Problem 1: The trick here is to notice that controlled phase gates are symmetric: a controlled phase from qubit i to qubit j is the same as a controlled phase from qubit j to qubit i. With this fact, and the fact that all the controlled phase gates commute, you can move the gates so that as soon as you do the Hadamard on qubit k, you measure qubit k, and then you perform phase gates that are classically controlled by the results of the measurement. It’s a lot clearer with a diagram, but I don’t have time to draw it.

Problem 2a: This time, we only have one register, of length n. We start by making an equal superposition of all states:

$$
\frac{1}{2^{n/2}} \sum_{s=0}^{2^n-1} \left| s \right> .
$$

We next apply the oracle f:

$$
\frac{1}{2^{n/2}} \sum_{s=0}^{2^n-1} \left| s \right> (-1)^{f(s)}.
$$

We then apply a Hadamard gate to each qubit:

$$
\frac{1}{2^n} \sum_{s,t=0}^{2^n-1} \left| t \right> (-1)^{f(s)} (-1)^{s+t}.
$$

Finally, we measure the state. We obtain the value $| t \rangle$ with probability

$$
\left| \frac{1}{2^n} \sum_{s} (-1)^{f(s)+s+t} \right|^2
$$

and we want to show that this probability is zero if $c \cdot t$ is odd. Let’s group the s’s into pairs, s and $s+c$. We know $f(s) = f(s+c)$, so when we add up the s’s from each pair, we find

$$
(-1)^{f(s)+s+t} + (-1)^{f(s+c)+(s+c)+t}
$$

which is 0 if $c \cdot t$ is odd. Thus, this whole sum is 0 if $c \cdot t$ is odd, meaning we only observe $| t \rangle$ such that $c \cdot t = 0(\ mod \ 2)$.

2b: The problem with the analysis in part 2a is that we haven’t shown that we don’t always find $t = 0$, which doesn’t help us. In fact, if we have $f(x) = 0$ for all x, it is easy to see that we will always observe $| 0 \rangle$. If $f(x) = 0$ except for two values, then this is nearly true. Look at the probability of success again.

$$
\left| \frac{1}{2^n} \sum_{s} (-1)^{f(s)+s+t} \right|^2
$$

1
If $t = 0$, and $f(x) = 0$ except for two values, we get that the sum is $2^n - 2$ (since one of these two values will be -1 instead of 1). Thus, the probability of 0 is

$$\left(\frac{2^n - 2}{2^n}\right)^2 = 1 - \frac{2^{n-1} - 1}{2^{2(n-1)}}$$

and you can check that the probability of each of the other $2^{n-1} - 1$ possible values of $|t\rangle$ is $\frac{1}{2^{n-1}}$.

2c: If f is random, then Simon’s algorithm will work. For each t, the sum

$$\left| \sum_s (-1)^{f(s)+st} \right|^2$$

is the sum of 2^{n-1} random variables, each of which is ± 2 with equal probability (these variables come from the pairs $f(s)$ and $f(s + c)$). We expect this to have size roughly $2\sqrt{2^{n-1}}$. So the square of this quantity is roughly 2^{n-1}, and dividing by 2^{2n} gives roughly $1/2^n$.

In fact, because we are computing the square of the expected value of a sum of variables which are ± 2, we can get the exact expected value of the square from the variance of the binomial distribution, and this is $\frac{1}{2^{n-1}}$. So all the values of t with $ct = 0 \mod 2$ are equally likely.

To rigorously show that the algorithm works well, we need to look at the probability that any particular one of these is small, which is not hard.