B) g < Giv1-

. s i i+l
We must show that 127 Te< 2—P;— el

The edges at the (¢ + 1)st stage are obtained by replacing each of the edges
at the ith stage with two edges. We look at one of the edges in the ith stage, e;;.
Let it be replaced by e;412;_1 and e;4y3;. If we can show that e}; < 2(834.-1.25—1 +
¢?+1.:j)’ then by adding the above inequality over all edges of A; we can obtain
the ecaation above. The ‘xehgths of the edges of triangle T;; are e;;, €;412;-1,
and e,.;2,;. Hence, by Lemma 3.2.7, e}; < 2(el,,,;_; + €%, ,;), so we are done.

|
Definition 3.2.13: Let r; = qi41 — -

By the above claim, }_r; <1 and r; > 0. Notice that

2 prr;
Z k,',‘ = 2‘. .
i=1

Ve bound the number of choices for B;;; in terms of r;, We do this by Kol-
mogorov complexity, i.e., by finding a short way of specifying B;;,. We will first

use B; in the specification, and later recursively expand B;.

Claim 3.2.14: The (s + 1)st approximation B;.; of R can be specified without
knowing R by «iving the tth approximation B; and two lists of numbers; a list
of 2 numbers between 1 and 9, and a list of 2 numbers whose sum is at most

2'(x r;logn + B), where a and 3 are constants.

Proof: The approximation B; tells us within v/2g,;,, where half the points of

5;.; are located. For every vertex in B;, the corresponding vertex in B;,; is

either the same point or an adjacent point of the grid G;,,. This is beca.se

these two points must both be the closest approximation to some fixed point

on the boundary of R (See Figure 3.2.16). In the figure, a point in tlie marked

square will be approximated by the point in the center of the square on grid G;,
i

and will be approximated by this point or one of the eight grid points on the
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Figure 3.2.16: Approximations on grids G;4, and G;.

square on grid G;,;. This gives 9 possible further approximaticn for each vertex
of B;. Thus, with a list of 2' numbers between 1 and 9, we can specify for each
of the 2° points of B;, which grid point of G;,; it moves to. This list specifies

half the vertices of B;.;.

The remaining points of B;, are those which bisect an edge of B;. For each
edge of B;, we label all the grid points of G, , starting with the midpoint of the
edge and using increasing labels with increasing distance from this midpoint.
Since the edges of A;;; have lengths at most p/2'*!, the next vertex of B;,;
conceivably could be as far as p/2**! away from this midpoint. This is /Iog n grid
points of G;,, away. However, most of the points of of B, will be considerably

closer than this. To prove this, we need Lemma 3.2.6.

WWe use Lemma 3.2.6 to show that there are only a limited number of choices
for B;.1, given B; and a bound on r;. We do this by bounding the number of
choices at each edge of B;. Here we assume we are given a bound on k;; =
2(el_y»j_1 + €},2;) — €%, where e;; is the length of the ith edge of A; and
€,+12;-1 and €;4) 25 are the lengths of the edges of A;;; which replace it. Since

r, = Z?;I k;;, we will get the bound on r; by Lumming all the bounds on k;;.

This bound on the number of cheices for a specific point of B;4; follows from

o d
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Figure 3.2.17:

Lemma 3.2.6 after some work. The idea is that given an edge e;; of B;, there
is a circle around the midpoint of this edge of radius slightly more than %\/k,‘j
such that the vertex of B;; that splits edge ¢;; will fall in this circle. Lemma

3.2.6 will help to obtain this circle.

Let U4 and V,, be the endpoints of the edge e;; of A;, and Up and Vg be the
endpoiats of the corresponding edge of B;. Let W, and Wgy be the vertices of
A;4y and Byy, that divide the edge ¢;;, and let X4 and X be the midpoints of
the edge. (See Figure 3.2.17) Then, by Lemma 3.2.6, d(X 4, W,) < ,.l,\/lz,? Since
the vertices of B; are approximations of the - tices of A; on a grid with edge
length g;, d(Ua,Up) < ¢:/v/2 and d(V,,Vs) < g;/v/2. Since X4 is the midpoint
of UsV, and Xp of UgVp, this gives that d(X4, Xp) < ¢;/v2. We also have
that d(W,,Wp) < g /2\/5, since Wp is an approximation to W, in grid G,,;.
Using the triangle inequality, we get that d(Wg, X5) < %\/k_,; + %ﬁg,—. This is
the desired inequality.

For each edge of B;, we give a numbering to all tiie points of G, beginning
with point 1 at the midpoint of the edge, and increasing the labels with increasing
distance from the midpoint. With points equidistant from the midpoint we

need to designate some arbitrary order, say starting with the topmost point and
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Figure 3.2.18: Numbering the grid points.

proceeding clockwise (See Figure 3.2.18). We let /;; be the label of the point of
B;,, added on the jth edge of B;.

We have showed that the point W of B;,; will be in the circle of radius
r= %(\/E+ 3v/2¢:+1) centered on the midpoint of the edge. Since we labeled the
points in increasing distance from the midpoint, the label ! of the point W will
be less than the number of grid points in that circle. However, by Lemma 3.2.4,

the number of grid points in a circle of radius r is at most m(r + g;+1/v/2)?/g%,,.

Thus, the label of the point W is

IA

w(r + ;71'2' 9i+1)*/9%1
m(VE/2 +2v2gi11)? ¢}
7 2 (VE/2)? + (220:1)?) /%,

irk/gl,, + 167

IA

YWe now show that the sum of the labels of points chosen for B;,, satisfies

2-'
Z l,‘j < 2‘- (ar.- IOg n 4+ ,3)

i=1

x

3 and f = 167. Summing the inequality for [ above, we

for the constants a =

get that

zi
Sk < (3n/gk) 3 ki + 1672°.

i=1
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But recall our definition of ki; was 2(e};_, + €%;) — ef_, ,;. Thus,

2|'+l ) 2% )
= ei+1—;§Eei’

SO

Also recall g;,; = ¢;/2'. Thus,
El <2 (pza/gf) r: + 2'0.
However, from the definition of g;, we have g; < p/+/logn. Thus, we get
2 1 <2 (ar;logn + ).

This proves Claim 3.2.14. 1

We now use the above claim to bound the number of possible approximations
B;,, fcr any R. We do this by using Kolmogorov complexity. We show that
we can determine Bp, Bj, ... B;;; with two lists of numbers. We then bound
the total number of possible lists of numbers and the total number of possible
B,’s. Since B,, B,, ...,B; determine R,, R,, ..., R;, this gives the bound on the

number of possible R; in the following claim.

Claim 3.2.15: The number of possible sequences R;, R,, -+, R;4; for all R with

Ti-1 |, Ti-2 "1 '
r.'+-2—+—4—+"'+FST

is bounded by
n392t log a"rilogn + 3"

for some constants o" and 3".

Applying claim 3.2.14 recursively, we see that B;,, can be specified by B,

2¢*! numbers between 1 and 9 and 2*+! numbers whose sum is

. 1 1 1
2 (C! (Tg' + 51’;_1 + ZT.'-;’ + ...+ -2',—_1-7'1) log n+ 2ﬂ) .
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Let

' 1 1
r,=r;+ Er;_l + Zr.-_g + ..+ E;:Trl.

Then the sum of the numbers ! is at most
2' (arilogn +2p).
Since }_r; <1, we get
o<y rn(i+i+i+-)<e.

We can determine B;,; with B;, and two lists of integers: a list of 2'*!
integers each of which is between 1 and 9, and a list of 2'*! positive integers

whose sum is bounded by
2! (pza/gf) ri+ 215,

The number of ways of making the first list of 2'+! integers is 92!, The number

of ways of making the second list is

(2‘ (arilogn + Zﬁ))
2i+1 :

5) <t
we get the bounds

2 (ar!logn + 2 241
( (ar; 2‘51 + ﬁ)) < (e(%arz.logn+ﬂ))

— 92"llog(a'r!logn + B').

Using the inequality

The total number of choices for the sequence B,, By, ..., B;4+1, given Bj is thus
at most
g2't1,2" log(a'rilogn + ') _ 92"t (log9 + log(ar;logn + 8'))
— 92*llog(a"rilogn + B")

76




We must still bound the number of choices for B;. This is easy, since there
are only 2 points in B; (i.e., it is a line segment). We bound B, by looking
at all possible grid lengths for G, and all possible pairs of points of G,. The
grid length of G, depends only on the perimeter (and n). As we are taking the
perimeter to be a power of 2, and as the maximum possible perimeter is n?,
there are at most log(n?) = 2logn po.sibilities for the grid length. The grid
length will always be at least 1, so there are at most n points on the grid. Thus,
the number of ways of choosing 2 of them to obtain B, is at most n’. We thus
have that there are at most 2n?logn < n® possibilities for By. This shows that

the number of possibilities for B;;; given n and a bound on r; (and not given

R) is at most
n392"t log(a'"r{log n + B") ,

proving Claim 3.2.15.

We have bounded the number of choices for R;,; — R;; we must also bound
the avea of |R;4; — R;|. Intuitively, we look at the triangles T;; along the border
of A;. The union of ihese triangles is approximately |R;,; — R;|. Since the
average angle of these triangles is small, their average area will also be small.
What we will actually do is to take the unior of these triangles to get C;. We
then take everything within \/ig,-ﬂ of C; to get D;, and bound the area of D;.
We then show that R;.;, — R; C D;.

Claim 3.2.16: The area of R; is at most p’2“‘m for some constant
N :

Proof: We first need to define two regions which we will use to prove the bound.
They will be called C; and D;. The region C; will be the union of all the triangles
forming the difference of A;.; and A;. The region D; will be the region formed
by taking all points within v/2g;4; of C;. We obtain a bound on the area of D;
and then show thai |Ri41 — Ri| C D.
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Figure 3.2.19: The triangle T;;.

Definition 3.2.17: The region C; is Uf;lT.-,-, where T;; is the triangle with

vertices a; j—1, ai; and @i41,25-1-

Definition 3.2.18: The region D; is the set of all points within v/2¢;+, of a
point in C;.

The area of C; is bounded by the sum of the areas of all the triangles T;;, since
one obtains C; by taking the union of these triangles. The altitude of triangle T;;,
however, is at most the length of the median, which by Lemma 3.2.6 is % kij.
In Figure 3.2.19, this corresponds to the inequality [WO| < |WX|. Thus, the
the triangle T;; will have area at most \/fc.-_je;,- /4, where ¢;; the length of the
jth edge of A;. We have that e;; < p/2‘, since the distance along the perimeter
between the endpoints of e;; is p/2'. Thus, Area(T};) < \/Ejp/?. Adding this
inequality over all triangles, one obtains a bound of

Area(C) < 3 Area(Ty;) < % ‘:j Vkis.

i=1
However,

2 ¥ L
£ o e Biaiks _, o
i=1 z
since ¥ k;; = p*r;/2*. The bound on the area of C; then becomes

2. /r.
Area(C;) < p_%‘[i

We now show that the area of IJ; is at most

2
Tri Py
4 2‘,/— + V2pg; + mg?/2
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We use Lemma 3.2.5. Recall this lemma gives a bound of 2/d + md? on the area
of the region within distance d of a path of length /. The perimeter of C; is at

most 2p, since

‘2 Per(T;;) = Per(A;) + Per(Aiy1) < 2p.

i=1
The boundary of C; is contained in the union of the polygons A; and A;,,, i.e.

9C; C A; U Ay

The union of A; anc. A, clearly forms a path in the plane. Thus, by the Lemma
3.2.5, we have that the area of everything within v/2gi;; of the boundary of C;
is at most 7(v/2gi+1)? + 2Pv2gi+1. Adding this to our bound for Area(C;), we
obtain a bound for Area(D;) of

We wish to change this into a more tractable form. Since p > g;, we have
V2pg; + mg?/2 < ¢;pg; for some constant ¢;. Now, g; = ©(p2~*//logn). Using
this, we have
Area(D;) < %?— (\/1"7+ I‘O‘n)
< %fﬁr,- + 2¢3/logn.
With 4 = 2¢2, this is the desired bound for Area(|R;4; — Ri).

We must now show that |R;.; — R;| C D;. We will do this by showing
that every point in the square either has the same winding number with respect
to the curves A; and B; or is within g;/v/2 of the curve A;. This proves that
|Ri+1 — R;| C D; because a point z is in |R;;; — R;| only if it has a different
windinz number with respect to B; and B;,;. This shows that z either has a
different winding number with respect to A; and A;;; or that it is within g;/v/2
of cne of A; and A;,;. If z has different winding numbers for A; and A;,,, then
it is in one of the triangles T;;, and so is in C;. If z is within g;/ V2 of a point
on A; or Ai;1, then it is within g,-/ﬁ of C; and so is in D;.
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The polygon B; is produced by moving all the vertices of the polygon A; so

they lie on grid points. We never move any of these vertices more than g;/1/2.

Thus, we never move any of the edges more than ¢;/v/2. A point z will have

the same winding namber with respect to A; and B; unless it is on one side of

an edge of A; and on the other side of the corresponding edge of B;. This will

not happen unless an edge of A; was moved across z, which cannot happen if

the point z is farther than g;/ /2 from A;. 1

We have now shown that the area of |R;4; — R;| is less than

27p*\/2r; - ~/ logn

and the number of choices for the sequence R;, Ry,..., Ri;; is at most

n322i+1 log(a"r:- + ﬂ")_

Let

n_t

8 = a"r; +2r; + (8" + )/ log n.

Then the area of |R;4; — R;| is at most
27?5
and the number of choices for R;, R;,..., R;;1 is at most

'.,'322‘+l log(s;logn)

This proves Lemma 3.2.11 L

3.2.6. Probabilistic Part of Proof

We now have all the information needed to bound the discrepancy. Before

going into the details needed to do this rigorousiy, we briefly sketch the proof of

the result.
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We have that the total number of possibilities for R;,;, — R; is at most

392! log(si log n)

and that the area of |R;4; — R;| is at most
2—l'p2ﬁ.

We would like to show that the number of points of X in R;;; — R; is close
to its expected value. The standard deviation of the number of points inside a
region of area A is O(v/A), so the standard deviation of the number of points in

Riy1—R;is \/Area(R‘-H — R;), which is ps:/‘2"'/2. If the distribution is close to

normal, the probability of being off more than k standard deviations is e~**. If
we choose k such that the number of choices for |R;,; — R;| is less than 2*¥*, then
the probability that we exceed k standard deviations is (%) k’, which is small for
large k. When dealing with the tth approximation, we thus choose k such that
k* ~ 2'+!log(s;logn). Since the standard deviation is v/A, we have that with
high probability, the tth approximation adds less than vk%4 to the area, which

is

\/ 2i+1 log(s; log n)2-p?\/3; = V2ps; /‘\/ log(s; log n).

The total discrepancy is therefore bounded by

\/-pz:s */log (silogn).

However, 37, s; = C. Thus, we need to find the maximum of

N 1/4

—

> s,-/ v log(si log n),

=1
given ©s; < C. The function f(z) = z'/*\/logkz is convex. By Jensen’s
inequality, the maximum occurs when all the s; are equal. This maximum has
a va'ue of ©(los """ n), giving a discrepancy of O(log** n).

81



There are several details we have left out in this intuitive discussion. The
distribution is not a Gaussian, and is only approximated by a Gaussian in an
area close to the mean, s. we must make sure we stay in this area. The top
©(loglog n) levels must be taken care of separately, as the variance of their
discrepancies is too high for the proof t-e high probability bound unless we take
care of them separately. Finally, we must bound the discrepancies of all the
possibilities for R;,; — R; at once.

Suppose that we have a region of area A. The expected number of points
it will contain is A, and the chance of it containing exactly k& points is simply

(") (é)k (1'—'4-)”-", We use this to prove the following lemma:

k n n

Lemma 3.2.19: If a region S has area A, and if 0 < A/2, then the probability
that A(S) > o+/A is less than e~°*/%. Here, discrepancy, as usual, means |A—k|,

where k is the number of peints in the region.

Proof: The proof is a binomial coefficient manipulation. The chance of a

discrepancy of exactly 6 is

(a2 (7T

By Stirling’s formula, this is approximately

) () )
2#\/(A +6)(n—A-96) (%)AH (m

A A+6 n—A n-A-§
(35) GZas)

)n-A—S

<
e—((A + 6) log(1 + %) +(n— A—-6)log(1 — n_‘fA)) )
Using the formula log(l1 + z) = z — 5;— + % — -+, the exponent of the above
expression becomes
62 &3 §? &3
-t smt Tt e Tt
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If § = 0v/A, this is at least

If 02 < A/2, we have

<—:
2 6/A" 3

proving the lemma. Note that if we remove the restriction that o < A/2, the

lemma is no longer true. |

We now need another lemma. This lemma states that if you have a larger

region, then the probability of a large discrepancy increases.

Lemma 3.2.20: If there are two regions S; and S, and Area(S,) > Area(S:),
then

Pr(A(S1) 2 k) > 7 Pr(A(S:) 2 K).

Proof: We choose a region S3 C S; of the same area as S;. Since S; and S; are

the same area,

Pr(A(Sy) 2 k) = Pr(A(Ss) = k).

Now, the probability that the discrepancy of S; — Ss has the same sign as that
of Ss is at least }, so with probability at least 3, A(S;) > A(Ss). This gives the

result. |1

Using Lemma 3.2.20, we can see that Lemma 3.2.19 also holds for the dis-
crepancies of signed regions, such as R;,; — R;. A signed region S can be decom-
posed into two regions Rt and R, with Area(R*) + Area(R™) = Area(R) and
A(R*) + A(R™) > Delta(R). We can then use the above lemmas to bound the
discrepancies of R* and R~ separately. By Lemma 3.2.20, we can assume that
the area of both R* and R~ is Area(|R|), since this increases the probability of

a large discrepancy. *We then use Lemma 3.2.19 to obtain the bound.
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Theorem 3.2.21: The total sum of the discrepancies of the regions R;,; — R;,

—log/3n

for 1 satisfying 2loglogn < 1+ < m, is with probability 1 — n at most

O(plog**n).

Proof: Recall the number of choices for R;,, was at most

n322“’1 log(s;logn) _ 22""’1 log(s;log n) + log® n

If 1 > 2loglogn, then we can ignore the n® term in the number of choices, since
2'*! log(s; logn) > log® n log(s; log n) > 3logn,

and we can increase s; to (1 + €)s; to absorb the 3logn term.

We will now introduce the new variable t;. This variable will essentially be
the same as s;. We require #; to have a certain minimum value which we will
need in some calculations, and we require t; to be 27 for some {possibly negative)
integer 7. This will reduce the number of possibilities for ¢;. We will require t;

to have the following properties:
1.4 > (1+€)s;
2.t >2/logn.
3.t >1/m.
4. t; = 2’ for some (possibly negative) integer ;.
It is easy to see that if we always choose the minimum value of t; satisfying

these conditions, then Y ;t; < C for some new constant C. We thus have that
for 1 > 2loglogn, the number of possible choices for R;,; — R; is less than
22" log(tilogn), and Areo(|Riyy — Rif) < pPVE/2

Now, we claim that with high probability, any possible region R;,; — R,
satisfies

A(Riyy — R;) < 3pt*/log(ti log n).
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