Figure 2.2.2: If the square and rectangle are aligned, no point in the square

moves far.

We now shoew that if we use the above procedure until each region has on
the average ©(logn) points, then with high probability each region will contain
©(logn) points. Since after 2i steps the regions are transformed squares of
a 2' x 2' grid, all we need do is show that if a square containing n points is
divided into a grid with edge length \/alogn, then with high probability each
grid square will contain between «;logn and «;logn points, where a; and «a,

are some fixed constants. This is shown in tlLe lemma below.

Lemma 2.2.1: If n points are distributed uniformly in the unit square, a region

f area alog n/n will, with probability 1/n® for any a, have between a; logn and

e

=y log n points, where «; and a; depend on 4. Furthermore, by choosing « large

enough, we can make a;/a;, arbitrarily clese to 1.

Proof: This follows from Lemme 3.2.19, proved later in this thesis. In this
proof, we will take logn to be the natura' logarithm. Cl.anging the base of the
logarithm only affects the constants. Take ¢ = \/3alogn. Then with probability
e=°?/* = n=% the region contains A + cv/A, or (a £ \/?:13) logn points. This
holds as long as 20% < a, or 6a < a. By taking « large enough, we ensure that

6a < o and that v/3aa < a, proving the resuit. 1
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We must now show that after log(n/logn) steps, with high probability the
rectangles have aspect ratios which are bounded by some constant. We do this
by bounding the change of the aspect ratio of the rectangle at each step, and then
multiplyving these changes together. These factors form a convergent product
dominated by the last term. By the lemma above, this last term is with high

probability bounded by a constant.

Lemma 2.2.2: Suppose that rectangles are constructed as described above, by
dividing the rectangles at the previous stage in half, and moving the boundaries
so the area of a rectangle is proportional to the number of points in it. Suppose
further that at the ith stage each rectangle has at least ¢;n/2° points for some
constant ¢;. Then with probability at least 1 — 1/n?, at the log(n/logn) stage,

the aspect ratio is less than some constant ry.

Freoof: If a rectangle has k points in it, then at the next stage it will be
divided into two rectangles having z and & — z points, where z is a random
variable having a binomial distribution. The amount the aspect ratio changes
is the amount that the rectangle is stretched. The side of a rectangle will be
multiplied by 2z/k. Now, with probability 1 — 1/r®, |z — £| = O(Vk\/Togn),
so the aspect ratio is at worst multiplied by 1 — cl\/TcErZ/\/E. At the 1th stage,
k > ¢,n/2%, and at the last stage, £ > ¢;alogn. Thus, at the ith stage from the
end, with at least 2'¢;alogn points in a rectangle, the aspect ratio is at worst
muitipiied by (1 — ¢/v/27ac,). Let ¢, be ¢/\/@c;. Then, the final aspect ratio is

with high probability at mo-st
(1= c) ™ (1= e2/V2) (1 = ¢2/2) 1 (1 — ¢2/2v2) L -+

If ¢ < 1, which we can ensure by making « large enough, this infinite product
converges, so there is a constant 3 such that the aspect ratio is bounded by 3

with probability 1 — 1/n®. |
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Figure 2.2.3:

We now prove another lemma: this one enables us to complete the matching

once we have divided the square into rectangles.

Lemma 2.2.3: Suppose we have two partitiocns of a unit square into n regions
of equal area, Qy,@Q3,...,Q, and Ry, Rs,..., R,. The R;’s are pairwise disjoint,
as are the @;’s, and U@Q; = UR; = S. Then there is a matching ¢ between the
R;’s and the @;’s such that Q; N Ry(;) # 0.

Proof: This is a consequence of Hall’s theorem. We need to show that any j
of the @,’s can always be matched to 7 of the R;’s. This is true unless we can

find y — 1 R;’s and j Q,’s such that

However, since all the regions have area %, this would mean that a region of

area 7 /n is contained in a region of area j — 1/n, a contradiction. 1

We must now show that the average distance moved by the center of each
square is small. At each step, we move the center of a square with equal prob-
ability in one of two directions. The cer:er of the square will be contained in
some rectangle (See Figure 2.2.3). Suppose that the center is at distance d from
the left edge of the rectangle and that the width of the rectangle is s. Suppose

further that the point is in the left half of the rectangle. Let the number of
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points in the rectangle be k and the number of points in the left half of the rect-
angle be z. Then the size of the left half of the rectangle will be changed from
$/2 to sz/k. This means the point p will be moved from distance d from the
left side of the rectangle to distance 2dz/k from the left edge of the rectangle.
The point thus moves distance d(k — 2z)/k. Since z is taken from a binomial
distribution on k, this distance is distributed symmetrically about 0. Thus the
distance moved by any point is a martingale.

In each step the distance moved has mean 0 and variance at most i After
O(logn) steps, the mean is 0 and the variance is O(logn)/n, so the average

distance moved is O(v/logn//n). This proves the upper bound for average

edge length matching. §




Chapter 3. Up-right and Maximum Distance
Matching

3.1. The Lower Bound

In this section, we obtain the }(n'/?log** n) lower bound for up-right match-

ing.

Theorem 3.1.1: Suppose there are n points uniformly distributed in a unit
square, and each point has an equal probability of being a + or a — point.
If these points are matched such that every — point is matched to a + point
above and to the right of it, then the expected number of unmatched points in

a maximum such matching is 0(n'/? log**n).

Proof: In order to make the proof easier, we rotate the square 45°. With this
rotation, a — point can only be matched to a + point above it, and the slope
of the edge joining them must be larger than 1 or smaller than —1. (See Figure
3.1.1.) To obtain a lower bound of k for the number of unmatched points in
an up-right matching in a rotated square, it suffices to split the square into
two sections, such that in the lower section there are £ more + points than
— points, and such that the boundary dividing the sections is a curve that joins
the left corner of the square to the right corner, and always has slope between
—1 and 1. (See Figure 3.1.2.) With such a boundary, the excess + points in the

lower section can never be matched to — points in the upper section, so they
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Figure 3.1.1: Rotating the square.

Figure 3.1.2: A lower set.
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Figure 3.1.3: The boundary at stage 2.

must remain unmatched. We will construct a boundary such that the expected

number of extrz. +’s below it is ©(n'/? log*/* n).

We will produce the boundary in stages. At each stage, the boundary will
consist of line segments and triangles. If a triangle is on the boundary, then in
any subsequent stage the boundary will pass through two vertices of the triangle,
and the portion of the boundary be.ween these vertices will be contained within
the triangle. For example, in Figure 3.1.3, the final boundary will lie in the
shaded areas. To obtain the boundary at the next stage, we replace every
triangle with either a line segment or with two triangles each having a quarter
of the area of the old triangles. We finally stop the refinement when the triangles

are so small that they contain on the average only one point in each.

The general step of replacing a triangle by two smaller triangles is illustrated
in Figure 3.1.4. The points G and H are midpoints of AB and BC, and D, F
and E divide AC into quarters. In the next stage, this triangle will L e replaced
either by triangles ADB and BEC or by triangles AGF and FHC. The central
quadrilateral BKFJ is defined by the four edges BE, BD, FG and FH; it is
shaded in Figure 3.1.4. We put the central quadrilateral below the boundary
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Figure 3.1.4: A typical triangle on the boundary.

G

7 //////////// /1777

Figure 3.1.5: The boundary at the start.

when it contains more +’s than —’s. In the triangles, the central vertex (B
in Figure 3.1.4) can point either up or down. If the triangle’s vertex points
down, as in the picture, the refinement to AGF and FHC places the central
quadrilateral below the boundary. Otherwise, the refinement to AGF and FHC
will do this. We begin with one large triangle, as shown in Figure 3.1.5. This is
an isosceles triangle which has two vertices at the left and right corners of the

square, and which has two sides with slopes of +s = logl/2 n.

We now list several properties of the triangles we will be using. The letters

refer to the example in Figure 3.1.4.

1. The three vertices (A, B, C) have z-coordinates evenly spaced, so the z-

coordinate of B is the average of the other two. Thus, the segment BF
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is vertical.

2. Each triangle has exactly 1/4 the area of the previous one.
3. The area of the central quadrilateral is 1/3 the area of the triangle.

4. If the slopes of the sides of a triangle are (k — 1)s, ks and (k + 1)s, then
the two triangles it is refined to will either both be similar to it, in which
case they have sides with the same slopes, or one triangle will have sides
with slopes (k — 2)s, (k — 1)s and ks, and the other will have sides with
slopes ks, (k + 1)s and (k + 2)s.

These properties are easily proved using elementary Euclidean geometry.

Property 1 follows by induction. We must show that the z-coordinates of
D and G are halfway between the z-courdinate of A and the z-coordinate of
B. This follows from the fact that D and G are the midpoints of AF and AB,

respectively.

To prove property 2, we must show that
Area(AGF) = Area(ABD) = ;I—Area(ABC).

Since F is the midpoint of AC, Area(AFB) = 1Area(ABC). Since D is the
midpoint of AF, Area(ADB) = jArea(ABF). Similarly, G is the midpoint of
AB, so Area(AGF) = } Area(ABF). This proves property 2.

Property 3 follows from the theorem of elementary geometry that the inter-

12

section of the medians of a triangle divides the medians at the 3, 3

impiies that Area(BFJ) = ;Area(ABF) and Area(BFK) = lArea(BFC).
Adding areas, we obtain Area(BKFG) = 3 Area(ABC).

points. This

To prove property 4, we must show that

slope(AD) + slope(DB) = * - slope( AB).
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This follows from the facts that BF is vertical and that D is the midpoint of
AF.

If we let the first triangle be stage 0, at stage 1 we are testing 2' regions
each of area }s/4' to decide whether or not to include them. (Recall 0, +s were
the slopes of the sides of the original triangle.) The expected difference between
the number of + and — points in a regions of area A is @(\/;7,—) This is true
since a region of area A contains on the average nA points, and each of these
has an equal probability of being a + or a — point. Thus, each stage adds on
the average ©(y/ns) extra + points to the lower region. After ©(logn) stages,
we have an expected number of ©(y/nslogn) = ©(y/nlog**n) extra + points

in the lower region.

We still must show that the slope of the boundary stays between —1 and 1.
If we keep refining all the triangles, it will not. We must modify the procedure
so that any time we would produce an edge of a triangle with slope larger than
1 {or smaller than —1), we stop changing the boundary along this segment. We

must then show this will not affect the analysis.

We can consider the triangles to be organized in a binary tree, so the children
of any triangle are its two refinements on the next level. By property 4, the slopes
of the sides of a triangle differ from the slopes of the sides of its parent by —s, 0,
or +s. If one of the children of a triangle is obtained from its parent by adding
—s, then by property 4, the other is obtained by adding +s. In such a tree, by
Lemma 2.1.1, if we stop after O(logn) levels, at most 1/4 of the nodes exceed
a value of sy/Togn. Since s = log!/*n, we get that the slope exceeds 1 on at

1

most ; of the triangles. By Lemma 2.1.2, even if we ignore the worst i of the

triangles, each level will still give ©(y/ns) points. 1
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3.2. The Upper Bound
3.2.1. Intuition For the Upper Bound Proof

To give the intuition behind the proof, we will give the proof of a simpler
result with the same log®* n bound. This result is an interesting one in its own
right, dealing with the decomposition a polygonal regions-into triangles. The
result does not imply the maximum edge length matching result, but it dces
give some of the basic ideas behind it. In the full result these ideas are obscured

by the technical details needed to prove the result.

The result that we will prove in this section is that for any polygonal region R
with n sides and perimeter p, R can be decomposed into the sum and di®erence
of triangles T; such that the sum of the square roots of the areas of the triangles
satisfies ) \/Ea—a_(f-) =0(p log®/* n). The expected discrepancy of a triangle T
is G(me). If we could assume that the average discrepancy of a triangle
in the decomposition of the polygonal region R was this expected discrepancy,
then by this result the total discrepancy of the region R would be O(p log3/4 n).
Proving this for a general class of regions R is the most difﬁcult part of the proof
of maximum edge length matching presented in the next sections, and is done

in Theorem 3.2.8.

Theorem 3.2.1: Any polygonal regions R with n vertices and perimeter p can
be decomposed into a sum and difference of triangles T; such that 3= y/ Area(T;) =
O(plog**n).

Proof: The algorithm to decompose the region into a sum and difference of
triangles is simple. At each step, we will reduce the number of sides of the
polygon by one by cutting off a triangle (See Figure 3.2.1) We cut off the triangle
formed by a pair of adjacent sides. We pick the adjacent sides v;_,v; and v;v;4;
minimizing ¢ = e; + €;41, where ¢; is the length of side v;_;v;. We then replace
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Figure 3.2.1: Removing a triangle.

these two edges by the edge between v;_; and v,.,.

We must show that this algorithm produces a decomposition into triangles
suck that Y \/Area(T;) < O(p log>/4 n). Let the edge between v;_; and vy,
have length d. We have thus reduced the perimeter by A = ¢ — d. The area of
the triangle that we cut off is at most %dm since this area is maximized

when ¢; = e;+;. Now, ¢ < 2p/n, since we chose the smallest pair of adjacent

We repeat this step until we reduce the number of sides to 2, and thus have
no area left. We let ¢; be the sum of the two smallest sides at the ith step, d,
be the length of the new edge introduced at the tth step, and A; = ¢; — d; be
the change in perimeter at the ith step. Let T; be the triangle we cut off at the
tth step. Then .

Area(T)) < 3d;%(c? - df)'/*

= 14/ (ci + &) /4(ci — i)Y/
<Al

-_— 1 L]

Since A; was the change in the perimeter at the ith step,

n—2

}: A; < p.
i=1
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Figure 3.2.2: Removing four triangles.

i L 2
Since ¢; < =P,
n-2

Z ¢; < 2plogn.

=1

Thus, we have

E::f \/ATCa(T,-) < E?.—Tf c?/‘A}/‘
< ( n-2 Ci) 3/4( n-2 A;)lﬂ

<2p logsf‘ n.

The second step is a special case of Holder’s inequality. 1

If we calculate the sum of the square roots of the areas of the triangles using
just the bounds on the lengths of the sides of the triangles, we get \/ Area(T;) <
p/n, since the sides of triangle T; were at most p/n. This gives ¥ \/m <
plogn. The extra factor of log'/*n comes either because the triangles have

- aller angles or shorter sides than one would naively expect. This fact is also

what gives us the extra log"/*n factor in Theorem 3.2.2.

The proof of Theorem 3.2.1 will also work if we take the decomposition
where we cut off the odd vertices of the polygon at each step. (See Figure 3.2.2)

Thus, each step halves the number of vertices and produces half this number
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n-2
of triangles. We have that \/Area(T}) < cf“A}“ and ) A; < p for the same
=1
reasons as before. The only thing we need te show is }_ ¢; < plogn. This is true
since there are logn stages, and at every stage, 3 ¢; < p. This decomposition is

the one that we will be using in the proof of maximum edge length matching.

3.2.2. Outline of Proof

The problem of maximum edge length matching is as follows: given a set

X of n points uniformly distributed in the /n X \/n square, and the regular
n X y/n grid in this square, what is the expected maximum edge length of the
optimal matching between the grid points and the points of X (i.e., the matching
that minimizes this length). Notice that in this section, we have rescaled the
unit square of the previous section to a /n X y/n square. This will simplify

several of the expressions involved in the proof.

In this section we will show an upper bound of O(log**n) for the max-
imum distance in an optimal matching that holds with probability at least

1 — n—(egm)*™¢ for any € > 0.

Theorem 3.2.2: If a set X of n points are uniformly and independently dis-
tributed in a \/n X y/n square, then with probability 1 — n-(logn)!/2=¢ £op any
€ > 0, there is a matching between the points of X and the regular \/n x \/n
grid with unit edge length in the square such that no point is matched farther
than O(log** ).

To prove thic theorem, we go to the dual probiem. We prove that with
high probability, in any region R with boundary on a grid G,, with edge length
©(log**n), the number of points of X in R is Area(R) + O(log*”*n Per(R)).
This is not true for regions where the perimeter is significantly smaller than
log®*n. This result will prove Theorem 3.2.2 above.

We will need to define the discrepancy of a region. This is the difference
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