that it is decreasing rightward; while the constraints on the dual function for
the M, problem with the Manhattan metric are that the function has vertical
slope between —1 and 1, has rightward slope between —oco and 1, and is 0 on the
boundary of the square. Again, we show how to construct a dual function for
one problerm: by using a dual function for the other on a fraction of the square,
and aq usting it to obtain a dual function for the entire square. This procedure
does not change the asymptotic behavior of the dual function, so it proves that

_ {emy
r = @‘T\v,j'

We first prove the constraints on the dual function for M,. Recall in the
probiem }{, we are allowed to match points to the top and bottom edges, and
that = — point may cnly be matched to 2 + point on its right. We minimize the
sum of the vertical lengths of the edges. In the dual problem, we may consider
a — point and a + point matched to the boundary to be matched to each other
through the boundary. Thus, a — point P may be matched to a + point Q
either directly or through the boundary. If the poirts matched directly, then
the - point must be to its right, and the weight of the edge is lyg — yp|, where
yo and yp arc the y-coordinates of @ and P. If the points are matched through
the boundary, the weight of the edge is d(P,B) + d(Q,B), where d(X,B) is
the minimum distance from the point X to the top or bottom boundary of the

square. Thus, for a — point F and a + point Q, w(Q) — w(P) < f(P,Q), where

*

[ min(d(F,B) + d(Q.B), yg — yp!), P left of Q
"P\ {,i} = <l
\

-

d(P,B) + d(Q,B), P right of Q.

<

This function satisfies the triangle inequaiity because it is the “length” of the
shortest path from P to @, if the length of a path is measured only by vertical

distance, paths can only go to the right, and can go from any point on the top

or bottora Soundaries to any other point on these boundaries. Thus, by Lemma
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1.5.1 we can find a function w' mapping the unit square into R satisfying
w'(X,) — w'(X)) < f( X1, X2).

We claim that a function w' satisfies this equation if and only if it is constant
on the top and bottom boundaries, decreasing rightward, and has vertical slope

with absolute value at most 1.

Suppose a function w' satisfies
w'(X;) - w'l(X)) € f(Xy, Xa),

where f(X,,X:) is the edge weight ‘or the problem M, given above. We will
how that it satisfies the conditions liited above. If X; and X, have the same
y-coordinates and X is to the left of X3, f(X1,X2) = 0, so v'(X)) > v'(X,).
Thus w' is decreasing rightward. If X; and X; have the same z-coordinates,

then w'(X;) — w'(X)1) < lyx, — ux,| <

d(X1,X2), so w' has slope at most 1
vertically. If X; and X, are on the top or bottorn boundary of the square,
lw'(X,) — w'(X;)] €d(X1,B) - d(X;,B) =0, so w'(X;) = w'(X3).

Now, suppose w' is decreasing rightward, is O on the top and bottom bound-
aries, and has vertical slope at most 1. We will show that f(X;, X3) > w(X,) —
w({X;). Let X; and X; be two points in the unit square. Since the verti-
cal slope of w' is at most 1 and w’ = 0 on the top and bottom boundaries,
d(X,B) > 'w'(X)]| for any point X, so d(X;,B) + d(X,,B) > v'(X,) — w'(X,).
Now. suppose X; and X, are two points with X, to the right of X,. Let Xj
be the point at the z-coordinate of P and the y-coordinate of Q. Since w' is

decreasing rightward, w'(X;) > w'(X3)

e

Since w' has vertical slope at most 1,

éwl(-"\P:.' - w’(X3)[ < §yx2 - yXal‘ Thus,

Po— 1

w' (X)) —w'(X) < w'(Xp) — w'(Xs)

[A

ny; - yX:!‘



This shows that w'(X;) — w'(X;) < f(X1, X2).

We now look at the rightward matching problem M. We will use the Man-
hattan metric in analyzing this problem. This makes the analysis easier, and
at worst, changes the edge lengths by a factor of 2. In M! problem, —’s can
be matched to the top, bottom, and right sides of the square, while +’s can be
matched to the top, bottom, and left sides. We will let B, stand for the top,
bottom and right sides of the square and B, stand for the top, bottom and left

sides. For this probiem, the weight function on edges is

d(P,B,) + d(Q,B)) Q left of P
f(“D't Q) =
min(d(P, B,) + d(@,B:),dn(P,Q)) otherwise,

where dp (P, Q) = |yp —yg| + |Zp - Zg| is the ditance in the Manhattan metric
between P and @. This function satisfies the triangle inequality since it is the
“lengtn” of the shortest path between P and Q, if the Manhattan metric is used
to measure length and paths are allowed to leave the square on the top, bottom
or right boundaries and re-enter in the top, bottom, or left boundaries for no
cost. Thus, by Lemma 1.5.1 we can assume that the dual function w is defined
on the whole unit square, and satisfies w(X;) — w(X;) < f(X,X:). We claim
that the set of functions w satisfying w(X;) — w(X;) < f(X), X:2) are exactly
those w such that w has vertical slope at most 1 in absolute value,lhas horizontal
slope less than 1 {i.e., between —oo and 1), and such that w is constant on the
boundary of the square.

Suppose that w is a function satisfying w(X;) —w(X,;) < f(X1,X:), where f
is the edge weight for the problem M/ given above. Then w has slope 1 vertically

since if X, and X3, have the same z-coordinate,

UJ(Xz) - w(Xl) S d(Xl,Xg).
The slope of w rightward is at most 1, since if X; and X; have the same y-
coordinate and X is to the right of X, then w(X:) — w(X;) < d(X;, X,). If
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X, and X; are points on the top and bottom boundaries, then w(X;) = w(Xa).
We can assume without loss of generality that this value on the top and bottom
boundaries is 0. If X, is on the right boundary, and X, is on the top or bottom
Loundary, w(X,) — w(X,;) < 0, so w(X;) < w(X,;) = 0. Thus, points on
the right boundary have negative values. Similarly, w is positive on the left
boundary of the square. However, since the function w can decrease arbitrarily
fast rightwards, we can change w so that the left and right boundaries have

value 0, and still have w satisfy all the conditions.

We now assume that w is 0 on the boundaries of the square, has rightward
slope at most 1, and vertical slope between —1 and 1. If point X, is to the right of
X, then by the slope conditions, w(X;) — w(X;) € dap(X2,X;). Furthermore,
for any points X; and X,, w(X;) < d(X,, B;) and —w(X,;) < d(X;,B,), so
w(X,) — (X;) € d(X3, Bi) + d(X,, B,). This shows that the function w satisfies
w(Xz) — w(X)) < f(X1, Xa).

Theorem 1.5.3: D, = ©(D!).

Proof: We show that, given a dual function for M, on the middle ninth of
the square, we can find a dual function for M} on the entire square, which has
n

(“)), which implies

the same expected value. This shows that D.(n) = Q(D](5

,
D, = Q(D]). Similarly, we show that given a dual function for M on the middle
ninth of the square, we can find a dual function for M, on the entire square,
implying D, = O(D}).

Recall the requirements for a dual function for the problems M, and M!. A
dual function for M] must have slope rightward at most 1, vertical slope between
+1, and be 0 on the boundary of the square. The dual function for M, must be

decreasing rightward, must have vertical slope between +1, and must be 0 on

the top and bottom boundaries of the square.
Suppose we are given a dual function for M, on the middle ninth of the
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square. It has slope at most 1 on the boundary of the middle ninth. We need

to extend it to the entire square and make the boundary on the entire square 0.
We can multiply w by % so that its slope on the boundary of the middle ninth

never exceeds %, and then we use the same argument as in Theorem 1.5.2.

Suppose we are given a dual function w' for M] on the middle ninth of the
square. We need to make w' be decreasing rightwards. To do this, all we need
to do is add the function % — z. Unfortunately, this function does not satisfy

the requirement that it be 0 on the top and bottom boundaries of the square.

However, we can let

y(3 — 2), y<3
W= 5 -2 sSys]
(1-y)(;-2) ;<.

This function will have all the desired properties, so will be a dual function for

M. 2

1.6. Variations

In all the problems presented so far, we have assumed that there were n
+ points and n — points and that they were distributed independently and
uniformly in the unit square. For some applications we need different models
for the distribution of the points. In this section we will give three possible
variations in the way the points are chosen. We will show that in most cases,

these variations make no difference in the asymptotic behavior.

In the first variation the difference is that instead of matching between two
kinds of points each distributed at random (we will call this two color matching)
we match from one kind of point distributed randomly to a fixed grid of n

points in the unit square (we call this grid matching). Grid matching is more
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difficult than two color matching. Suppose that we can do grid matching for

some problem. To do two color matching for this problem all we do is match
each color to a grid, and then match points matched to the same grid point
to each other. The expected sum of the lengths of the edges (or number of
unmatched points, or maximum edge length) in two color matching is thus less
than twice the expected sum for grid matching. We will prove the upper bound
for maximum edge length and for average edge length matching in the case of
grid matching, and the lower bound for average edge length and for up-right
matching in the case of two color matching. Since grid matching is harder than
two color matching, this proves the bounds both for two color and for grid

matching.

In the next variation we will discuss there are no longer an equal number
of + and — points. Instead of there being n + points and n — points, there
are 2n points, each having an equal probability of being a + or — point. Since
there are no longer an equal number of each kind of point, we cannot expect
a perfect matching. We must permit points t¢ be matched to the sides of the
square. Thus, there will be an average of ©(,/n) difference between the number

of + and of — points.

We show that this variation does not change the asymptotic behavior of
the expected value. In a matching, if k points are deleted, the sum of the edge
lengths changes by at most k, since unmatched points can be matched to an edge
with cost at most 1. Suppose we are given a matching with (n + k) + points
and (n — k) — points. We choose k of the + points at random and turn them
into — points. We now have a matching with n + and n — points. Furthermore,
the distribution of points is the same as if they had been chosen independently
and uniformly in the unit square. Since we changed k points, the sum of the

edge lengths in the matching can change by at most k. The expected value of
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lk| is O(y/n), wh te n+ k is the number of + peints. Thus, the expected sum of

the edge lengths for our variant model the other is different by at most O(\/n).
Since this quantity is smaller than the expected sum of the edge lengths for all

our problems, it does not change the expectation.

For high probabkility analysis, we have that with probability 1 — nla, the
difference of the number of points is O(y/nTog n) and with probability 1~n\ﬂ5‘;,
the difference is O(\/:'_Lloga/4 n). These probabilities are small enough so that
the high probability results do not change in up-right matching or in the upper

bound for average edge length matching. The proof of the lower bound for

average edge length matching can be seen to apply to both models.

For maximum edge length the technique above does not apply. However, you
can match both + and — of pcints to two grids with different numbers of points
using edges of O(n'"l/2 loga/‘). We then match the two different kinds of grid
points to each other, matching extra ones to the side of the square, with edges
of length O(n"'/?log®* n), assuming that the number of points in the two grids
differs by O(n!/?log®* n). Thus, this variation does not make any difference in

the results for maximum edge length matching

The third variation is that the points are evenly spaced vertically, or hori-
zontally, or both instead of being randomly distributed in the unit square. We
can change one model into the other here by moving all the points a small dis-
tance. Suppose we have points randomly distributed in a unit square. We move
all the peints up or down until they are evenly spaced vertically. The average
distance a point moves is on the average ©(n~'/2). With probability 1 — X no

point moves farther than O(n“l/2 logl/2 n} and with probability 1 — 2~V logn no

point moves farther than O(n~'/?log¥* n). These probabilities give the results.
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Chapter 2. Average Edge Length Matching

2.1. The Lower Bound

In this section, we will prove the lower bound for the average edge length in
a matching. This proof is essentially the same as in [AKT], but it is somewhat
simplified, so we do not have to appeal to the strong theorems about probability
that they use. We also prove that the lower bound of ©(y/nlogn) holds with

probability 1 — 2™ for any € < 1, while they prove that the expected value is
©(yv/nlogn).

To obtain this bound, we need two lemmas. The first is essentially a lemma
on martingales. It is stated as a theorem on binary trees, but it can be thought
of as saying that if a martingale has a variance of at most 1 for each step, then
after n steps, the variance is at most n. Thus, the probability of a value above
ay/n is at most 1/a’. The second lemma says that if you flip k coins, then with

constant probability, there is a 2(4/n) excess of either heads or tails.

The first lemma can be thought of in terms of martingales by considering
paths through the tree. Each path will have ec srobability. At each vertex,
the children will have weights @ more and a less than the current vertex. Thus,
at every step, there is an equal probability of adding or subtracting scme value

a, where a depends on the previous path you have taken through the tree.

Lemma 2.1.1: Suppose that for a binary tree T of depth d, every node v has

some weight w(v). Suppose that the root has weight 0 and that every non-leaf
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node v with weight w(v) has two children with weights w(v) + a and w(v) — g,

where 0 < a < 1. Then the weights of the leaves [, satisfy

Proof: We prove this lemma by induction on the height of the tree. Take a
node v with weight w(v). Then its children have weights w(v) + a and w(v) - &
for some a < 1. The sum the squares of these values is the contribution of these

nodes to the sum. We have
(w(v) + a)? + (w(v) ~ @) = 2(w(v)? + a?).

Let v,; be the 1th node on level k of the tree. Then, summing the above equation,
we get

1 2l+l 1 2! 2 1 2h .,
gk+1 Z w(vk+1.i)2 = ok+1 Z(w(vki)+aki) + (w(vis) — ah)z = 2k Z(w:i+ais)-

=1 =1 =1

From aw < 1, we obtain 3z ¥, af; < 1. Thus,

1 2k+l ak

—— 1
2k+1 Z w(vesr)? < 1+ 5t 3 w(vw)?.
=1

Since the value at the root is 0, this proves the lemma by induction. 1§
We now prove a lemma saying that if you flip n coins, then with probability

%, the difference between the number of heads and the expected number of hea<s,
n/2,is Q(y/n).

Lemma 2.1.2: If there are n independent events, each of which has probability

3

% of occurring, and X is the number which occur, ther with probability £,

X —n/2| > /n/8.
Proof: The probability that X = k for any given k is small. It is maximized

for k = [3], in which case it is

2() : (;-(
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Thus, the probability that | X — 2| > /n/8 is at most,
vn \/__m <!

. - -
since there are \/n/4 numbers between 3 and XBC, and X has at most a \/;/\/n

chance of being each of these.

We now prove the lower bound on average edge length matching.

Theorem 2.1.3: Suppose n points are distributed independently and uniformly
in the unit square, and each of these has an equal probability of being a —
point or a 4 point. Then, with probability at least 1 — 2™ for any ¢ < 1,
the minimum edge length matching between — and + points has sum of edge
lengths Q(v/nlogn), where points are alsc allowed to be matched to an edge of

the square.

To prove ihe lower bound, we will produce a dual function w that lower
bounds the weight of any matching. The function will have the following prop-

erties.

1. With high probability, 3 w(P*) ~ Y w(P-) = ©(y/nlog n).

13/

’Bv

<7

3. The function w is 0 on the boundary of the square.

To obtain this function w, we will produce the function in stages, adding a
component at each stage. Each stage adds ©(y/n/+/log n) to the sum 3_ w(P,) —
T w{P.). At stage 1, we divide the unit square into a grid of 2% x 2% smaller
squares S;;, 1 < 7 < 2%. The function we add will be defined on one of these
squares by s-d(z, S;j), where d(z, S;;) is the distance from the boundary of the
square S;; to the point z if z € S;; and 0 if z € S;;, and s = 1//logn.

In each stage, we divide every square S;; into 16 smaller square S;; ;:, where

165 — 15 < 3’ < 165. These 16 smaller squares will be paired, to obtain 8 pairs
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Figure 2.1.1: Dividing S;; into 16 smaller squarc, Sy ;.

of squares. We pair the two middle squares on each side and the two adjacent
squares along each diagonal In Figure 2.1.1, squares given the same letter are
paired. We call squares from pairs A, B, C or D diagonal squares and square
from E, ¥, G or H edge squares. Whatever we do to one square in a pair, we
do the opposite to the other. That is, if for one square S;; we add s - d(z, S;;),
to the other square in its pair, S;;, we add —s - d(z, S;;). If we add O to one

square of a pair, we add 0 to both of them.

We pair the squares in this way because in both the square in any pair,
the function is the same up to translation and adding a constant. Specifically,
the slope of the function is the same in two squares in any pair. In an edge
square, the slope has only one value. In a diagonal square, the two regions on
each side of the diagonal may have different slopes. (See Figure 2.1.2.) We are
thus producing a tree of slopes as in Lemma 2.1.1. Each of the two squares
in a pair has the same slopes, and opposite slopes are added to each of them.
By Lemma 2.1.1 this gives that on at most i— of the squares, the slope has ever
exceeded 1 after ©(logn) stages. This is what we want, because this means that

we can stop refining the function on any square where the slope would exceed
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Figure 2.1.2: The slope is constant in each of the four regions.

1, and still be construction the function in % of the small squares at every step.
The expected number of points in a small square at the ith stage is n/16".
Each of these points has an equal probability of being chosen a + or — point.
Thus, by Lemma 2.1.2, each of these 16' small squares has a probability Of
of contributing {1(s4~* - m) = (s167*) to the value of the dual function.
Since there are m = 16' of these small squares, the irobability that more than }

2

of these small squares contribute less than this to the dual function is less than
m /3 m/2 1 m/2 m 3 m/2
72 G ) =G
2 \4 4 im 4
Thus, the ith level adds, with probability 1 — %, Q(s\/n) to the dual function.
Since there are ©(log n) levels, and s = ©(1/+/log n), this gives a lower bound of
Q(y/ny/Togn). By starting on the tth level. where 16' = n* for € < 1, we obtain
the bound of 2(y/nlogn) with probability 1 — ¢~ for some constant ¢. 1l

2.2. The Upper Bound

To show the upper bound for the average edge length problem, what we do

is construct a matching with expected average edge length ©(y/nlogn). We will
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Figure 2.2.1: Dividing the square into rectangles.

do this by recursively subdividing the square. First, we divide the square in half
horizontally and linearly trans®rm each half so that it has area proportional
to the number of points in it. (See Figure 2.2.1). We then subdivide each
of these halves vertically and transform each to have area proportional to the
number of points they contain (See Figure 2.2.1). We apply the same procedure
recursively to each section, alternating horizontal and vertical division. After
doing this ©(logn) times, each point is contained in a rectangle with area 1/n.
We then divide the square into n grid squares and use Hall’s Theorem to match

each point to a grid square which overlaps its rectangle.

There are two questions to be answered. First, how far did we move each
point while constructing the rectangles. Second, when we match the rectangles
to the squares, what is the diameter of the rectangles. If these two quanti-
ties both average O(/logn/./n), then we are done, since we moved each point
O(y/Togn/4/n) in the first stage, and in the second stage, every point is withii.

diam(grid square) + diam(rectangle) of the corresponding grid point.

The diameter of the rectangles is determined entirely by their aspect ratios,
since all the rectangles have the same area of 1/n. We will show that with high
probability all the rectangles have a bounded aspect ratio. In the early steps,
with high probability, we change the aspect ration by very little. We must

determine how much the aspect ratio changes in the last few steps.
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We will show that the average distance a point is moved is ©(y/Togn//n).
At each step, a point is moved an average of 1/y/n in a random direction. This is
a random walk, so the average distance moved after @(logn) steps is @(/log n)
times the average distance moved at each step, or ©(y/logn/./n), as desired.

There arc several observations which will make the proof easier. The first
observation is that we can stop with ©(logn) points in each rectangle, instead
of continuing until there is exactly one point in each rectangle. The second
observation is that at the i¢th stage, the regions are subsquares of the original
sguare with a 2/2 x 2'/% grid. The third observation is that if the aspect ratios
of the rectangles are constant, we only need to keep track of the movement of

the middle of each square.

The reason that we can stop when the rectangles contain ©(logn) points is
that a rectangle containing log n points has diameter ©(+/log n/\/n) (the aspect
ratio is bounded by a constant) and is thus small enough that we can move the
points anywhere in it without moving them farther than O(y/logn/\/n), the

distance we wish to show the average point is moved.

The second observation is easy: at each stage we divide every region into
two equal-sized regions, alternating between horizontal and vertical division. If

we do not apply any transformations, this gives a 2' x 2' grid after 2: divisions.

The reason that we only need to keep track of the middle of each square
is that the middle of the square determines how much the rest of the square
moves. Given a rectangle and a square, there is only one affine transformation
taking the rectangle to the square. If they have the same area and the rectangle
has an aspect ratio of r, then no point moves farther than diam(rectangle) -+
diam(square). (See figure 2.2.2). Since the rectangle has aspect ratio r, if
the square has side length s, the diameter of the rectangle is sv/r1/2 + r-1/2 =
O(sr'/4). If r is bounded, this is O(s), which is sufficiently small.
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