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Introduction

areas are the asymptotic behavior of random planar matching problems and the
average-case analysis of on-line bin packing algorithms. By applying theorems
on planar matching, we can obtain better bounds for the expected behavior of
several cn-line bin packing algorithms than previously known. Planar match-
ing and bin packing were first related in [KLM], where Karp et al applied the
up-right matching problem to obtain bounds on the expected behavior of multi-
dimensional bin packing algorithms. Since then, the up-right matching problem
has been used in this thesis to obtain bounds on the expected behavior of the
Best Fit bin packing algorithm and in related work by Coffman and Leighton
[CL] to obtain bounds on the expected behavior of a dynamic allocation algo-

rithm.

We will define four planar matching problems: average edge length matching,
rightward matching, up-right matching and maximum edge length matching.
Three of these problems have been previously considered. Up-right matching
has arisen in studies of probability [Dul,Du2| and in the analysis of algorithms
[CL,KLM]|. Maximum edge length matching has arisen in work on VLSI [LL|.
Average edge length matching was previously investigated as a possible statis-
tical test [AKT].

The simplest random planar matching problem is average edge length match-
ing. This matching problem is as follows: Suppose there are n + points and n
— points, randomly distributed uniform!y and independently in the unit square.
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Match the + points to the — points points so as to minimize the average edge

length. What is the expected length of the adges of an optimal matching?

The other three planar matching problems discussed in this thesis are similar.
In rightward matching, the goal is to minimize the average length of an edge in
a matching where every + is to the right of the — with which it is matched. In
up-tight matching, the goal is to minimize the average length of an edge where
every + is both above and to the right of the corresponding —. In maximum
edge length matching, the goal is to minimize the maximum length of an edge
in 2 matching. Since there is a polynomial algorithm for weighted bipartite
matching [PS], it is relatively easy to find the optimal solution in a particular
instance of the problem. What we investigate ir this thesis is the asymptotic

behavior of the value of the optimal sclution.

These problems are listed above in the order of increasing difficulty, i.e., the
edge length is shortest in average edge length matching and longest in maxi-
mum edge length matching. Tight bounds are now known for three of these
problems. Ajtai, Komlés and Tusnddy (AKT] have proven that the optimum
average edge length is ©(log!/?n//n). In this thesis, we show that the optimum
maximum edge length and the optimum edge length of an up-right matching are
both O(log**n/\/n). This shows that the solution for rightward matching is
between the bounds for average edge length and for up-right matching, i.e., it

is 1(log'/*n/\/n) and O(log*4n/\/n).

We also show that these problems are fairly robust. The conditions on the
matching or the distribution of the points can be changed in several ways without
changing the asymptotic behavior of the optimal solution. For instance, points
may be allowed to be matched to the boundary of the square as well as to points
of the opposite kind. Instead of taking n + and n — ponts, you can take 2n

points, each of which has an equal probability of being a + or a — point. You
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can also take the + points to be a fixed uniformly spaced /n x y/n grid instead

of randomly distributed in the square. None of these variations changes the

asymptotic behavior of the problems.

Several of these problems have arisen before in various contexts. The most
common one is up-right matching. This has appeared in a slightly different, but
equivalent form: namely, the number of unmatched points in an optimum up-
right matching. This differs from the average edge length in an up-right match-
ing by a factor of n. Up-right matching was first investigated independently
by Karp, Luby and Marchetti-Spaccamela [KLM], and by Dudley [Dul,Du2].
The bounds obtained by both investigations were very close; the best bounds
obtained were Q(y/nlog'/*n) and O(y/n logn).

Karp, Luby and Marchetti-Spaccamela [KLM] investigated up-right match-
ing because it arose in the analysis of a multi-dimensional bin packing algorithm.
For two diimensions, they needed the asymptotic behavior of up-right matching.
In the analogous problem for d dimensions, a — point can be matched to a +
point only if all of its coordinates are less than the corresponding coordinates of
the + point. This problem is easier to analyze in 3 or more dimensions than in
2 dimensions. Karp, Luby and Marchetti showed that the average edge length
in d dimensions was ©(n~1/4),

Dudley investigated the equivalent dual problem to up-right matching. This
dual problem is to find the expected maximum discrepancy of a lower set in the
unit square. A lower set is a set L such that if 2 point z is in L, every pcint
below and to the left of z is alse in L. If there are n + points and n — points

in the square, the discrepancy of a set L is the excess of one kind of point, i.e.,
'IH— points in L}| — [{— points in L}[l

Although Dudley does not obtain bounds on the discrepancy of a lower set

as tight as those obtained by Karp et al., he obtains bounds for a much more
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general case. By turning the square 45°, a lower set becomeas a set in which

the first derivative of the boundary is at most 1. Dudley obtains bounds on the
discrepancy of sets in d dimensions in which the first & derivatives are bounded.
If k > d, he shows tne expected discrepancy is ©(y/n). When k < d — 1, this
behavicr changes. Dudley obtains bounds for the borderline case of k =d — 1 of
O(/n logn) and O(\/nlog? n/(loglogn)'*¢) for any € > 0. In two dimensions,
this case is precisely equivalent to the number of unmatched points in an up-right
matching. In three dimensions, this is equivalent to the maximum discrepancy

of a convex set.

The maximum edge length matching problem has arisen in VLSI design.
Suppose there are n working processors on a chip, distributed randomly, and
that you wish to configure these into a v/n x \/n grid using short edges. Orne
way tc proceed is to match each of these processors to a grid point on a fixed
/n x \/n grid, and then configure them in the pattern of this grid. Study of
this and related problems led Leighton and Leiserson [LL] to obtain a bound of

v/nlogn on the maximum edge length problem.

The average edge length problem was solved in a paper of Ajtai, Komlés
and Tusnddy. They were interested in this problem because it makes a good
statistical test. To test whether two sets of points come from the same distribu-
tion, they find the optimal matching between the two sets of points. If the two
sets are from the same distribution, the matching will have average edge length
O(log'* n/\/n). If the sets are from two different distributions, the edges are
likely to be longer. Ajtai, Komlds and Tusnady show that if the points are taken
from the uniform distribution, the expected average edge length is ©(y/n+v/logn).
in this thesis, we will give a slightly different version of their proof which avoids

appealing to some difficult theorems on probability that they use.

The first part of this thesis deals solely with these matching problems. ‘We
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first define all the problems. We then discuss the equivaient dual problems,

which we will use in the analysis of these problems. We discuss several variations
on these problems that do not affect the asymptotic behavior of the solutions.
We finally give the proofs of the bounds for these problems, starting with average
edge length matching and proceeding to up-right matching and maximum edge

ength matching.

In the second part of this thesis, we discuss bin packing. We will use the
theorems on planar matching proved in the first part to prove results about the

average case behavior of bin packing algorithms.

The problem of bin packing is: given a set of items with sizes between 0
and 1, pack them into the minimum number of bins of size 1 such that no bin
contains items with sizes summing to more than 1. Finding a packing using the
fewest possible bins is NP-complete. However, several algorithms can be shown
to give fairly good packings. The best algorithm to date is that of Karmarkar
and Karp [KK], which always uses OPT + O{log? OPT) bins, where OPT is the

number of bins used by the ¢ptimal packing.

We will study on-line algorithms for bin packing. These are algorithms that
pack items in bins as soon as the items are received. On-line algorithms must
make choices without knowing what size items they will receive, so it is not
surprising that they cannot do as well as off-line algorithms. Brown and Liang
showed independently that any on-line algorithm in the worst case will use at

least 1.536 OPT bins [Br,Li]

Two of tie simplest on-line algorithms are Best Fit and First Fit. The
algorithm Best Fit packs each item in the bin it fits “best” in, i.e., the one with
the least empty space. The algorithm First Fit keeps the bins in order, and
packs each item in the first bin it fits in. Both these algorithms use in the worst

czse 1.7 OPT bins [Jo,JDUGG].
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Instead of investigating the worst-case behavior of bin packing algerithms,

we will investigate the average behavior. In order for the average behavior to
be defined, we must assume some distribution on the item sizes. The simplest
distribution, and one that has often been used, is the uniform distribution on

10,1]. We will also use this distributien.

The measure we use to judge the performance of bin packing algorithms
is the expected wasted space. The amount of wasted space in a packing is the
amount of empty space in bins containing at least one item, or the number of bins
used less the sum of the sizes of the ivems. Previously, the best known average-
case bound for an on-line bin packing algerithm was an O(n*/®) hound on the
wasted space produced by the algorithm First Fit [BJLMM]|. By using results on
random planar matching problems, we show that when packing items uniformly
distributed on [0, 1], the expected wasted space produced by the algorithm First
Fit is 2(n?/3) and O(n*3log"/*n), and the expected wasted space produced
by the algorithm Best Fit is ©(y/nlog**n). We also show that no on-line
algorithms can have expected wasted space ofy/n logl/2 n). The performance of

Best Fit is very close to this theoretical lower bound.

Planar matching probiems were first used to analyze average-case bin pack-
ing by Karp et al. [KLM]. Theyr gave an algorithm for multi-dimensional bin
packing. In multi-dimensional bin packing, the items are d-dimnensional rect-
angies which are to be packed into d-dimensional hypercubes. Karp et al. as-
sumed that each of the coordinates of the items was distributed uniformly on
[0,1]. They showed that the expected number of unmatched points in the d-
dimensicnal up-right matching problem was equal to the expected wasted space

in the packing achieved by their algorithm.

The result on Best Fit follows much the same pattern. We show that the

amount of wasted space produced by the Best Fit algorithm is the number of
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unmatched points in an optimal up-right matching. We do this by representing
the items packed by Best Fit as points in the plane, with time as one coordinate
and the size of the items as the other coordinate. We produce a matching by
pairing items that were packed in the same bin by Best Fit. Unmatched points
in this matching correspond to bins with only one item in them, which give rise

to wasted space.

1 and Leighton use up-right matching to analyze the average-case per-

Coffr
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)
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formance of another algorithm [CL|. This algorithm is for dynamic allocation,
i.e., iterns both arrive and depart, and they must be stored using the minimum
storage space. The algorithm is a modification of the Best Fit dynamic alloca-
tion algorithm: the storage area is first partitioned into compartments, and then
Best Fit is applied. This algorithm also produces ©(y/n log/4 n) wasted space.
The bound does not depend on the distributicn being uniform; however, the dis-
tribution must be known in advance so that the storage area can be partitioned

properly.

As with Best Fit, the bounds on First Fit are proved by showing that it is
equivalent to a planar matching problem. This matching problem is up-right
matching with an added conditicn on pairs of edges. Roughly, this condition
says that if one edge is directly to the left of another edge, the edge on the
left must be longer. By using our result on maximum distance matching, we
show that the number of unmatched points in an optimal matching with this
condition is O(n*3log!/? n), giving an upper bound on the performance of First
Fit. The lower bound on First Fit is achieved by an argument which does not
use planar matching. This bound comes a from close examination of the way in

which a First Fit packing evolves.

The lower bound for the wasted space produced by an on-line algorithm

is also obtained by relating it to a planar matching problem. This problem is
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the rightward matching problem. The lower bound of ﬂ(lc;,‘/zn/\/ﬁ) on the

average edge length in a rightward matching shows that no on-line bin packing
algorithm can achieve o{\/nlog!/? n) wasted space. It is interesting to note that
this bound only applies to on-line algorithms that do not know how many items
they will receive. If an on-line algorithm knows in advance that it will receive
n items. then it can pack bins with ©{,/n) wasted space, which is optimal. In
fact, there are algorithms for which the expected wasted space is O(y/n) when
a = 2¢, for all integers 1.

In the second part of this thesis, we first give a brief description of the history
of bin packing. Then, in Chapter 5, we show the bounds on the algorithm Best
Fit. In Chapter 6, we show the bounds on the algorithm First Fit. Finaliy,
in Chapter 7, we show the lower bound for any on-line algorithm that does
not know how many items it will receive, and give an on-line algorithm that

produces ©(y/n) wasted space by knowing the number of items in advance.



