We can assume that
Area(|Ripy — Ril) = pVE/2 > pP27 [k

We can make this assumption since by Lemma 3.2.20 increasing the area in-
creases the probability of a large discrepancy. We then apply Lemma 3.2.19.
This lemma says that for a particular value of ¢t; and a particular R;,; — R;,
the discrepancy is at most ov/A with probability 1 — e~2*/3, provided 0% < A/2.
The bound for A(R;4; — R;) above is 0v/A when

3ptl/ log(t; log n) .
= — = 3-2%/log(t; log n).
o \/p’—\/ft:?? og(t; log n)

We now check that 02 < A/2. Squaring the expression we have for o, we get
o? =92 log(t;logn) < 9-2'log(C log n).
Thus, it is sufficient to prove that

2'(log C log n) = o(p*2~*log™"?n), or 2%,/lognloglogn = o(p?).

Recall that 2' < 2™ = G(p/logs/‘n). Substituting this in the above equation, we
obtain

2% /log nloglogn = O(p®loglog n/logn) = o(p?),
so we do have 0? < A/2, and we can apply Lemma 3.2.19.

Thus, for a given ¢; and a given R;;; — R;, the discrepancy is larger than

3pt:/4,/log(t,- logn) with probability e—3-2'log(tilogn) gince there are only
1
22" log(t; log n) regions R;,; — R; with a given t;, it is larger than desired for
fixed values of t; with probability at most
2'log(t; logn
(48—3) g(4) .

85

Since 1 > 2loglogn, log(t;logn) > 1, and 4e™3 << %, this expression is less
than n~'°8". There are only O(logn) possible values of 7 and only O(loglogn)
possible values of t;, so we have that with probability 1— n"°“m", that for every

R;,, — R; with 1+ > 2loglogn,

A(Ripy — R:) < 3pt)/*\/log(t; logn).

We must now show that if 3, ¢; < C, then

z 3pt:/4\/log(t,- logn) = O(plogs/‘n.)
i

We do this by finding the maximum of

logn

> t}/4,/log(t; log n)

=1
given that >, t; < C. By Jensen’s inequality the maximum occurs when all the
values of t; are equal because i.‘,-1 / 4\/log(zt,- logn) is a convex function. This can be
proven by showing that the second derivative of the function is negative. It is

more easily done, though, by showing that this function is the geometric mean

of two convex functions: t.-l /* and log(t; log n).

We must now bound the total discrepancy of the first 2loglogn levels.

Theorem 3.2.22: The total sum of the discrepancies of the regions R;,; — R;,

—(logn)1/3~¢

for 1 < 2loglogn, is with probability 1 — n at most O(plog**n) for

any ¢ > 0.
Proof: We show that, even in the worst case (where t; is as large as it can

get, maximizing the area of and the number of possibilities for R;;, — R;, the

discrepancy of the first 2loglogn levels is O(p log®/* n) with high probability.

As before, increasing the area only increases the chance of a large discrepancy.
Thus, we can assume that the area of |R;., — R;| is ¢;p*/2' for some constant ¢;
since

ATCG(R.‘+1 - R‘)

2!

2 . 2
5:_172*\‘/7,511\/’6'_'

86

The number of possibilities for Rj+; — R; is

n392 - 2' log(C log n) <23 2'loglogn + 3logn

for sufficiently large n.

Since there are 23 * 2' loglogn + 3logn possible regions R;;; — R;, if we want
something to be true for all of them with probability 1 — 2-(ogn)**™* it must be
true for any one of them with probability

g=1- 9—3" 2t loglogn — (log n)s/z“‘.

Assuming the hypotheses of Lemma 3.2.19 hold, this lemma says that with
probability ¢

A(Riy1 — R)? < 3¢yp*2™* (2‘ log log n + (log n)S/Z—c))

This is sufficient to prove the result, since this implies that with high probability

the discrepancy is at most

0 (p\/log logn + p2~'/2 (log n)3/4—¢/2))

Summing this over the first loglogn levels, we find that the first term sums
to O(p(loglogn)%/?) and that the second is a geometric series which sums to
O(p(log n)3/4~¢/%). Thus, the total discrepancy is O(p(log n)%/4-¢/?), as desired.

We must still check the hypotheses of Lemma 3.2.19. That is, we must check

that

Rl > 3-2'loglogn + (logn)3/%~¢
o+l =

First we show that

2% log log n = o(p?).
This holds since 2° < p/log®*n, so 2% < p?/log®*n. We must also show that

(log n)3/3~¢ = o(p?/2").

87

This follows from the inequalities p/2' > log**n and p > log**n. This proves
Theorem 3.2.22, completing the proof of the upper bound for maximum edge

length matching. 1§

88

Part II. Bin Packing

Chapter 4. Introduction

In Part I of this thesis, we investigated several planar matching problems. In
Part II, we will use these problems to find bounds on the average-case behavior
of several on-line bin packing problems. For example, the number of unmatched
points in an up-right bin packing problem is equal to the amount of empty space
produced the Best Fit algorithm. The rightward matching problem gives lower
bounds for any on-line bin packing algorithm. Bounds on the performance of the
First Fit bin packing algorithm can be obtained by looking at a planar matching
problem with an extra condition added on pairs of edges.

The problem of bin packing is: given n items of sizes between 0 and 1, fit
them into the least number of bins such that the sum of the sizes of the items in
any bin does not exceed 1. This is an NP-complete problem that has received

much study.

One topic of study has been the behavior of simple algorithms for bin pack-
ing. Some of the first results, proved by Johnson et al [Jo,JDUGG]| were that in
the worst case, the First Fit algorithm could not use more than (17/10)OPT +1
bins and First Fit Decreasing could not use more than (11/9)OPT+4 bins, where
OPT is the number of bins used by the optimal packing. Several algorithms have
been found since that improve on these results. Recently, asymptotically optimal

algorithms have been found [FL,KK]| where the ratio of bins used to the optimal

89

number approaches 1 as the number of items goes to infinity. The best asymp-
totic result so far is that of Karmarkar and Karp [KK]|, who give an algorithm

that never uses more than OPT + log? OPT bins.

Work has also bezn done on average-case analysis. For the average case, one
must assume some distribution on the item sizes. Much of the work done on this
problem has assumed that the item sizes are uniformly distributed on [0, 1]. For
this distribution, Coffman, Hofri, So and Yao [CHSY] showed that the expected
ratio between the algorithm’s performance and the optimal packing was 4/3 for
the algorithm Next Fit. More recently, Frederickson [Fr| showed that for First
Fit Decreasing, this ratio appr: ~ches 1 as the number of items goes to infinity.
Lueker [Lu| then showed that the expected wasted space for this algorithm is
O(n‘/ ?), where wasted space is the total amount of empty space in partially
filled bins, and n is the number of items. The latest results along these lines are
in Bentley et al [BJLMM]. They show that the expected wasted space for the
algorithm First Fit is O(n*/%).

There are also results for other distribitions. Karmarkar [Ka| analyzed Next
Fit for a uniform distribution on [0, a]. Karmarkar, Karp, Lueker and Murgolo
[KKLM] have generalized Lueker’s result of ©(n!/?) wasted space for First Fit
Decreasing to any symmetric or decreasing distribution. Recently, Bentley et
al [BJLMM), have shown the surprising result that First Fit Decreasing packing
items uniformly distributed on [0,a], a < -;— produces with high probability

constant wasted space.

We will concentrate on on-line algorithms packing items uniformly distrib-
uted on [0,1]. On-line algorithms are algorithms, for example Next Fit or First
Fit, that assign items to bins as the items are input. For some applications, on-
lire algorithms are necessary. Unfortunately, unlike off-line algorithms, on-line

algorithms can never achieve asymptotically optimal worst-case performance. It

90

has been shown [Br,Li] that in the worst case, any on-line algorithm must use

at least 1.536 times as many bins as the optimal packing.

We investigate the average-case behavior of on-line algorithms. We first
show, in Chapter 5, that the algorithm Best Fit, given items from a uniform
distribution on [0, 1], is equivalent to the planar up-right matching problem dis-
cussed in Part I of this thesis. The bound of ®(n'/?log**n) thus applies to
the wasted space produced by Best Fit. In Charter 6, we show that First Fit
is equivalent to a different planar matching problem, and analyze this problem
to obtain bounds of (n?/3) and O(n?/*log!/?*n). In Chapter 7, we show that
any on-line algorithm that does not know in advance the number of items must
produce expected wasted space ((v/nlogn) when packing items uniformly dis-
tributed on [0, 1]. This contrasts with off-line algorithms (or on-line algorithms
that are given the number of items in advance) such as First Fit Decreasing,

which car. produce ©(n!/?) wasted space.

The reason that on-line bin packing problems with items taken from a uni-
form distribution on (0, 1] correspond with planar matching problems is that in
the optimal packing of items with this distribution, almost all bins are packed
with two items. Thus, we need only find a matching between items larger than
1 and items smaller than ; to find a near-optimal packing. Although the algo-
rithms we analyze, First Fit and Best Fit, do not exclusively pack items smaller
than % with items larger than %, most of the bins they pack are packed in this
manner. We will show that Best Fit finds a near-optimal matching and analyze

first fit by looking at the matching that it finds.

Throughout this part we will mean by high probability, with probability
at least 1 — -'1; In bin packing, anything with probability lower than % can be
ignored in analyzing expected case behavior. This is because n items can never

take more than n bins to pack. Thus, if a bin packing algorithm packs items

91

using O(f(n)) bins with probability 1 — %, the expected number of bins used is

(1-2) ol m) + ~0(n) = O(s(m).

We will be measuring the performance of bin packing algorithms both by
number of bins used and by wasted space. The wasted space is the total amount
of empty space in bins, so the amount of wasted space is the number of bins

minus the sum of the sizes of the items. The expected item size is %, so we have

E(number of bins) = '_21: + E(wasted space).

For some proofs, the number of bins is a more convenient measure, while for

other proofs, wasted space is more convenient.

92

Chapter 5. Best Fit

5.1. Introduction

We now discuss the Best Fit (BF) algorithm. In this algorithm, each item
is placed into the fullest bin in which it fits at the time of arrival. We will use
two variations of Best Fit, which we call 2-Best Fit (2BF) and Matching Best
Fit (MBF). The algorithm 2BF uses the same rules as BF, except that it may
never place more than two items in any bin. That is, it places each item in the
fullest bin it fits in that contains only one item; failing this, it puts the item in
an empty bin. For MBF, we impose this constraint (at most two items per bin)
and also the constraint that an item of size less than % may never have an item
placed on top of it. That is, any bin containing an item of size less than one half
is considered full. In this chapter, we will give bounds on the expected space

wasted by Best Fit.

Theorem 5.1.1: The expected wasted space produced by the algorithm Best

Fit when packing n items uniformly distributed on [0, 1] is ©(n!/2log®/* n).

We wiil first prove the upper bound and then the lower bound. These proofs
use the theorems on matching in a plane that we introduced in Part I of this
thesis. In Section 5.2 we show that the wasted space produced by Best Fit is
bounded above by the up-right matching problem discussed in Part I of this
thesis. The following section shows Best Fit is also bounded below by up-right

matching, and is thus within a constant factor of it. Using the bounds for

93

up-right matching, these results give that Best Fit wastes ©(n!/?log®* n) space.

5.2. The Upper Bound

We first show the upper bound on wasted space. This proof involves two
parts. First we show ihat MBF never uses fewer bins than BF. Second, we show
that MBF is equivalent to the up-right matching problem. The O(n!/2log®* n)
upper bound for this matching problem thus also applies to the wasted space in

the BF algorithm.

To prove that MBF always uses at least as many bins as BF, we need a
lemma. Suppose that L is a list of items. We dencte the packing of L using
aigorithm A by A(L), and the number of bins used in this packing by #A(L).

The lemma follows. We will be using several versions of it throughout this paper.

Lemma 5.2.1: If L' is a list obtained by removing one item from L, then
#2BF(L) > #2BF(L') > #2BF(L) - 1

and

#MBF(L) > #MBF(L') > #MBF(L) - 1.

Proof: We will prove the result for 23 F. The exact same proof works for MBF.
We show that, if we consider any bins with two items in them (and thus “full”)
to be identical, then L and L' differ in at most one bin. In fact, they are related

in one of the following ways:
A) 2BF(L) can be obtained from 2BF(L') by replacing a 1-item bin by a
full (2-item) bin.
B) 2BF(L) can be obtained from 2BF(L') by adding a 1-item bin.

We prove Lemma 5.2.1 by induction. We must show that if we add an item p

to two packings related by A or B, they will still be related by A or B.

94

2BF(L

= =1 T — mE.
[—] L[]
2BF(L} - - |
Packings related by A. Packings related by B

Figure 5.2.1:

Suppose that 2BF(L) and 2BF(L') satisfy A. Then there is a 1-item bin in
2BF(L') that is not in 2BF(L). Call this bin b. If the next item to be added,
say p, does not go into the bin b, then the two packings will still be related by
A since the item p goes into the same bin in both of them. If the added item
goes into bin b in 2BF(L'), then in 2BF(L) it will either go into an empty bin
or it will go into a different 1-item bin. In the first case, the two packings will

be related by B. In the second case they will be related by A (See Figure 5.2.1.)

A similar analysis holds if 2BF(L) and 2BF(L') are related by B. Let b be
the 1-item bin in 2BF(L) not in 2BF(L'). If the next item, say p, does not go
into b, the packings will still be related by B. If p does go into b, then in the
2BF(L') packing it wither goes into an empty bin or into a 1-item bin. In the

first case, the packings are related by A, and in the second, by B.

We must still do the base case of the induction. For this, we must show that
when the item p in L' not in L arrives, the two packings will be related by either
A or B. Before this item arrives, 2BF(L) = 2BF(L'). The item p must either
go irto a bin by itself, or into a 1-item bin. In the first case, the packings are

related by B; and in the second case, they are related by A.

The proof for MBF is exactly the same; simply replace 2BF in the above
95

m

paragraphs with MBF. With MBF, if the 1-item bin mentioned in relation A or
B contains an item with size less than %, then the bin is considered full and will

never receive another item. This fact does not affect the proof. &

We can now prove the tollowing lemma:

Lemma 5.2.2: If L is a list of items, then
#MBF(L) > #BF(L).

Proof: We first show that #MBF(L) > #2BF(L), and then show that
#2BF(L) > #BF(L). Obtain a list L' by removing from L all it~ms of size less
than ; which were packed in a bin by themselves in MBF(L). Because these
items do not affect the way the other items are packed, the algorithm MBF will
not put any item of L' smaller than } in an empty bin. The items of L' will thus

be packed in the same way by ZBF and M BF. This gives
MBF(L') =2BF(L').

Also, since the items we removed were packed one per bin by MBF,

#MBF(L')+|L - L'|=#MBF(L).
Since L' was formed by removing items from L, Lemma 5.2.1 implies that

#2BF(L')+|L-L'i > #2BF(L).
Together, these equations show that
#MBF(L) > #2BF(L).

The proof that #2BF(L) > #BF(L) is similar. The same proof for First

Fit is contained in [BJLMM]. As before, we define a sutlist L' by removing items

96

from L. For every bin of BF(L) containing more than two items, remove from
L all items packed after the second item. This gives L'. We removed all items
packed more than two per bin in BF(L), so 2BF(L') packs the items of L' in
exactly the same way that BF(L) packs the items of L', and in BF(L) the items
in L — L' are packed into bins containing at least two items from L'. Thus, we
get

#2BF(L) > #2BF(L') = #BF(L).

The inequality here follows from Lemma 5.2.1, since L' was derived from L by

removing items. Combined with the previous inequality, this proves the lemma.

Now we are ready to convert the problem to up-right planar matching. The
up-right planar matching problem is: given +’s and —’s uniformly distributed
in a unit square, match as many —’s to +’s as possible, with the constraint
that a — can only be matched with a + above and to the right of it. Karp
et al used this problem to obtain bounds on 2-dimensional bin packing [KLM].
Here, by considering time as a second dimension, we use it to obtain bounds on

1-dimensional bin packing for the Bzst Fit algorithm.

To convert a list of items to a planar matching problem, we represent the
items received by the algorithm by points in 2 unit square. The z-coordinate will
be the size of the item. The y-coordinate will depend on the time the item was
received. To fit the n items into the square, we put the jth item at distance j/n
from the top. Next, we label the items larger than % with ‘+’ and those smaller
than % with ‘—’. We then fold the plane about the line z = % (See Figure 5.2.2),
so a — point with z-coordinate s will be moved so it has z-coordinate 1 — s.
For every bin in M BF containing two items, we will put an edge between these

items. This gives a bipartite matching M between + and — points.

We claim every edge in a MBF matching M matches a — to a + above and

g7

