3 or more empty space in the bin it entered, so we have 0(n?/?) wasted
space in the final packing. On the other hand, if the subsequence @Q were longer
than n!/® at some time t, we have that with high probability, at time ¢ there
were 2(n*/3) bins in P. With high probability } of the items in P have size
between % and %. At time ¢ these are all the only items in their bins. Thus, at
time ¢ there were 0(n?/®) bins with at least } empty space. If there ever were
(n?/3) of these bins, we will show that with high probability there still are, so

we still have 1(n?/3) wasted space.

Suppose that at some point we have {1(n?/%) bins filled to I or less. After
this point, say we will be receiving m < n more items. Any items larger than
% will start new bins, so we need enough small items to fill all these new bins
and the £1(n?/3) bins that were filled to less than 3. With probability at least
1 — 1/n, the empty space we need to fill in these new bins (created by large
items) totals to m + O(y/nlogn) and the total size of the small items we can

use to fill these totals to %m + O(v/nlogn). Thus, we will with probability at

least 1 — 1/n still have 1(n?/3) wasted space. |




Chapter 7. Arbitrary On-line Algorithms

7.1. A Lower Bound

In this chapter, we prove a general lover bound for any on-line algorithm
that does not know the number of items that will be input. We show that any
algorithm packing items uniformly distributed on [0, 1] must waste Q2(y/n log n)
space. We do this by relating the performance of the algorithm to the rightward
matching problem. We then use the lower bound of Ajtai, Komlés and Tusnady
for this matching problem. This lower bound contrasts with off-line algorithms
or on-line algorithms that are given the number of items in advance. These
can achieve O(y/n) average wasted space, which is within a constant factor of
optimal.

Definition 7.1.1: An on-line algorithm for bin packing is one that packs each

itern as soon as it is received.

The model we will use is that the algorithm has no information about the
number of items until it receives the last one. More specifically, we set up a

distribution as follows:
1. Choose k from 1 to n at random.
2. Choose k items uniformly or [0,1].

3. Input these items to the algorithm, ending with a “stop” signal after the

kth item.

~ We now show the expected wasted space is (y/nlogn).
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Theorem 7.1.2: Let A be an on-line algorithm that receives k items uniformly
distributed ~n [0,1] and is not given any information about the value of k until
it has received the last item. Let k be chosen with equal probability from the
integers between 1 and n. Then A must waste an expected value of 1(y/nlogn)

space.

Proof: For a random list L of n items, consider the wasted space that algorithm
A produces when packing the first k items of the list. We will show the average
of this wasted space over k must be with high probability (y/nlogn). This
proves the theorem, since choosing k first and then choosing a random sequence
of length k is equivalent to first choosing a random sequence L of length n and
then only looking at the first & items. We can choose k second because our
conditions on the algorithm A require it to pack the initial items of a sequence
in a way that does not depend on the number of items in the sequence or on the

items which will be received later.

We give a lower bound on average wasted space by analyzing the rightward
matching problem. To convert a list of items to a planar matching problem,
we represent the items received by the algorithm by points in a unit square.
The z-coordinate will be the size of the item. The y-coordinate will depend on

the time the item was received. To fit the n items into the square, we put the

1

Jth item at distance j/n from the top. Next, we label the items larger than 3

with ‘+’ and those smaller than % with ‘—’. We then fold the plane about the
line z = % (See Figure 5.2.2}, so a + peint with z-coordinate s will be moved
so it has z-coordinate 1 — s. For the time being consider only items with size
between } and 2. We join every + point in this range to a — point in this range

representing an itemm packed in the same bin, if there is such an item. This gives

a bipartite matching M between + and — points.

We examine this bipartite matching M more closely. It is a matching on a
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bipartite graph G between the — points in (3,1) and the + points in (3,3). A

— point can only be matched to a + point to the right of it, since otherwise

the sizes of the corresponding items would sum to more than 1. Only one item

11

larger than } can fit in a bin, only two items in the range (3, ;) can fit in a bin,

11
3'2

and an item in (1,1) cannot fit in a bin with an item in (2,1). Thus, the total
aumber of + points plus half the number of unmatched — points in G is a lower
bound on the number of bins used. We prove the lower bound on the expsacted
number of bins by giving a lower bound on the average number of unmatched
— points.

The matching M is a rightward matching in a unit square. By the results
on rightward matching proved in Part I of this thesis, we have that the sum of
the vertical lengths of the edges in a rightward matching is (v/nlogn), where

unmatched points are considered matched to the top or bottom of the square.

The sum of the vertical lengths of the edges in the matching is equal to the
integral over t of the number of edges crossing the horizontal line y = t. The
y-axis is time, and the number of edges crossing the line y = t is the number
of unmatched points at time ¢t. Thus, this integral is the average number of
unmatched points over time. The lower bound given in the lemma thus bounds
the expected number of unmatched points. By applying this lemma to the
points with z-coordinate greater than i, we get a {i(y/nlogn) lower bound on

the expected number of unmatched points in G. This proves Theorem 7.1.2. 1

7.2. A Counter-example

In this section, we show that if we know in advance how many items there
are to be packed, there is an on-line algorithm HBF (for Half Best Fit) with
expected wasted space ©(y/n). This contrasts with theorem 7.2. in the previous

section, which gave a lower bound for on-line algorithms that did not known in
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advance how many items there were to be packed. The optimal packing wastes

©(y/n) space on the average, so this is within a constant factor of optimal.

The algorithm HBF is very simple: pack the first n/2 items one item per
bin, and then pack the remaining items using the algorithm Best Fit. We will
show that HBF gives a better packing than an algorithm we will call MHBF,
and then show that MHBF produce ©(,/n) wasted space.

The algorithm MHBF packs the first n/2 items one per bin, and then uses
a modification of BF to pack the remaining items. We will require in MHBF,
however, that there are only two items per bin, and in a two-item bin, the first
item is from the first half of the items and the second item is from the second

half.

The algorithm MHBF treats the first half and the second half of the items
differently. We will call an item from the first half a + item, and an item from

the second half a — iterr. Let the list of items that MHBF packs be L.

We will be able to use the techniques we developed for MBF on the algorithm
MHBF by modifying the items to obtain L'. The way the algorithm MHBF packs
L will correspond to the way the algorithm MBF packs L'. If a + item in L has
size s, we replace it in the list L' with in item with size 1 + s. The — items in
L we leave alone. Now, the way MBF packs items in L' into bins of size 2 is the
same as the way that MHBF packs items in L. The algorithm MBF will pack
all the + items of L' one per bin, since two of them do not fit into a bin. It will
then pack the remaining items into the same bins that MHBF packs them, since
the amount of space in bins containing + items is the same in MBF{L') and
MHBF(L). Now, by Lemma 5.2.5, M BF(L') is an optimal up-right matching
between + items and — items in L. However, all the + items were put in before

all the — items, so any — item can be matched to a + item to its right.

We next show that # HBF(L) < #AM HBF(L) for any list L. Again, we use
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Figure 7.2.1:

Lemma 5.2.1. This lemma says that if you delete an item from a list L to obtain
L', then # MBF(L) > #MBF(L'). The argument of the preceding paragraph
shows that this lemma also applies to MHBF. Let L' be the list obtained from
L by deleting all — items which are not the first — item to be put in a bin by
the algorithm HBF. Then,

#HBF(L) = #MHBF(L') < #MHBF(L).

We now show that M HBF uses on the average ©(y/n) bins when packing
items uniformly distributed on [0,1]. This translates into a matching problem.
We are given n/2 — points and n/2 + points with values chosen uniformly
between G and 1. A — pcint can only be matched to a + point if their values
sum to less than 1. We will show that the expected number of unmatched points

in an optimal matching is ©(/n).

By Hall's Theorem, the number of unmatched points is

max {Q€ P :w(Q)>1—-z} — {P€ P :w(P) >z}

p<z<1

We put the points on a line, with = — point P with value w({P) put down at the
point w(P), and a + point Q with value w(Q) put down at the point 1 — w(Q).
(See Figure 7.2.1.) Now, the number of unmatched points is just the maximum

number of excess + points in an initial segment of tne line. This has expected

value ©(y/n). 1




Conclusions and Open Problems

In this thesis we placed several planar matching problems that had previ-
ously investigated in various contexts into one framework. We then found new
tight bounds for two of these problems: up-right matching and maximum edge
length matching. We then applied these problems to give bounds on the per-
formance of two on-line algorithms for bin packing: First Fit and Best Fit. We
also used the matching problems to prove a lower bound on the performance of
any on-line algorithm.

Of the four bin packing problems we defined, tight bounds on three are
known. The fourth, rightward planar matching, is still open. If a lower bound
of G(ym logS/ *n) were shown for this rightward matching, this would prove that
there is no on-line algorithm for bin packing that produces o(y/7 log!/ n) wasted
space, which would show that Best Fit is an optimal on-line algorithm. Even if

the answer to rightward matching were locwer, Best Fit could still be an optimal

on-line algorithm, since finding an cptimal rightward matching could require
information not available to on-line algorithms. This is a very interesting topic

for further study.

Another bound presented in this paper that could be improved is the result
on the wasted space of the First Fit algorithm. Neither the performance of the
algorithm nor the number of unmatched points in the corresponding matching
problem is known exactly. Furthermors, it is not clear that these two results are

the same.

Planar matching problems have been useful for analyzing the average case
behavior of algorithms in at least three cases. They were used to analyze multi-
dimensional bin packing in [KLM.. Ii: this thesis, we used them to analyze on-line
algorithms for bin packing. Finally, Coffman and Leighton have used them to
ana'yze a dynamic allocation algorithm [CL]. It is quite possible that planar
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matching problems can be used to analyze the average-case behavior of still

other algorithms. This could be a fruitful topic of investigation.

Dudley [Dul,Du2| has proven a result on the discrepancies of multi-dimen-
sional sets which, in two dimensions, becomes the up-right matching problem.
His bounds on these discrepancies are not tight, but differ by a logn factor. It
is possible that the techniques used in this paper could generalize to prove tight

bounds on these problems. This is worth investigating.
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