
Lectures on Categorical Dynamics

and Symplectic Topology

Version 0.2 (last three lectures missing; error in Lecture

13, marked as such, affects Lectures 13–16)

Paul Seidel





Contents

Introduction 5

Part 1. Motivation 7

Lecture 1. Vector bundles on projective space 9

Lecture 2. Equivariant cohomology 17

Lecture 3. Mirror symmetry and circle actions 23

Lecture 4. Derived Picard groups 35

Lecture 5. Flux 41

Lecture 6. Liouville manifolds 51

Part 2. Background 61

Lecture 7. Homological algebra 63

Lecture 8. Hochschild homology 75

Lecture 9. Hochschild cohomology 81

Lecture 10. The Fukaya category of a surface 91

Lecture 11. A four-dimensional example 103

Lecture 12. Symplectic cohomology 117

Part 3. Circle actions 129

Lecture 13. Equivariant modules ***Warning***: contains an error (marked

as such) 131

Lecture 14. Making objects equivariant ***Warning***: part of this inherits

errors from the previous lecture 145

Lecture 15. Spherical objects and simple singularities ***Warning***: same error

propagates 157

3



4 CONTENTS

Lecture 16. Suspension of Lefschetz fibrations ***Warning***: same error

propagates 165

Part 4. Infinitesimal symmetries 173

Lecture 17. Basic structures 175

Lecture 18. Dilations 185

Lecture 19. Quasi-dilations 193

Part 5. Families of objects 199

Lecture 20. Basic notions 201

Lecture 21. Elliptic curves and mapping tori 203

Lecture 22. Analytic and formal geometry 205

Bibliography 207



Introduction

These are the notes for an advanced graduate course (given at MIT in Spring 2013). Having

been LATEX’d, they may look good, but in fact they are in no way comparable to a finished

manuscript, insofar as thoroughness and attention to detail are concerned (if you find one

of the presumably many errors, please let the author know). Tongue-in-cheek, one could

describe these lectures as an antidote to [176]. Whereas that book was focused and self-

contained, the discussion here tries to be more open-minded and diverse. This comes at the

cost of being much more tentative, and not reaching any major new results.

The subject of the lectures is symmetries of Fukaya categories. This means that the tech-

nical groundwork is largely of the general categorical kind, more precisely taking place in

the framework of A∞-categories. Motivation is drawn from algebraic geometry and mirror

symmetry, but the ultimate interest is in applications to symplectic topology. More precisely,

we consider:

• Circle actions, which more appropriately means actions of the multiplicative group

G = Gm. This does not mean that we are looking at G-actions on symplectic

manifolds (which would be an entirely different topic)! Instead, let’s say that

we start with the well-known theory of equivariant coherent sheaves on algebraic

varieties with G-actions. More precisely, the main case of interest is that of a G-

action on a Calabi-Yau variety which rescales the complex symplectic form. The

presence of such a symmetry clearly has interesting implications. Having introduced

a corresponding abstract algebraic notion of a dilating G-action on an A∞-category,

we then apply that to Fukaya categories, following the model of [182]. The main

drawback is that, while one can show that some examples of Fukaya categories carry

such actions, there is at present no way of constructing these actions geometrically.

• Infinitesimal actions, or categorical vector fields, which concretely are just elements

of the first Hochschild cohomology. Obviously, a general vector field is a much

weaker starting point than a circle action, but one can still extract additional

structure from it. On the algebro-geometric side, we would again be interested in

vector fields which rescale a complex volume form. The corresponding geometric

notion for a symplectic manifold was already introduced in [184] (following ideas

of Bezrukavnikov), and called dilation (we will find it useful to generalize it a little;

similar ideas appear in ongoing work of Abouzaid-Smith on symplectic Khovanov

homology).
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6 INTRODUCTION

• Orbits and vector fields. Just as in standard ODE theory, one can try to integrate a

categorical vector field. Generally speaking, this is an analytic rather than algebraic

problem, but there may be orbits of the action which are algebraic (morally, these

orbits are curves lying on some “moduli space of objects”, but we consider them

more concretely as algebraic families of objects). There is an algebro-geometric

model in the form of the derived Picard group of an algebraic variety. However,

the main motivation is inherently one of symplectic geometry, where symplectic

isotopies which are not Hamiltonian are known to give rise to interesting questions

and results (such as the “flux conjecture” [144] or the convergence theory of [70]).

The ultimate task, which is far from having been achieved, is to find the correct

description of such geometric phenomena in the framework of Fukaya categories.

The word “categorical dynamics” seems to appropriately cover all three parts above, and we

have adopted it as part of the title. This is in spite of the fact that it has been previously used

in quite a different sense (in [118], which initiated the development of categorical methods in

differential geometry, leading to what is now called “synthetic differential geometry” [112]).

The actual structure of the lectures is as follows. The first part (Lectures 1–6) describes

the motivations and models for the subsequent developments, drawn both from symplectic

topology and other parts of mathematics. Lecture 3, which describes the simplest example

of equivariant mirror symmetry, may be the most noteworthy one, since this subject has

received considerable interest recently (at a level far deeper than what we are aiming for

here, see e.g. [130]). The second part (Lectures 7–12) contains more technical background,

much of which is surveyed without going into the details (besides the previously mentioned

[176], readers interested in a more thorough exposition may want to look at e.g. [106, 120,

28] for A∞-categories; [71, 21] for Fukaya categories; and [138, 175, 157] for symplectic

cohomology). There are a few interesting technical wrinkles in our definition of the Fukaya

category (Lecture 10), but otherwise the most significant contribution may be the discussion

of local mirror symmetry in Lecture 11 (again, this is limited to the simplest example). The

remaining three parts discuss the three topics described above. The first of those (circle

action) is essentially algebraic, and even in a limited space one can cover it reasonably

well. In contrast, our treatment of the other two topics is probably best thought of as an

introduction, which hopefully motivates the reader to dig into the current literature.

Acknowledgments. My foremost thanks go to the students who attended the class, and to my

collaborators and discussion partners; their specific contributions are mentioned at the start

of the relevant lecture. The preparation of these notes was partially supported by a Simons

Investigator grant from the Simons Foundation, as well as by NSF grant DMS-1005288.
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LECTURE 1

Vector bundles on projective space

This lecture is based on Polishchuk’s paper [153], whose exposition we simplify by a drastic

reduction in generality. For background material on holomorphic vector bundles, see for

instance [143, 161]. This is a deep subject, and one to which we cannot really do justice.

For us, it serves as a convenient point of entry into several topics which will reappear later:

the Mukai pairing; Lefschetz traces; and maybe most significantly, the idea that sufficiently

rigid objects can be made equivariant with respect to actions of reductive groups.

Acknowledgments. The argument using SU (n) symmetry presented at the end is due to

Lucas Culler; I thank him for allowing me to include it here.

The Mukai pairing

Let V = Cn, and M = P(V ) its projective space. We are interested in holomorphic vector

bundles E on M which are exceptional, meaning that

(1.1) Ext iM (E,E) = Hi(M,E∨ ⊗ E) ∼=

{
C i = 0,

0 i 6= 0.

In particular, such vector bundles are indecomposable (by looking at the i = 0 case of the

equation above) and rigid, which means that they do not admit nontrivial deformations

(taking i = 1). Hence, it is not a priori unreasonable to aim for a complete classification.

The case of the projective line (n = 2) is trivial: any line bundle is exceptional, and by

Grothendieck’s theorem [87], all higher rank bundles are decomposable, hence certainly not

exceptional.

A useful start is to look at the K-theoretic implications of exceptionality. Namely, let

K0(M) be the Grothendieck group of holomorphic vector bundles. The Mukai pairing is the

unsymmetric bilinear form on K0(M) defined by

(1.2) (E0, E1)Mukai =
∑
i

(−1)i dim Ext iM (E0, E1) =
∑
i

(−1)i dimHi(M,E∨0 ⊗ E1).

The Mukai pairing is quite accessible for general varieties, since it factors through topological

K-theory, and can be computed in terms of ordinary cohomology by the Grothendieck-

Riemann-Roch theorem. In our case, algebraic and topological K-theory actually coincide,

K0(M) ∼= Zn. An explicit basis is provided by the Beilinson [26] collection of vector bundles,

(1.3) F1 = Ωn−1
M (n− 1), F2 = Ωn−2

M (n− 2), . . . , Fn = OM ,

9



10 1. VECTOR BUNDLES ON PROJECTIVE SPACE

where Ω∗M are the sheaves of holomorphic differential forms, and (i) is tensoring by the line

bundle OM (i). This collection has particularly nice properties: the only nonzero Ext spaces

between the Fi are the degree zero morphism spaces

(1.4) HomM (Fi, Fj) ∼= Λj−i(V ) for i ≤ j.

In particular, each Fi itself is exceptional. If we choose the Fi as basis for K0(M), the Mukai

pairing is given by the ranks of (1.4), which means by the upper triangular matrix

(1.5)



1 n

(
n

2

) (
n

3

)
. . .

(
n

n− 1

)
0 1 n

(
n

2

)
. . .

(
n

n− 2

)
...

. . .
...

...
. . .

...

0 0 1 n

0 . . . 0 1


.

By definition, an exceptional vector bundle satisfies (E,E)Mukai = 1. For instance, this can

be used to show that:

Lemma 1.1 ([61]). Let E be an exceptional vector bundle on the projective plane (n = 3).

Then its rank is not a multiple of 3. Moreover, its rank and degree (defined as the integral

of c1(E) over a line) are relatively prime.

Proof. If the class of E in K0(M) is (r1, r2, r3), then

(1.6) 1 = (E,E)Mukai = r2
1 + r2

2 + r2
3 + 3(r1r2 + r1r3 + r2r3).

We have

deg(E) = −r1 − r2,(1.7)

rank(E) = r1 + 2r2 + r3.(1.8)

If we assume that rank(E) ≡ 0 mod 3, then r2 ≡ r1 + r3, and therefore (E,E)Mukai ≡
−(r1 − r3)2, which contradicts (1.6).

For the second statement, note that rank(E) ≡ r2 + r3 mod deg(E). Therefore,

(1.9) 1 = (E,E)Mukai = r2
1 + r2

2 + r2
3 + 3(r1r2 + r1r3 + r2r3)

≡ r2
3 − r2

2 ≡ (r3 − r2)rank(E) mod deg(E).

�

Remark 1.2. In fact, exceptional vector bundles on the projective plane have been completely

classified [61, 83]. While that result requires deeper algebro-geometric tools, Hirzebruch-

Riemann-Roch computations such as the one above still play an important role in it.

Unfortunately, the implications of the single equation (E,E)Mukai = 1 get weaker as the

dimension increases. As an illustration, let’s look again at the question of ranks, assuming
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for simplicity that n is a prime number. In that case the K-theory class (r1, . . . , rn) of an

exceptional bundle E satisfies

(1.10) r2
1 + · · ·+ r2

n ≡ 1 mod n,

since (1.5) is diagonal mod n. Similarly, since

(1.11) rank(Fi−1) + rank(Fi) =

(
n− 1

i− 1

)
+

(
n− 1

i

)
=

(
n

i

)
≡ 0 mod n,

we have

(1.12) rank(E) ≡ r1 − r2 + r3 − · · · mod n.

Unfortunately, (1.10) does not seem to constrain (1.12) in general. It turns out that one

can introduce an equivariant version of the Mukai pairing, for which the analogue of (1.10)

is much more effective, in particular yielding strong restrictions on the ranks of exceptional

bundles for prime n (Corollary 1.7).

Cyclotomic integers

As preparation, we need some elementary number-theoretic results. For some integer p ≥ 2,

let Z[ζ] ⊂ C be the subring generated by ζ = e2πi/p.

Lemma 1.3. [153, Proposition 2.6] Take z1, . . . , zr ∈ Z[ζ], such that |z1|2 + · · ·+ |zr|2 = 1.

Then all but one of the zi must be zero, and the remaining one is a root of unity. �

If p is prime, Z[ζ] is isomorphic to the abstractly defined ring Z[t]/(1 + t+ · · ·+ tp−1) (where

t is a variable), by mapping t to ζ. In particular:

Lemma 1.4. If p is prime, the only roots of unity contained in Z[ζ] are ±ζk. �

Lemma 1.5. If p is prime, there is a unique ring homomorphism Z[ζ] → Z/p which takes

ζ 7→ 1. It fits into a commutative diagram

(1.13) Z[t]/(tp − 1)

t 7→ζ
��

t 7→1 // Z

reduction mod p

��
Z[ζ] // Z/p.

�

Lefschetz traces

Take a finite subgroup G ⊂ GL(V ). Using equivariant vector bundles for the obvious action

of G on M , one defines the equivariant K-theory KG
0 (M). This is naturally a module over

the virtual representation ring K0(C[G]). Beilinson’s original argument goes through in this

context, and shows that the sheaves from (1.3), with their natural equivariant structure, are

basis elements for KG
0 (M) ∼= K0(C[G])n. There is also an equivariant version of the Mukai
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pairing, denoted by (·, ·)GMukai , where one considers the Ext groups in (1.2) as representations

of G, and which therefore takes values in K0(C[G]). Note that this equivariant pairing is

hermitian in the following generalized sense: if ρ is a representation of G, then the equivariant

Mukai pairing satisfies

(1.14)
(E0 ⊗ ρ,E1)GMukai = (E0, E1)GMukai ⊗ ρ∨,

(E0, E1 ⊗ ρ)GMukai = (E0, E1)GMukai ⊗ ρ.

From now on, we take G to be a cyclic group of prime order p, generated by some element

g ∈ GL(V ). Then K0(C[G]) ∼= Z[t]/(1− tp), where t = [χ] is the class of the one-dimensional

representation in which g acts by the root of unity ζ = e2πi/p. One can use the map

K0(C[G])→ Z[ζ], t 7→ ζ (more geometrically, this is given by the trace of the action of ζ on

representations) to define a simplified version of the Grothendieck group

(1.15) KG
0 (M)⊗K0(C[G]) Z[ζ] ∼= Z[ζ]n.

By Lemma 1.5, this sits in a commutative diagram

(1.16) KG
0 (M)

��

forgetful map // K0(M)

reduction mod p

��
KG

0 (M)⊗K0(C[G]) Z[ζ] // K0(M)⊗ Z/p.

This means that, in this situation, the class of an equivariant sheaf in (1.15) recovers its non-

equivariant K-theory class mod p. There is a corresponding simplification of the equivariant

Mukai pairing, which can be concretely written as the Lefschetz trace of the action of g:

(1.17) (E0, E1)gMukai =
∑
i

(−1)i Tr
(
g : Ext iM (E0, E1)→ Ext iM (E0, E1)

)
∈ Z[ζ].

As a consequence of (1.14), this pairing is hermitian in the ordinary sense, with respect to

the structure of (1.15) as a module over Z[ζ] ⊂ C.

We now make our particular choice of group G ⊂ GL(V ). Namely, we assume from now

on that n = dim(M) + 1 is prime, and choose the subgroup of size p = n generated by

g = diag(1, ζ, . . . , ζn−1). The linear algebra computation

(1.18)

n∑
k=0

(−1)kxk Tr(g : ΛkV → ΛkV ) = det(id − xg : V → V ) =

n−1∏
j=0

(1− xζj) = 1− xn

(x a formal variable) shows that the trace of g on all the nontrivial representations in (1.4) is

zero. This means that in the basis given by the Fi, the pairing (1.17) becomes the standard

hermitian form (z1, . . . , zn) 7→ |z1|2 + · · ·+ |zn|2.

Proposition 1.6. Suppose that n is prime. Let E be an exceptional holomorphic vector

bundle on M which is G-equivariant. Then its class in K0(M) is congruent mod n to one

of the classes of the Fi or its opposite.
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Proof. The action of G on HomM (E,E) is trivial, since it must preserve the identity

endomorphism. Hence (E,E)gMukai = 1. Let (z1, . . . , zn) be the class of E in (1.15). Our

previous argument shows that |z1|2 + · · · + |zn|2 = 1. In view of Lemmas 1.3 and 1.4, this

means that (z1, . . . , zn) = (0, . . . ,±ζk, . . . , 0). The result then follows by applying (1.16). �

Corollary 1.7. In the situation of Proposition 1.6, rank(E) ≡ ±1 mod n.

Proof. This follows directly from (1.12) and Proposition 1.6. �

Making vector bundles equivariant

It may appear that the considerations above do not address the original problem. Generally

speaking, there is no reason why an exceptional vector bundle on some variety should be

equivariant under a discrete group of symmetries of that variety. However, the situation for

continuous symmetries (connected Lie groups or algebraic groups) is quite different. The

rigidity of exceptional vector bundles provides an infinitesimal version of equivariance, and

this can be integrated under suitable assumptions on the group. In particular:

Proposition 1.8. Let M be a compact complex manifold carrying an action of the circle S1.

Let E be a holomorphic vector bundle over M such that Ext1
M (E,E) = 0 and Hom0

M (E,E) ∼=
C. Then E can be made S1-equivariant.

Proof. We first proceed infinitesimally, meaning that we use only the holomorphic

vector field Z which generates our group action. Given that, for any holomorphic vector

bundle E we have a well-defined class

(1.19) Def (E) ∈ Ext1
M (E,E) = H1(M,End(E)),

which expresses the infinitesimal deformation of E obtained by moving it in Z-direction.

Generally, this can be obtained by taking the Atiyah class [19]

(1.20) At(E) ∈ Ext1(E,Ω1
M ⊗ E)

and pairing that with Z. To get a concrete representative, choose a lift of Z to a C∞

vector field Z̃ on the total space of E, which is fibrewise linear (this is like choosing a C∞

connection, but where only differentiation in direction of Z is allowed). In a local holomorphic

trivialization of E,

(1.21) Z̃x,ξ = (Bxξ, Zx),

where B is a matrix-valued C∞-function of the base coordinates x. Changing the trivializa-

tion by Φ transforms B into ΦBΦ−1 + (Z.Φ)Φ−1. Hence, the expressions ∂̄B glue together

to give a globally well-defined section of Ω0,1(M,End(E)), which we denote by def (E, Z̃).

Its Dolbeault cohomology class is independent of the choice of lift: changing Z̃ by adding

C ∈ C∞(M,End(E)) just means adding ∂̄C to def (E, Z̃). The cohomology class defined in

this way is the Dolbeault version of (1.19).
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Under our assumptions, that Dolbeault cohomology class is necessarily zero. Hence, by the

same argument as before, one can choose Z̃ so that def (E, Z̃) = 0. Then, integrating Z̃

yields a family of automorphisms compatible with the holomorphic structure, which lift the

flow of Z. Now supposing that Z generates a circle action, look at the flow of Z̃ going once

around the circle, which gives an automorphism of E (trivial over the base). By the second

part of our assumptions, this automorphism is multiplication with some nonzero complex

number. By subtracting the logarithm of that number (times the identity) from Z̃, we can

modify its flow so that the automorphism becomes the identity. This defines the desired

S1-action on E. �

Proposition 1.8 is folklore. More precisely, what may be more familiar is the algebro-

geometric version, in which S1 is replaced by C∗, and compact complex manifolds by (pos-

sibly singular) proper schemes. In that form, the statement appears in the literature about

exceptional vector bundles, and a purely algebro-geometric proof is given in the Appen-

dix to [29] (written by Vologodsky, and unfortunately absent from the published version

of the paper). Returning to the original application to projective space M = P(V ), one

can make any exceptional vector bundle equivariant with respect to the group of matrices

diag(1, t, t2, . . . , tn−1) ∈ GL(V ), where t ∈ S1, and then restrict to the subgroup generated

by t = ζ. Hence:

Corollary 1.9 ([152, Theorem 1.2 and Corollary 1.3]). The conclusions of Proposition 1.6

and Corollary 1.7 hold for all exceptional vector bundles.

There are two directions in which one can go from here. One is the generalisation to chain

complexes of vector bundles, which means exceptional objects of the bounded derived cate-

gory. The analogue of Corollary 1.9 still holds holds in that context, see again [153]. The

strategy of proof remains the same, but a highly nontrivial generalisation of Proposition 1.8

is necessary (we will return to this issue later). The other possible development is to make

exceptional vector bundles equivariant under the entire torus (C∗)n−1 of automorphisms of

M , thus putting them into the general framework of toric vector bundles. For results that

can be obtained in this way, see for instance [99].

A variant argument

As it turns out, one can bypass the number-theoretic considerations above by making more

use of symmetry and representation theory. Namely, let G = SU (V ) be the special unitary

group, and Rfin(G) the category of finite-dimensional complex representations. Recall (see

for instance [40, p. 265]) that

(1.22) K0(Rfin(G)) = Z[λ1, . . . , λn−1],

where λi = Λi(V ) are the exterior powers of the fundamental representation. Dualization de-

fines an involution on this ring, explicitly given by λ∨i = λn−i. We denote by I ⊂ K0(Rfin(G))

the ideal generated by (λ1, . . . , λn−1).
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The equivariant K-theory of projective space with respect to the obvious G-action is again

KG
0 (M) ∼= K0(Rfin(G))n, with Mukai pairing

(1.23) (Fi, Fj)
G =


0 i > j,

1 i = j,

λj−i i < j.

Take a G-equivariant exceptional vector bundle E, and write its K-theory class as (z1 =

x1 + y1, . . . , zn = xn + yn), where xi ∈ Z ⊂ K0(Rfin(G)) is a multiple of the identity, and

yi ∈ I. Then

(1.24) 1 = (E,E)G =
∑
i

z∨i zi +
∑
i<j

z∨i zjλj−i ≡ x2
i mod I.

Hence, exactly one of the xi is ±1, and the others are 0.

Now suppose as before that n is prime. Under the forgetful map (which counts the virtual

dimension) Rfin(G) → Z, any element of I goes to a number in nZ. Therefore, under

the corresponding map KG
0 (M) → K0(M), the element (z1, . . . , zn) goes to (x1, . . . , xn)

mod n. This proves the analogue of Proposition 1.6 for bundles which are equivariant with

respect to our group G. On the other hand, a more complicated version of the argument from

Proposition 1.8 (or alternatively, an appeal to [152, Lemma 2.1]) shows that any exceptional

vector bundle can be equivariant.

Remark 1.10. From this perspective, the role of the previously chosen cyclic subgroup can

be explained as follows. The character yields a map from K0(Rfin(G)) to the ring of class

functions on G. As (1.18) shows, the element g = diag(1, ζ, . . . , ζn−1) is chosen so that the

ideal I maps to that of functions vanishing at g.

Remark 1.11. In the case where n = pk is a power of a prime p, the argument above gives a

congruence mod p. That statement also already appears in [152], with a proof that generalizes

the first argument (based on equivariance for cyclic groups) described here.





LECTURE 2

Equivariant cohomology

In Lecture 1, we encountered equivariant K-theory as a recipient for information about

equivariant vector bundles. In that particular case (of projective space), it was easy to

describe the relevant Grothendieck group; but such a situation is rather untypical, and in

general one often prefers to pass from K-theory to some form of cohomology.

We start our discussion by recalling the standard topological notion of G-equivariant coho-

mology [46] (for simplicity, restricting to the case of G = S1 acting smoothly on a manifold).

In complex geometry, there is also an analogue based on Hodge rather than de Rham co-

homology [193, 122]. Interestingly, part of that theory makes sense infinitesimally, which

means for arbitrary holomorphic vector fields. This is related to the insight, going back at

least to [34, 45], that the presence of holomorphic vector fields has cohomological implica-

tions. Finally, we look at another related algebro-geometric construction, which is closer to

noncommutative geometry.

Acknowledgments. The last-mentioned construction was explained to me by David Nadler.

De Rham cohomology

Let M be a manifold with an action of G = S1, generated by a vector field Z. Equivariant

cohomology H∗G(M) (with complex coefficients) can be defined through the Cartan model,

which means as the cohomology of the complex

(2.1) (Ω∗G(M), dZ)
def
= (Ω∗(M)G[[u]], d− u iZ).

Here, Ω∗(M)G is the graded space of invariant (complex-valued) differential forms, and u is a

formal variable of degree 2. The fact that the differential dZ squares to zero is a consequence

of the Cartan formula

(2.2) d iZ + iZ d = LZ .

By averaging differential forms, one shows that (Ω∗(M)G, d) ↪→ (Ω∗(M), d) is a quasi-

isomorphism. Hence, the u-adic filtration of (2.1) gives rise to a spectral sequence

(2.3) H∗(M)[[u]] =⇒ H∗G(M).

Remark 2.1. It is worth while to reflect a little on the homological algebra behind (2.1).

The operation iZ makes (Ω∗(M)G, d) into a dg (differential graded) module over the graded

commutative algebra C[θ], where |θ| = −1 (and θ2 = 0, by the assumption of commutativity).

17
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Koszul duality [25, 82] yields a full and faithful functor from the derived category of dg

modules for C[θ] to that for C[[u]], given explicitly by

(2.4) (Q, dQ) 7−→ (Q[[u]], d− uθ).

Clearly, for (Q, dQ) = (Ω∗(M)G, d) this recovers (2.1). This viewpoint can be computation-

ally useful, as explained in [82]. The structure of (Ω∗(M)G, d) as a C[θ]-module transfers

to give H∗(M) the structure of a (strictly unital) A∞-module over C[θ], which is concretely

expressed by a sequence of operations

(2.5) H∗(M) −→ H∗(M)[−1− 2d].

These operations determine the differentials in (2.3) (the operations themselves are not

unique, but the partial information about them contained in the spectral sequence is).

If Q is a free dg module, say Q = W ⊗ Λ for some graded vector space W , with vanishing

differential, then (Q[[u]], d − uθ) is quasi-isomorphic to W with trivial u-action. In par-

ticular, this becomes acyclic after taking the tensor product with C((u)). To formalize this

observation, take the derived category of dg modules over Λ, and divide out by free modules.

The quotient category still comes with a functor to the derived category of dg modules over

C((u)). This is the algebraic mechanism behind localization theorems [33] (in the simplest

situation of the circle acting on itself by left multiplication, Ω∗(G)G ∼= Λ[−1] is obviously

free).

Hodge cohomology

Now suppose that M is a complex manifold. Changing notation, we write A∗,∗ for the

bigraded space of C∞ differential forms, and reserve Ω∗ for holomorphic differential forms.

Let Z be a holomorphic vector field, which as before generates a circle action. Split iZ =

ιZ + ῑZ into its components of bidegree (0,−1) and (−1, 0), respectively, and write (2.2)

accordingly as

(2.6)

ιZ∂ + ∂ιZ = 0,

ῑZ∂ + ∂ῑZ + ∂̄ιZ + ιZ ∂̄ = LZ ,

ῑZ ∂̄ + ∂̄ῑZ = 0.

Take A∗,∗G (M) = A∗,∗(M)G[[u]] with the same differential dZ as in (2.1). One can introduce a

decreasing filtration of that space, in which Ap,∗(M)Gur appears at level p+r. The outcome

is the equivariant analogue of the Hodge-de Rham spectral sequence. Its starting page is the

cohomology with respect to part of dZ , namely

(2.7) ∂̄Z = ∂̄ − uῑZ .

The cohomology of (A∗,∗G (M), ∂̄Z) is called the equivariant Hodge cohomology of M (this the-

ory was considered in [193, Section 7] and [122, Section 5]). We denote it by H∗,∗Hodge,G(M),

where the bigrading is such that p + q is the total degree, and classes in Hp,∗
Hodge,G(M) are

represented by cochains in
⊕

r A
p−r,∗ur; hence, the action of u has bidegree (1, 1).
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There is a larger cohomology group which is also of interest. Namely, by looking at (2.6)

one sees that ∂̄Z squares to zero even on forms which are not necessarily invariant. Let’s call

the cohomology of (A∗,∗(M)[[u]], ∂̄Z) the holomorphic equivariant cohomology (this theory

appears in [45, 123]). We denote it by Hp,q
hol,Z(M), and equip it with the same bigrading as

before. Holomorphic equivariant cohomology carries an action of G, and

(2.8) H∗,∗hol,Z(M)G ∼= H∗,∗Hodge,G(M).

This is shown by an averaging process. For instance, if α ∈ A∗,∗(M)G[[u]] can be written

as α = ∂̄Zβ for some β ∈ A∗,∗(M)[[u]], then one can make β invariant by averaging its

pullbacks over G. Note that while the G-action on H∗,∗hol,Z(M) is nontrivial in general, it

always becomes trivial after multiplying with u. On the infinitesimal level, this is because

(2.9) uLZ = ∂̄Zh+ h∂̄Z , h = uιZ − ∂.

For another approach to holomorphic equivariant cohomology, consider the Koszul type

complex

(2.10) IZ =
{
· · · → Ω2

M [[u]]
−u iZ−−−−→ Ω1

M [[u]]
−u iZ−−−−→ OM [[u]]→ 0

}
,

where ΩpM is the coherent analytic sheaf of holomorphic p-forms (the way in which we

have written (2.10) is familiar but potentially confusing: in constructing the complex, we

still place ΩpMu
r in total degree p + 2r). By taking the Dolbeault resolution of each such

sheaf and arranging them into a double complex, one sees that (A∗,∗G (M), ∂̄Z) is a Cartan-

Eilenberg resolution of that complex. Hence, holomorphic equivariant cohomology computes

the hypercohomology of (2.10) [193, Lemma 7.9]. We write this as

(2.11) H∗,∗hol,Z(M) ∼= H∗,∗(M, IZ)

(hypercohomology is again bigraded since the complex (2.10) splits as a direct sum of suitable

pieces). By combining this with (2.8), one can bring the equivariant Hodge-de Rham spectral

sequence into a form which no longer involves choices of resolutions:

(2.12) H∗,∗(M, IZ)G =⇒ H∗G(M).

Example 2.2. Take M = C with the obvious circle action by rotation. Since M is Stein,

we can compute hypercohomology through global sections of (2.10), which yields

(2.13) Hp,q
hol,Z(M) ∼=


O(M), p = q = 0

O(M)/zO(M) ∼= C p = q > 0,

0 otherwise.

The G-invariant part consists of constant functions, and (2.12) degenerates.

Example 2.3. Take M = CP 1, again with the obvious circle action. In this case, the

computation of the hypercohomology of IZ reduces to the long exact sequence

(2.14) · · · → H∗(M,OM )[[u]] −→ H∗,∗(M, IZ) −→ H∗(M,Ω1
M )[[u]]

−uiZ−−−→ · · ·
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Therefore

(2.15) Hp,q
hol,Z(M) ∼=


C p = q = 0,

C2 p = q > 0,

0 otherwise.

The G-action on H1(M,Ω1
M ) is trivial (by Serre duality, for instance), and hence the whole

of (2.15) carries a trivial G-action. The spectral sequence (2.12) again degenerates.

Remark 2.4. One can put some of the features of Example 2.3 in a wider context. Namely,

suppose that M is a smooth projective variety. Degeneration of the classical Hodge-de Rham

spectral sequence implies that the G-action on H∗(M,Ω∗M ) is trivial. By another spec-

tral sequence argument, the same holds for H∗,∗hol,Z(M), which is therefore isomorphic to

H∗,∗Hodge,G(M). Now suppose in addition that the G-action is linearizable (this means that it

lifts to a circle action on an ample line bundle, which is the analogue of the Hamiltonian

condition in symplectic topology). Then the spectral sequence (2.12) always degenerates (see

[122, Theorem 5.1] or [193, Theorem 7.3]).

To conclude this discussion, let’s look at Chern classes living in Hodge cohomology. The

standard construction of such classes for a holomorphic vector bundle E goes as follows [19,

Section 5]. One starts with the Atiyah class (1.20), then takes its exponential with respect

to the algebra structure on Ω∗ ⊗ End(E), which yields

(2.16) exp(At(E)) ∈
⊕
p

Hp(M,Ωp ⊗ End(E)),

and then takes the trace End(E) → OM , which yields a form of the Chern character of E.

Now suppose that E is G-equivariant. In that case, an argument similar to the one used to

prove Proposition 1.8 shows that the Atiyah class has a natural lift

(2.17) AtZ(E) ∈ H1,1(M, IZ ⊗ End(E)).

Since IZ is a sheaf of commutative differential graded algebras, one can proceed as before

and get a form of the equivariant Chern character taking values in
∏
pH

p,p
hol,Z(M). In fact,

this is G-invariant, hence belongs to the equivariant Hodge cohomology.

Vector fields

Let’s temporarily go back to de Rham theory. In principle, the condition for a differential

form α to be G-invariant can be written as LZα = 0, hence (2.1) depends only on Z.

Nevertheless, in order for the outcome to be well-behaved, the fact that Z integrates to a

circle action (or at least, is part of the action of a compact Lie group) is important. This

is clear from the appearance of an averaging process in the argument leading to (2.3). The

same is true for equivariant Hodge cohomology.

On the other hand (as already suggested by the notation), H∗,∗hol,Z(M) makes sense for an

arbitrary holomorphic vector field Z. In fact, as [45] shows, one can use the local-to-global
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spectral sequence associated to (2.10) to derive localisation-type results for any Z. As

another aspect of the same idea, closer in spirit to [34], one can define (2.17) (and hence

equivariant Chern classes in holomorphic equivariant cohomology) for vector bundles E which

are infinitesimally equivariant, meaning that (1.19) vanishes.

Example 2.5. Take Z = 0, in which case H∗,∗hol,Z(M) is ordinary Hodge cohomology tensored

with C[[u]]. To make a vector bundle infinitesimally equivariant, one just equips it with an

arbitrary holomorphic automorphism Z̃. The equivariant version of the Atiyah class is the

ordinary Atiyah class plus uZ̃. Hence, the equivariant analogue of the first Chern class is

ordinary first Chern class in H1(M,Ω1
M ) together with uTr(Z̃) ∈ uH0(M,OM ).

Hochschild homology

From now on, let M be a smooth projective variety, with a linearizable action of the multi-

plicative group G = Gm = C∗, again generated by a vector field Z. The graph of that action

is a smooth subvariety

(2.18) Γ = {(g, g(x), x)} ⊂ G×M ×M,

which is itself invariant under the G-action h · (g, y, x) = (g, hg(y), h(y)). Let pG : G ×
M × M → G be the projection, and ∆ ⊂ M × M the diagonal. Consider the “derived

intersection”

(2.19) RpG,∗(OG×∆

L
⊗ OΓ) ∈ DbCohG(G).

Here, G acts on itself trivially (for a general group G, it would act by conjugation), and

DbCohG(G) is the bounded derived category of equivariant coherent sheaves for that action.

In fact, G is affine, so (2.19) is just a bounded complex of finitely generated C[G]-modules,

which come with another action of G (preserving the module structure). We define the

equivariant Hochschild homology HH ∗,G(M) to be the G-invariant part of the cohomology

of (2.19).

Remark 2.6. Consider the analogous construction when G is a finite group. Then the

cohomology of (2.19) is

(2.20)
⊕
g∈G

H∗(X ×X,O∆

L
⊗ OΓg ),

where Γg ⊂ X×X is the graph of the action of g. For g the identity, one gets the Hochschild

homology

(2.21) H∗(X ×X,O∆

L
⊗ O∆) ∼=

⊕
q−p=∗

Hq(X,ΩpX).

The other summands in (2.20) can similarly be thought of as the Hochschild homology groups

of X with coefficients in the sheaf OΓg . The G-invariant part of (2.20) is the Hodge analogue

of the orbifold cohomology of X/G. This is quite a well-studied theory (maybe even more so

in its Hochschild cohomology version), see e.g. [137].
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Conjecture 2.7. Take a formal disc around the identity element in G, parametrized as

t = eu. Then, the restriction of (2.19) to that formal disc is quasi-isomorphic to the complex

(2.10), in a way which is equivariant for the action of G on both sides.

Note that the variable u switched degrees from 2 (in the discussion of holomorphic Hodge

cohomology) to 0 (in the present context). With this taken into account, the cohomology

level implication of Conjecture 2.7 says that the cohomology of the restriction of (2.19) to

the formal disc is the graded C[[u]]-module

(2.22)
∏
p,q

Hp,q
hol,G(M)[p− q].

To make this a little more plausible, it is useful to look at the local situation first, so let’s

switch to M being an affine variety. In that case, the restriction of (2.19) to a formal

disc around the origin in G is computed by an appropriate deformation of the (algebraic)

Hochschild complex for the ring of regular functions O(M), of the form

(2.23) · · · // O(M)⊗2[[u]]
f2⊗f1 7→f2·f1−euLZ (f1)·f2 // O(M)[[u]] // 0.

One would then hope to use a suitable version of the Hochschild-Kostant-Rosenberg map to

show that this is quasi-isomorphic to the algebro-geometric version of (2.10). Indeed, in the

first nontrivial degree one can easily find a map satisfying the desired chain equation:

(2.24)
O(M)⊗2[[u]] −→ Ω1(M)[[u]],

f2 ⊗ f1 7→ f2 ε(uLZ)(df1),

where ε(x) = (ex − 1)/x. I have not tried to extend this to higher degrees, nor to seriously

attack the next step in the proof, which would be to globalize the argument as in [74].

Alternatively, one could think of Conjecture 2.7 as belonging to a general circle of ideas

involving the relation between commutative and noncommutative geometry, and try to apply

the deep general comparison results that have beeen proved in that context.
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Mirror symmetry and circle actions

We begin by reviewing some aspects of mirror symmetry (by now, textbook material [55,

91]), illustrated by the example of elliptic curves. After that, we consider equivariant mirror

symmetry, following [39] but again restricting it to the most basic example. The equivariant

picture is not well understood, and our discussion is heuristic, with the aim of seeing what

kind of mathematics (both existing and yet to be constructed) can play a role in it.

Acknowledgments. I would like to thank Roman Bezrukavnikov, Davesh Maulik, Michael

McBreen, Andrei Okounkov, and Rahul Pandharipande for explaining the philosophy behind

[39] to me (repeatedly, until it finally started to percolate into my head).

A superficial introduction

Any mathematically correct formulation of the statements of mirror symmetry is bound

to be quite complicated, even if one limits oneself to the most familiar context of compact

Calabi-Yau manifolds. A reasonable approximation would be to say that the objects involved

are smooth projective varieties M with trivial canonical bundles KM
∼= OM , equipped with

a complexified Kähler class, which means a class [ωM ] + iBM ∈ H2(M ;C/2πiZ) whose real

part lies in the Kähler cone (hence can be represented by a Kähler form ωM ). One considers

such manifolds from two different points of view:

• The A-model involves symplectic topology, which means that it remains unchanged

under deformations of the complex structure on M , as long as we keep the com-

plexified Kähler class constant.

• The B-model involves algebraic geometry, which means that it remains unchanged

under deformations of the complexified Kähler class.

Mirror symmetry relates the A-model on M to the B-model on a different variety M∨ of

the same kind, and vice versa. While this symmetry manifests itself in many ways, we are

23
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specifically interested in monodromy phenomena, as summarized here:

(3.1) A-model on M B-model on M∨

autoequivalences
of Dperf Fuk(M)

autoequivalences
of DbCoh(M∨)
//oo

��

symplectic auto-
morphisms of M

OO

��
automorphisms

of Hn(M), respecting
the intersection form

automorphisms
of K0

top(M∨), respecting

the Mukai pairing

//oo

Gauss-Manin
connection on H∗(M)

OO

oo // Quantum connection
on H∗(M∨)

B-model on M A-model on M∨

The notation in (3.1) is not entirely mathematical: roughly speaking, solid arrows go from

more sophisticated to simpler structures, and dashed arrows indicate the relationships es-

tablished by mirror symmetry. Instead of continuing with the discussion in general terms,

we prefer to work through an example.

The Hesse family of elliptic curves

Consider the elliptic curve M ⊂ CP 2 with equation

(3.2) f(x0, x1, x2) = x3
0 + x3

1 + x3
2 − 3z x0x1x2 = 0.

This depends on a parameter z ∈ C̄ = C ∪ {∞}, with singularities at z = ∞ and z ∈ 3
√

1.

In some (not particularly distinguished) basis of H1(M) ∼= Z2, the monodromies around the

roots of unity, and their product which is the inverse monodromy around infinity, are:

(3.3)

(
1 3

0 1

)(
4 3

−3 −2

)(
1 0

−3 1

)
=

(
4 −3

3 −2

)
.
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The Gauss-Manin connection is the natural connection on the bundle with fibres H∗(M ;C)

induced by local trivializations of this family of elliptic curves. Besides its abstract isomor-

phism type, which is determined by the monodromy representation (3.3), mirror symmetry

is also concerned with its interplay with the Hodge filtration, which in our case consists of a

single one-dimensional subspace

(3.4) F 1
Hodge ⊂ H1(M ;C).

To express this concretely, one chooses a local covariantly constant trivialization H1(M ;C) ∼=
C2, writes elements of (3.4) as pairs (φ0(z), φ1(z)), and then considers the quotient φ1(z)/φ0(z)

as a locally defined function on our parameter space. This still depends on the choice of

trivialization, which is usually fixed by monodromy considerations around a specified “large

complex structure limit point”, in our case z =∞.

To make a direct computation, we choose the complex volume form

(3.5) ηM = resM

(
1

f

(
x0 dx1 ∧ dx2 − x1 dx0 ∧ dx2 + x2 dx0 ∧ dx1

))
which is a nowhere vanishing section of the family of spaces (3.4). In a local trivialization

of the Gauss-Manin connection, [ηM ] becomes a solution of the Picard-Fuchs equation (this

is classical, but see e.g. [151, Example 6.5.1])

(3.6)
(
(z3 − 1)∂2

z + 3z2∂z + z
)
φ = 0.

Remark 3.1. This form of the Picard-Fuchs equation may be slightly unfamiliar. If we

change variables to z̃ = z−1, and simultaneously replace ηM by η̃M = zηM , which extends

smoothly over z = ∞, the equation turns into a form which is more common in the mirror

symmetry literature:

(3.7)
(
(z̃∂z̃)

2 − z̃3(z̃∂z̃ + 1)(z̃∂z̃ + 2)
)
φ = 0.

More precisely, we can integrate [ηM ] against each locally constant class in H1(M ;C), and

that yields a solution of the Picard-Fuchs equation. Hence, the previously explained recipe

is to take two linearly independent solutions of that equation, and consider their quotient.

While the Picard-Fuchs equation itself depends on the choice of holomorphic volume form,

that quotient will be a well-defined function locally on our moduli space.

Let’s stay with M for the moment, and consider its A-model, for which we need to fix a

complexified Kähler class [ωM ] + iBM . Parallel transport realizes the monodromies (3.3) as

symplectic automorphisms (volume-preserving diffeomorphisms, in this dimension) for ωM ,

unique up to Hamiltonian isotopy. Concretely, each matrix in the left hand side of (3.3)

corresponds to a positive Dehn twist along three parallel curves; on the right hand side we

have a negative Dehn twist along three parallel curves, combined with a downwards shift

in the grading by 2. For general reasons, these symplectic automorphisms induce auto-

equivalences of the Fukaya category, unique up to isomorphism and shifts (in fact, there is

a preferred lift to the graded symplectomorphism group Sympgr (M) [169], which removes

the shift ambiguity). That takes care of the top left box in (3.1).
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Remark 3.2. We have been implicitly assuming that the Fukaya category can be defined over

C, by integrating [ωM ] + iBM over holomorphic curves, as commonly used in the physics

literature. While this is possible in this particular case [154], the resulting construction is

disconnected from general symplectic topology, where one uses a formal parameter to rescale

ωM (the “large volume limit”). Since we use statements from the general theory, such as the

fact about symplectic automorphisms inducing auto-equivalences, our discussion has certainly

not been rigorous at this point.

The Gauss-Manin connection is the connection on the bundle with fibres H∗(M ;C) induced

by parallel transport. The abstract isomorphism type of that connection is encoded in its

monodromy (3.3).

The mirrorM∨ is again an elliptic curve. IdentifyHeven(M∨;Z) ∼= Z2 by choosing generators

ψ0 = 1 and ψ1 = [point ]. In particular, one can then write the complexified Kähler class as

(3.8) [ωM∨ ] + iBM∨ = − log(q)ψ1

where q is a complex number with 0 < |q| < 1. The quantum connection or A-model

connection [55, Section 8.5.2] on the trivial bundle with fibres Heven(M∨;C) is given by

(3.9) ∇qφ = ∂qφ−
1

2πiq
ψ1φ,

where ψ1 acts by the cup product. This is the counterpart of the Gauss-Manin connection.

The counterpart of the Hodge filtration is the filtration by degrees, which in this case consists

of the subspace F 1
deg = H0(M∨;C). To investigate the interplay of connection and filtration,

we proceed formally as before. Namely, take two covariantly constant sections of (3.9), say

ψ0 + (log(q)/2πi)ψ1 and ψ1/2πi; express ψ0 ∈ F 1
deg as a linear combination of those two

sections; and consider the quotient of the resulting coefficients, which is the function log(q).

The mirror map transforms the complex structure parameter z for M into the complexi-

fied Kähler parameter q for M∨, in such a way that z = ∞ corresponds to q = 0. This

must transforms log(q) into the quotient of solutions of (3.6), and one uses that relation to

reconstruct the mirror map. The explicit solution [111] has the form

(3.10) q =
1

27
z−3 +

5

243
z−6 + · · ·

Note that the monodromy maps around roots of unity on the left hand side of (3.3) do

not have counterparts for (3.9), because the mirror map converges only for |z| > 1. In

other words, if one starts from (3.9), then those monodromies only appear after changing

coordinates to z and analytic continuation in that variable.

So far, we have not mentioned the B-model aspect of M∨. Suppose that we fix a generic

value of [ωM ] + iBM , corresponding to a generic choice of complex structure of M∨. The

group of autoequivalences of the derived category DbCoh(M∨) is isomorphic to [146]

(3.11) (M∨ ×M∨) o SL2(Z).

Here, we assume a choice of base point on M∨. Then, the first copy of M∨ is given by

translations, and the second by tensoring with degree zero line bundles. The final part
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SL2(Z) acts on K0
top(M∨) ∼= Z2 by the obvious representation. In particular, one can

construct mirrors of the monodromy maps appearing in (3.3). For instance, the monodromy

around z =∞ corresponds to the autoequivalence

(3.12) DbCoh(M∨)→ DbCoh(M∨) E 7−→ E ⊗ L[2],

where L is a line bundle of degree 3 (this is an instance of a general result, see e.g. [43]).

There are many interesting examples of such “mirror monodromy” computations in the

literature, starting with [18, 93, 185].

Circle actions

We will be interested in applying mirror symmetry to situations where one side, namely M∨,

carries an (algebraic) action of G = S1, and such that one has a complex volume form ηM∨

on which the action has positive weight. This can happen only for noncompact M∨, which

means that we are in a modified version of our original framework, usually called “local mirror

symmetry”. For the B-model, we will use the category of compactly supported coherent

sheaves Cohcpt(M
∨), and the corresponding version of topological K-theory, K0

top,cpt(M
∨).

Then, the situation on this side of the mirror roughly looks as follows:

(3.13) B-model on M∨ equivariant B-model on M∨

autoequivalences
of DbCohcpt(M

∨)

��

autoequivalences
of DbCohcpt,G(M∨)

oo

��
automorphisms of

K0
top,cpt(M

∨), respecting

the Mukai pairing

automorphisms of
K0

top,cpt,G(M∨), respecting the

equivariant Mukai pairing

oo

Quantum connection
on QH ∗(M∨)

Equivariant quantum
connection on QH ∗G(M∨)

oo

A-model on M∨ equivariant A-model on M∨

The equivariant Mukai pairing, which we already encountered in Lecture 1, is a virtual rep-

resentation of G. Concretely, if one identifies the Grothendieck ring of such representations
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with Z[t, t−1], then it can be written as

(3.14) (E0, E1)GMukai : t 7−→
∑
i

(−1)i Tr(t : Homi(E0, E1)→ Homi(E0, E1)).

The ordinary Mukai pairing on a Calabi-Yau variety is graded symmetric, by Serre duality.

In the current situation, one has to take into account the fact that the canonical bundle is

not equivariantly trivial. The resulting formula is

(3.15) (E1, E0)GMukai = (−1)n td
(

(E0, E1)GMukai

)
t 7→t−1

,

where n is the dimension of M∨, and d is the weight of the circle action on ηM∨ . The same

holds for the extension of the Mukai pairing to K0
top,cpt,G(M∨). Hence, what one would

want on the mirror side is:

Desideratum 3.3. A Z[t, t−1]-module together with a map from its t = 1 reduction to

Hn(M). This module should carry a bilinear pairing satisfying the analogue of (3.15).

Moreover, the specialization of that pairing to t = 1 should recover the ordinary intersec-

tion pairing on Hn(M).

Similarly, looking at the equivariant Gromov-Witten theory of M∨ leads one to suspect the

existence of the following:

Desideratum 3.4. A graded filtered Z[[u]]-module together with a map from its u = 0

reduction to H∗(M), taking the filtration to the Hodge filtration. As the complex structure of

M varies, these modules should carry a flat connection whose u = 0 specialization recovers

the Gauss-Manin connection.

At present, these requirements are no more than intelligent guesses. In the first case, we can

at least construct some approximations to the desired object, but in the second case nothing

seems to be known. Rather than continuing the discussion in the abstract, we now turn to

an example.

The equivariant derived category

Let N be the total space of the canonical bundle over C = CP 1 (N is also the cotangent

bundle T ∗C, or the minimal resolution of the singularity C2/± 1). Let DbCohC(N) be the

derived category of coherent sheaves with (reduced) support along the zero-section C ⊂ N .

This category can be described in more elementary terms by using the McKay correspondence

[100], but we will not need that here. The relevant Grothendieck group (algebraic and

topological K-theories coincide in this case) is

(3.16) K0
C(N) ∼= K0

top,cpt(N) ∼= Z2,

with basis given by the classes of OC(−1)[1] and OC . In this basis, the Mukai pairing is

(3.17)

(
2 −2

−2 2

)
.
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The category DbCohC(N) carries an action of the affine braid group

(3.18) Braff
2 = 〈F0, F1 | F0F1F0F1 = F1F0F1F0〉

(this can be viewed as a toy example for the categorical braid group actions arising from

representation theory). Concretely, consider the autoequivalences

Td = TOC(d), the twist functor [185] along the spherical object OC(d) d ∈ Z,(3.19)

Θ = ON (F )⊗−, tensoring with the line bundle ON (F ), F = fibre of N → C.(3.20)

Since Θ(OC(d)) ∼= OC(d + 1), we have ΘTdΘ
−1 ∼= Td+1. Similarly, since Td(OC(d + 1)) ∼=

OC(d− 1)[1], we have TdTd+1T
−1
d
∼= Td−1. Taking the two together shows that

(3.21) ΘTdΘTd ∼= ΘTdTd+1Θ ∼= ΘTd−1TdΘ ∼= TdΘTdΘ.

In particular, setting F0 = Θ and F1 = T0 satisfies the relation (3.18) up to isomorphism of

functors. The resulting representation on (3.16) is given by

(3.22) F0 7−→
(

0 1

−1 2

)
, F1 7−→

(
1 0

2 −1

)
.

In fact, with some more work one can prove a stronger relation

(3.23) F0F1F0F1
∼= Id ,

which means that the action descends to the quotient Braff
2 → Z/2 ∗ Z (with generators

(F0F1, F1) for the free product).

Let G = S1 act on N by rotating the fibres of N → C with weight 2. Let DbCohC,G(N) be

the equivariant analogue of the previous category. The equivariant Grothendieck group is

(3.24) K0
C,G(N) ∼= K0

top,cpt,G(N) ∼= Z[t, t−1]2.

G acts trivially on HomN (OC ,OC), but with weight −2 on Ext2
N (OC ,OC) (as one can see

by applying Serre duality). Hence, the equivariant version of the Mukai pairing has the form

(3.25)

(
1 + t−2 −2t−1

−2t−1 1 + t−2

)
.

(We have twisted the G-action on OC(−1) by a character, in order to make the matrix

look more symmetric). The affine braid group action lifts to the equivariant case, and the

associated automorphisms of (3.24) are now given by

(3.26) F0 7−→
(

0 t−2

−1 2t−1

)
, F1 7−→

(
1 0

2t−1 −t−2

)
.

In particular, unlike the non-equivariant case,

(3.27) F 2
1 7−→

(
1 0

2t−1 − 2t−3 t−4

)
acts highly nontrivially. The equivariant analogue of (3.23) says that F0F1F0F1 acts by

changing the equivariant structure of any object by tensoring with the one-dimensional

representation of weight −4. One can of course adjust to make this product equal to the

identity instead, and then the resulting action again descends to Z/2 ∗ Z.
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Equivariant Gromov-Witten theory

As recalled in Lecture 2, equivariant cohomology groups for G = S1 are modules over

H∗G(point) = H∗(BG) ∼= C[[u]]. If V is the one-dimensional representation of G with weight

d, then its equivariant Euler class in H2
G(point) is d u. Any oriented G-manifold N carries

an equivariant fundamental class, which we think of dually as a pushforward operation on

compactly supported equivariant cohomology:

(3.28)

∫ G

N

: H∗cpt,G(N) −→ H∗G(point)[−dim(N)].

Now suppose that N is a smooth quasiprojective variety (on which G acts compatibly with

that structure), with the property that all non-constant closed curves are contained in a

compact subset of N . The genus zero equivariant Gromov-Witten invariants [110, 39] are

symmetric multilinear maps, defined for nonzero β ∈ H2(N ;Z) and any n ≥ 0,

(3.29) 〈· · · 〉G0,n,β : H∗G(N)⊗n −→ H∗G(point).

These satisfy an equivariant analogue of the divisor axiom, which comes in two parts: first,

(3.30) 〈1, . . . 〉G0,n,β = 0;

and secondly, for x ∈ H2
G(N) we have [77, Equation (6)]

(3.31) 〈x, · · · 〉G0,n,β = x(β)〈· · · 〉G0,n−1,β ,

where x(β) is defined by first mapping x to ordinary (non-equivariant) cohomology. Spe-

cializing to n = 3, one defines the small quantum product on QH ∗G(N) = H∗G(N)[[q]] by

requiring that

(3.32)

∫ G

N

(x1 ∗G x2)x3 =

∫ G

N

x1x2x3 +
∑
β

qdeg(β)〈x1, x2, x3〉G0,3,β .

Here, x3 ∈ H∗cpt,G(N) is a compactly supported equivariant cohomology class, and on the

right hand side one uses its image in H∗G(N). The degree deg(β) is taken with respect

to some choice of integral Kähler class [ωN ]. Suppose that the symplectic form ωN is G-

invariant, and that the group action is Hamiltonian, with moment map µN . This yields a

class [ωN , µN ] ∈ H2
G(N). One defines the equivariant form of the quantum connection by

(3.33) ∇Gq x = ∂qx−
1

2πiq
[ωN , µN ] ∗G x.

Let’s apply this to the same example N = T ∗C as before. Equip it with a G-invariant Kähler

form ωN , normalized in such a way that the integral over C is 1. Choose the moment map

µN so that µN |C = 0. We write ψ1 both for the equivariant cohomology class [ωN , µN ] and

its unique lift to H2
cpt,G(N). Then

(3.34)
ψ2

1 = 0 ∈ H4
G(N),∫ G

N
ψ2

1 = −1/2.
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The relevant equivariant Gromov-Witten invariants are

(3.35) 〈ψ1, ψ1, ψ1〉G0,3,d[C] = d3〈 〉G0,0,d[C] = d3 · 2ud−3 = 2u.

In the trivial case d = 1, the relevant moduli space of stable maps is a single point, consisting

of the inclusion C ↪→ N . Since TN |C = TC ⊕KC , we have

(3.36) H1(C, TN |C) = H1(C,KC) ∼= C,

and G acts with weight 2 on that space. Hence, the equivariant Euler class is 2u. In higher

degrees, one uses an equivariant version of the Aspinwall-Morrison formula [129]. Taking ψ1

and the unit class ψ0 as a basis, one finds that the equivariant quantum connection satisfies

(3.37)

∇Gq ψ0 = − 1

2πiq
ψ1,

∇Gq ψ1 = − 1

2πi

4u

1− q
ψ1.

Setting u = 0 kills all the invariants (3.35) (a general fact about complex symplectic mani-

folds, but particularly obvious in this case for dimension reasons), hence the ordinary non-

equivariant quantum connection has the same essentially trivial form as for elliptic curves.

In contrast, the equivariant version (3.37) shows a new pole at q = 1, with associated mon-

odromy matrix

(3.38) exp

(
0 0

0 −4u

)
=

(
1 0

0 (eu)−4

)
.

The notable fact here is that after setting t = eu, (3.38) becomes conjugate to (3.27) over

C[[u]] (the matrix (3.27) is diagonalizable away from t =
√
−1, and we are considering its

Taylor expansion around t = 1).

The mirror

There is no way to apply the Strominger-Yau-Zaslow (SYZ) construction of mirrors directly

to N (any Lagrangian torus in it is necessarily nullhomologous, hence can’t be Special La-

grangian). The most common approach, going back to [84], is to introduce a rational section

of the canonical bundle which is nowhere zero and has poles along a suitably chosen divisor,

and then take M∨ to be the complement of that divisor. One constructs M by applying the

SYZ process to M∨, possibly with instanton corrections [20, Section 5]. Concretely, in our

case the divisor is a copy of C∗ inside N = T ∗C which is disjoint from the zero-section (the

graph of a one-form on C with two poles). Corresponding to our fixed choice of complex

structure on M∨, we have a specific choice of Kähler class on M , which turns out to be zero.

Concretely, one can write the mirror as an affine algebraic surface

(3.39)
M = {x1x2 +W (y) = 0} ⊂ C2 × C∗,

W (y) = zy−1 − 2 + y

where z is a parameter. We equip M with the exact symplectic form ωM = dθM = −ddch,

where the Kähler potential is 1
4‖x‖

2 + 1
2 (log ‖y‖)2 (it turns out that M is diffeomorphic to

M∨, but that is a coincidence).
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Projection to y shows M to be a family of conics which degenerate over

(3.40) y± = 1±
√

1− z.

The singular values are z = 0 (where y− becomes zero, creating a singularity at infinity);

z = 1, where M develops a node; and z = ∞, which one would define by appropriately

rescaling the y-coordinate. If we keep away from those values, one has

(3.41) H2(M) ∼= H1(C∗; {y±})

(more geometrically, embedded paths in C∗ joining y− to y+ give rise to Lagrangian spheres

in M , following the procedure in [109]). In a suitable basis, the monodromy maps around

z = 0, 1 exactly match the matrices (3.22) (in that order), and the inverse monodromy

around z =∞ is therefore given by

(3.42)

(
1 0

2 −1

)
·
(

0 1

−1 2

)
=

(
0 1

1 0

)
.

The family (3.39) is part of a larger one, where the points y± are allowed to vary arbitrarily

in C∗. The base of the smooth part of that family is parametrized by the configuration

space Conf 2(C∗), and this is compatible with the C∗-action by rotation on Conf 2(C∗).
The quotient Conf 2(C∗)/C∗ is itself a copy of C∗ with one Z/2-orbifold point. Hence, the

monodromy yields a homomorphism

(3.43) Z2 ∗ Z ∼= πorb
1 (Conf 2(C∗)/C∗) −→ π0(Sympex ,gr (M))

into the “mapping class group” of exact (preserving θM up to exact one-forms) and graded

symplectic automorphisms. In particular, if φ0, φ1 are the monodromy maps of (3.39) around

z = 0, 1, then we get an isotopy φ0φ1φ0φ1 ' Id , corresponding to our previous discussion of

autoequivalences of the derived category.

Take the natural complex volume form on M ,

(3.44) ηM = resM
dx1 ∧ dx2 ∧ y−1dy

x1x2 +W (y)
,

Under the cohomology isomorphism corresponding to (3.41), ηM maps to the class of the

one-form dy/y. This means that the periods (solutions of the Picard-Fuchs equation) can be

computed in entirely elementary terms,

(3.45)

∫
2-cycle

ηM =

∫ y+

y−

dy

y
= log(y+/y−).

To match this with the quantum connection, which means the u = 0 specialization of (3.37),

one can at least tentatively take the mirror map to be

(3.46) q =
y+

y−
=⇒ z = 1−

(
q − 1

q + 1

)2

In particular, z = 1 corresponds to q = 1, but the map q → z is double branched at that

point, and since the monodromy of H2(M) around z = 1 has order two, its pullback by that

map is trivial.
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Passing from N to M∨ is unfortunately not compatible with the G-action. One could get a

mirror of N itself by equipping M with a suitable regular function (which yields a Landau-

Ginzburg model) [20]. If we allow ourselves to bypass this issue, Desideratum 3.3 takes

on the following form. By choosing two non-isotopic paths in C∗ that go from y− to y+,

and only intersect at the endpoints, one gets two Lagrangian spheres S0, S1 ⊂ M whose

intersection numbers are

(3.47) S0 · S0 = S1 · S1 = −2, S0 · S1 = S1 · S0 = 2,

matching (3.17) (up to an overall −1 sign that is due to orientation conventions). One

would then want to define t-intersection numbers which yield the refinement corresponding

to (3.25):

(3.48) S0 ·t S0 = S1 ·t S1 = −1− t−2, S0 ·t S1 = S1 ·t S0 = 2t−1.

Moreover, the action of the monodromy maps φ0, φ1 should reflect (3.26). Now φ1 is a

four-dimensional Dehn twist, hence φ2
1 is isotopic to the identity as a diffeomorphism, but

not symplectically so [168]. That makes it conceivable, at least in principle, that one could

reproduce phenomena like (3.27) in symplectic topology. Indeed, a construction of improved

intersection numbers with the desired properties has been given in [184], and we will show

later that this construction can be applied to M .





LECTURE 4

Derived Picard groups

Derived categories of coherent sheaves, and their automorphisms, have already appeared in

Lecture 3. We return to the same topic, and more specifically consider the “continuous” part

of the autoequivalence group, which is what appears in the following theorem of Rouquier:

Theorem 4.1 ([159, Theorem 4.18]). The (connected algebraic) group

(4.1) DPic0(M) = Pic0(M)×Aut0(M)

attached to a smooth projective variety M , is a derived invariant.

This reflects the infinitesimal (Lie algebra) equality

(4.2) H1(M,OM )⊕H0(M,TM) ∼= HH 1(M,M),

where HH 1(M,M) is the first Hochschild cohomology group, which is easily seen to be

derived invariant. However, the global result (4.1) is stronger: besides its own algebraic

group structure, DPic0(M) can be equipped with additional data which are also derived

invariant (sheaves of twisted Hochschild cohomology groups). For subgroups of the actual

geometric automorphism group Aut(M), we had already considered part of this data in

Lecture 2, and interpreted it as a version of equivariant cohomology. The more general

construction, and its interaction with more classical notions of algebraic geometry, is the

object of ongoing study [156, 155, 125].

In principle, this approach is not limited to algebraic geometry, but can be applied to other

categories which admit a meaningful notion of “family of objects parametrized by an al-

gebraic variety”. See for instance [107] for the general framework. As another concrete

instance, there a parallel statement to Theorem 4.1 for modules over finite-dimensional al-

gebras (besides [159], see [94, 208]).

Fourier-Mukai transforms

We consider only smooth projective varieties over C. Given P2 ∈ Ob DbCoh(M1 ×M0) and

P1 ∈ Ob DbCoh(M2 ×M1), we define their convolution P2 ∗ P1 ∈ Ob DbCoh(M2 ×M0) by

the formula

(4.3) P2 ∗ P1
def
= p02,∗(p

∗
12P2 ⊗ p∗01P1).

The tensor product takes place on M2×M1×M0, and the pij are the projections from there

to Mi×Mj . The pushforwards and tensor product in (4.3) are taken in the derived sense (for

35
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the pullbacks this is not an issue since they are already exact); this notational convention

will continue throughout the rest of our discussion. Convolution is an exact functor in either

argument. The structure sheaves of diagonals are the two-sided identity elements:

(4.4) P ∗ O∆M0

∼= O∆M1
∗ P ∼= P for all P ∈ Ob DbCoh(M1 ×M0).

One can also think of P ∈ Ob DbCoh(M1 ×M0) as a “kernel” which defines a functor, the

Fourier-Mukai transform

(4.5)
ΦP : DbCoh(M0) −→ DbCoh(M1),

ΦP (X) = p1,∗(P ⊗ p∗0X).

Here p0, p1 are again the projections from M1 ×M0 to the two factors. Of course, this is

itself technically a special case of convolution, but a case which intuitively (and historically)

plays a particularly important role. One has

(4.6) ΦP2∗P1
∼= ΦP2

◦ ΦP1

and

(4.7) ΦO∆M

∼= Id .

It is also interesting to see the formulae for left and right adjoint functors in this context

(see [95, Proposition 5.9] or [136]), which involve Grothendieck-Serre duality. Namely, for

P ∈ Ob DbCoh(M1 ×M0) one has

(4.8)

HomDbCoh(M1)(ΦP (X0), X1) = HomDbCoh(M1)(p1,∗(P ⊗ p∗0X0), X1)

∼= HomDbCoh(M1×M0)

(
P ⊗ p∗0X0, p

∗
1X1 ⊗KM0 [n]

)
∼= HomDbCoh(M1×M0)

(
p∗0X0, (P

∨ ⊗KM0 [n])⊗ p∗1X1

)
∼= HomDbCoh(M0)

(
X0, p0,∗(P

∨ ⊗KM0
[n]⊗ p∗1X1)

)
= HomDbCoh(M0)(X0,ΦP right (X1)),

where n = dim(M); KM0
is the canonical bundle (pulled back to M0×M1, even though the

notation does not reflect that); and

(4.9) P right = P∨ ⊗KM0
[n].

The left adjoint is similarly given by

(4.10) P left = P∨ ⊗KM1
[n].

Remark 4.2. It is much harder to say how much ΦP knows about the kernel P . If ΦP is the

identity functor, then P ∼= O∆M
. From that, one concludes for any P which has an inverse

under convolution, the functor ΦP determines P up to isomorphism (the same is true for fully

faithful ΦP [145], but it fails for general Fourier-Mukai transforms: see [44], which follows

an earlier negative answer to a related question [95, Example 5.15]). Finally, any exact

equivalence DbCoh(M0) → DbCoh(M1) is isomorphic to a Fourier-Mukai transform [145]

(this is an open question for general exact functors). One can doubt whether such questions

are even natural: they are the consequence of working in the world of classical triangulated

categories, inside which functor categories do not have particularly good properties.
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Following standard usage, let’s say that M0 and M1 are derived equivalent if DbCoh(M0) is

equivalent to DbCoh(M1) as a triangulated category. Again by [145], there are

(4.11)
P1 ∈ DbCoh(M1 ×M0), P2 ∈ DbCoh(M0 ×M1),

P2 ∗ P1
∼= O∆M0

, P1 ∗ P2
∼= O∆M1

.

We are interested in the implication of this for the categories DbCoh(Mk ×Mk) with their

tensor (convolution) structure.

Lemma 4.3. Suppose that M0 and M1 are derived equivalent. Then there is an exact equiv-

alence

(4.12) DbCoh(M1 ×M1) ∼= DbCoh(M0 ×M0)

which is compatible with convolution; maps the structure sheaves of the diagonals to each

other, and the same more generally for the objects O∆Mi
⊗Kd

Mi
(d ∈ Z). �

Proof. If the derived equivalence is as in (4.11), then (4.12) is given by

(4.13) P 7−→ P2 ∗ P ∗ P1.

Only the last property, involving the canonical bundle, is worth commenting on. Because of

convolution, it is sufficient to prove the case d = 1. For that, one can argue abstractly in

terms of Serre functors, or slightly more concretely as follows. Since ΦP1 is an equivalence,

its left and right adjoints must coincide, which in view of (4.10), (4.9) (and the fact that an

equivalence determines its kernel up to isomorphism) means that P∨1 ⊗KM0
∼= P∨0 ×KM1

.

After dualizing and then tensoring with KM0×M1
, this takes on the form

(4.14) P1 ⊗KM0
∼= P0 ⊗KM1 .

But then

(4.15)
P2 ∗ (O∆M1

⊗KM1
) ∗ P1

∼= P2 ∗ (KM1
⊗ P1) = P2 ∗ (KM0

⊗ P1)

∼= P2 ∗ P1 ∗ (O∆M0
⊗KM0

) ∼= O∆M0
⊗KM0

.

This argument is not particularly elegant, since it passes from kernels to functors and back,

but that allowed us to use the familiar language of adjoint functors. �

The derived Picard group

Definition 4.4. Consider the semigroup of isomorphism classes of objects in DbCoh(M ×
M), with the multiplication given by (4.3). The derived Picard group DPic(M) is the subset

of invertible elements inside that semigroup.

By the previously discussed general results, this is really the “automorphism group” of

DbCoh(M), which means the group of exact self-equivalences up to isomorphism. In partic-

ular, it is itself a derived invariant of M . The group DPic(M) can be described explicitly

in some cases (see (3.11), and more generally [32, 146]), but in general it can be rather

large and hard to approach. On the other hand, there are some subgroups that can be easily

understood, and one of those is specifically of interest to us. Let Pic(M) be the Picard
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group, and Aut(M) the automorphism group. The latter acts on the former, and we can

form the semidirect product Pic(M)oAut(M). Any pair ([L], f) in this semidirect product

determines a Fourier-Mukai kernel

(4.16) PL,f = p∗1L⊗ OΓf ,

where Γf ⊂ M × M is the graph. This defines an injective homomorphism Pic(M) o
Aut(M) → DPic(M). Here is a characterization of (4.16) (roughly following [159, Section

4.4.1]):

Lemma 4.5. Let P be a coherent sheaf on M ×M with the following properties:

• The projections p0, p1 : Supp(P )→M are finite morphisms;

• p0,∗(P ) and p1,∗(P ) are line bundles.

Then P ∼= PL,f for some ([L], f). �

Now restrict to the subgroup Pic0(M) ⊂ Pic(M) of topologically trivial line bundles (which

is an abelian variety), and similarly to the neutral connected component Aut0(M) ⊂ Aut(M),

which is an algebraic group. The action of Aut0(M) on Pic0(M) is trivial, hence with the

definition (4.1) one has

(4.17) DPic0(M) ↪→ Pic(M) oAut(M) ↪→ DPic(M).

The parametrized version

Let S be an auxiliary smooth quasiprojective variety. A family of Fourier-Mukai kernels

parametrized by S is an object P ∈ Ob DbCoh(S ×M ×M). When it comes to defining the

notion of isomorphism between two families, we find it convenient to work locally over S.

This means that two families over the same base are called isomorphic if there is a cover of

S by Zariski-open subsets, such that the restrictions to each of those subsets are isomorphic

(with no coherence condition imposed on the isomorphisms). There is a version of Lemma

4.5 for families, leading to the following:

Lemma 4.6. Let P be a family of Fourier-Mukai transforms parametrized by S. Suppose that

there is a point s ∈ S such that P s
∼= PL,f for some ([L], f). Then, there is a Zariski-open

subset U ⊂ S containing s, an map f : U ×M → M which is fiberwise an automorphism,

and a line bundle L on U ×M , such that

(4.18) P |U ∼= PL,f

is given by the family version of (4.16). �

The same thing holds if one considers only pairs ([L], f) lying in DPic0(M), and we will

use this to characterize that group by a universal property. Take a connected algebraic

group G. A weak derived action of G on M is given by a family of Fourier-Mukai kernels P

parametrized by G itself, with the following two properties:
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• Restriction to e ∈ G yields P e
∼= O∆M

;

• There is an isomorphism of families over G × G (in the sense described above),

which fibrewise yields

(4.19) P g2g1
∼= P g2

∗ P g1
.

To be more precise, let m : G × G → G be the multiplication, and q0, q1 : G × G → G the

projections. What we then mean by (4.19) is that Zariski-locally over G×G,

(4.20) m∗P ∼= q∗1P ∗ q∗0P ,

where ∗ is convolution fibered over G×G. Now, given such an action, Lemma 4.6 applies in

a Zariski neighbourhood of the identity element in G. One can use (4.20) to translate that

Zariski neighbourhood. The outcome is that we have a cover of G by open subsets Ui on

which isomorphisms of type (4.18) hold, say

(4.21) P |Ui ∼= PLi,fi
.

Moreover, each Li is topologically trivial, and each f
i

lies fibrewise in Aut0(M). These

isomorphisms glue together to define a morphism of algebraic varieties

(4.22) G −→ DPic0(M).

Again appealing to (4.20), one shows that this is also a group homomorphism. On the other

hand, there is clearly a weak derived action of DPic0(M) itself on M , constructed using the

universal line bundle on Pic0(M)×M and the evaluation map Aut0(M)×M →M . Hence:

Lemma 4.7. Weak derived actions of G on M (up to isomorphism) correspond to homomor-

phisms of algebraic groups, G→ DPic0(M). �

Our notion of action is easily seen to be derived invariant, by a parametrized version of

Lemma 4.3. Therefore, Lemma 4.7 implies Theorem 4.1.

Twisted Hochschild cohomology

The derived invariance of the group DPic0(M) comes with a corresponding property for the

kernels PL,f associated to points ([L], f). By combining this with Lemma 4.3, one concludes

that the following spaces are also derived invariant:

(4.23)

Hom∗DbCoh(M×M)(O∆M
⊗Kd

M , PL,f ) ∼=
∼= Hom∗DbCoh(M×M)(O∆M

, PL,f ⊗K−dM )

∼= H∗(M ×M,O∆M
⊗ PL,f ⊗K−d−1

M )[−n]

∼= H∗(M, δ∗PL,f ⊗K−d−1
M )[−n],

where δ : M → M ×M is the diagonal embedding; n = dim(M) as before; and d is any

integer. The transformations between the various expressions (4.23) used Serre duality, as

well as the fact that the derived dual of O∆M
is O∆M

⊗K−1
M [−n].

Here are some illustrative examples:
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• If f = idM , we can use the isomorphism δ∗O∆M
∼=
⊕

i ΩiM [i] (a sheafified version

of Hochschild-Kostant-Rosenberg, proved in [207, Equation 0.5], see also [15]) to

rewrite (4.23) as

(4.24)
⊕
i

H∗(M,L⊗ ΩiM [i]⊗K−d−1
M )[−n] ∼=

⊕
j

H∗(M,L⊗ ΛjTM [−j]⊗K−dM ).

For d = 0 and trivial L, (4.24) is the Hochschild cohomology of M . For any d and

L, the degree zero part of (4.24) is H0(M,L ⊗K−dM ). For further discussion, see

[125].

• For d = −1, trivial L, and any f , (4.23) is the cohomology of the derived intersection

O∆M
⊗ OΓf , which is a form of Hochschild homology and has already appeared

previously in (2.19).

• If f has only nondegenerate fixed points, δ∗PL,f ∼=
⊕

x∈Fix(f) Ox is a direct sum of

skyscraper sheaves at those fixed points. Hence (4.23) is concentrated in degree n,

and isomorphic as a vector space to C|Fix(f)|, irrespective of the choice of L and d.

For fixed d, the spaces (4.23) are naturally fibres of an object of DbCoh(DPic0(M)). Since

the only automorphisms of PL,f are multiplication with scalars, this object itself is derived

invariant only up to tensoring with a line bundle on DPic0(M) (which is clearly the best

possible result, since the construction of the universal line bundle on Pic0(M) suffers from

the same ambiguity).
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Flux

Flux is a classical notion in symplectic topology, expressed as an isomorphism

(5.1) Symp0(M)/Ham(M) ∼= H1(M ;R)/Γ.

One can study flux using fixed point Floer cohomology, in a way which parallels the algebro-

geometric object (4.1), or alternatively using Lagrangian Floer cohomology. In fact, those

invariants yield useful information even in situations where Γ is trivial. We will illustrate

this by looking at symplectic mapping tori and some related manifolds.

Symplectic isotopies

We begin by recalling some standard terminology. Let (M,ωM ) be a closed symplectic

manifold. We write Symp(M) for the symplectic automorphism group, and Symp0(M) for

the connected component of the identity. Formally, these are infinite-dimensional Lie groups

whose Lie algebra, the space of symplectic vector fields, can be identified with the space of

closed one-forms:

(5.2) LSymp(M) ∼= ker(d : Ω1(M)→ Ω2(M)),

where a vector field X corresponds to the one-form −iXωM . Vector fields that correspond to

exact one-forms are called Hamiltonian. The subspace of such vector fields is invariant under

the adjoint action, hence gives rise to a foliation of Symp(M) of codimension dimH1(M ;R).

Isotopies which are tangent to that foliation are called Hamiltonian. We denote by Ham(M)

the (normal) subgroup of elements of Symp0(M) which can be reached from the identity by

a Hamiltonian isotopy.

Let Φ = (φt)0≤t≤1 be any symplectic isotopy, which means a smooth path in Symp(M). To

this corresponds a family (δt) of closed one-forms. The cohomology class

(5.3) Flux(Φ) =

∫ 1

0

[δt] dt ∈ H1(M ;R)

is called the flux of the isotopy. A Hamiltonian isotopy has zero flux; and conversely, an

isotopy with zero flux can be deformed (keeping endpoints fixed) to a Hamiltonian isotopy

(for this and related elementary background, see [133, Chapter 10]). The flux subgroup

(5.4) Γ ⊂ H1(M ;R)

41
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consists of all the fluxes associated to loops in Symp(M) (one does not lose anything by

restricting to loops in Symp0(M), since Flux(ψ ◦ Φ) = Flux(Φ) for any symplectomorphism

ψ). Equivalently, Flux(·) is the image of [ωM ] under

(5.5)

H2(M ;R)
evaluation−−−−−−→ H2(Symp(M)×M ;R)

Künneth−−−−−→ Hom(π1(Symp(M)), H1(M ;R)).

An elementary reformulation of (5.5) may be useful. Take some loop Φ = (φt), t ∈ S1, in

Symp(M). Given a loop λ : S1 →M , one defines a map

(5.6) T 2 = S1 × S1 −→M, (s, t) 7−→ φt(λ(s)).

The integral of ωM over this torus equals 〈Flux(Φ), [λ]〉.

Example 5.1. If [ωM ] is integral, Γ is a subgroup of H1(M ;Z).

Example 5.2. The flux subgroup is trivial for surfaces of genus ≥ 2, since in that case any

map T 2 →M has degree zero.

Example 5.3 (Taken from [131]). More generally, suppose that [ωM ] is a multiple of c1(M).

The pullback λ∗TM is a symplectic vector bundle over the circle, hence trivial, and any

choice of trivialization induces a trivialization of the pullback of TM under (5.6). Hence,

the integral of c1(M) over that torus is zero, which means that Γ must again be trivial.

Example 5.4 (Taken from [103]). Similar topological arguments prove the following result:

if some Chern number of M is nonzero and the map

(5.7) ^ [ωn−1
M ] : H1(M ;R) −→ H2n−1(M ;R),

for 2n = dim(M), is an isomorphism (the latter condition always holds for Kähler mani-

folds), then Γ = 0.

Here is another reformulation. For any class d ∈ H1(M ;R), choose a family (δt)0≤t≤1 of

closed one-forms whose cohomology classes integrate to d. This induces a symplectic isotopy

(starting at the identity), whose endpoint φ(d) is independent of the choice of one-forms up to

Hamiltonian isotopy. Then, d belongs to the flux subgroup if and only if φ(d) is Hamiltonian

isotopic to the identity. This explains the isomorphism (5.1).

Example 5.5. Take a symplectic vector space (V, ωV ) and a lattice G ⊂ V . Form the sym-

plectic torus M = V/G, so that H1(M ;Z) = G. Take a loop Φ of symplectic automorphisms,

which is such that the orbit of any point is in the class corresponding to g1 ∈ G. Take a loop

λ ∈ G whose homology class corresponds to g2 ∈ G. Then by definition of the symplectic

form,

(5.8) 〈Flux (Φ), [λ]〉 = ωV (g2, g1)

(ultimately, a formula of this kind can exist because [ωM ] lies in the subring generated by

one-dimensional cohomology classes). In particular, if we use ωV to identify H1(M ;R) =

V ∼= V ∨ = H1(M ;R), then the flux is precisely g1. Hence, with respect to this identification,

(5.9) Γ ⊂ G.

On the other hand, every class in H1(M ;R) can be represented uniquely by a constant one-

form, which corresponds to a constant symplectic vector field, in other words to an element
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v ∈ V . The flow of that vector field is translation x 7→ x + tv. In particular, if v ∈ G, the

time-one map is the identity, so G ⊂ Γ. This shows that (5.9) is an equality.

Alternatively, one could have obtained (5.9) as follows. If v /∈ G, the time-one map is fixed

point free, hence can’t be Hamiltonian isotopic to the identity by the (solution of the) Arnol’d

conjecture for tori. This is our first indication of a link between flux and deeper issues in

symplectic topology. Another such indication is provided by the proof of the flux conjecture:

Theorem 5.6 (Ono [144]). For any closed symplectic manifold M , Γ ⊂ H1(M ;R) is a

discrete subgroup.

Fixed point Floer cohomology

To describe the formal structure of “closed string” or fixed point Floer cohomology, we need

to introduce the one-variable Novikov field

V

, which is the field of formal series

(5.10) f(q) = a0q
r0 + a1q

r1 + · · ·

where the coefficients ak lie in some auxiliary field K (an arbitrary field of characteristic

0), and the exponents rk are real numbers, satisfying limk rk = ∞. Write

V≥0 ⊂

V

for the

subring of series (5.10) in which only nonnegative powers of q appear, and

V>0 for the ideal

in which only strictly positive powers appear.

The fixed point Floer cohomology group HF ∗(φ) is a Z/2-graded vector space over

V

as-

sociated to a symplectic automorphism φ ∈ Symp(M). More generally, one can introduce

twisted versions HF ∗(φ; ξ), where ξ is a bundle over M with fibre

V

and (discrete) structure

group

V≥0,× (the group of invertible elements in

V≥0). Fixed point Floer cohomology is

invariant under Hamiltonian isotopies of φ (in the twisted case, carrying ξ along with the

isotopy). It is also conjugation invariant. Another fundamental property is that

(5.11) HF ∗(id ; ξ) ∼= H∗(M ; ξ),

where the right hand side is ordinary cohomology with twisted coefficients (and the grading

has been reduced to Z/2). In fact, those two properties (for trivial ξ) together yield the

proof of the Arnol’d conjecture.

Remark 5.7. These statements are not quite the most general ones. Let’s associate to φ the

loop space

(5.12) LφM = {x : R→M : x(t) = φ(x(t+ 1))}.

Formally, fixed point Floer cohomology looks like a Morse-Novikov theory on this space. It

can therefore be twisted by a

V≥0,×-bundle on LφM . In the description above, we have only

used bundles pulled back by the evaluation map Lφ →M .

On a related note, HF ∗(φ) remains invariant under all isotopies whose flux lies in the image

of id − φ∗ : H1(M ;R) → H1(M ;R). This is again quite transparent from a loop space per-

spective, or alternatively one can derive it from the invariance under Hamiltonian isotopies

and conjugation.
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For our application, the relevant groups are HF ∗(φ(d); ξ). These depend on d ∈ H1(M ;R)

and the isomorphism type of ξ, which one can combine into a single expression

(5.13) qd[ξ] ∈ H1(M ;

V×).

From this point of view, what Floer cohomology yields is a family of Z/2-graded vector

spaces parametrized by H1(M ;

V×), and invariant under a suitably defined action of Γ.

More geometrically, (5.13) is represented by a bundle whose holonomy around a loop λ in

M is qd(λ) times the corresponding holonomy of ξ. Let’s denote that bundle by qdξ, in a

slight abuse of notation. The main result from [144], which underlies the proof of the flux

conjecture, is a generalization of (5.11):

(5.14) HF ∗(φ(d); ξ) ∼= H∗(M ; qdξ) for small d

(there are some special classes of symplectic manifolds for which (5.14) continues to hold for

all d ∈ H1(M ;R), see [119], but this is definitely not true in general, as one can already see

from Example 5.5). It would be good to go further in this direction, and to have theorems

describing the local structure of the stratification of H1(M ;

V×)/Γ given by the ranks of

Floer cohomology groups (in analogy with the algebro-geometric situation, where the spaces

(4.23) give rise to an algebraic stratification of the derived Picard group).

Example 5.8. Take an arbitrary ψ ∈ Symp(M). Its symplectic mapping torus E = Eψ
is the total space of the fibration over the two-torus with fibre M and monodromy ψ in one

direction. Explicitly,

(5.15)
E = R2 ×M/(p, q, x) ∼ (p− 1, q, x) ∼ (p, q − 1, ψ(x)),

ωE = dp ∧ dq + ωM .

If we take d to be the pullback of (1, 0) ∈ H1(T 2;R) under the projection E → T 2, and

represent it by the one-form dp, the associated symplectic vector field is X = ∂q, whose

time-one map is φ(d)(p, q, x) = (p, q + 1, x) = (p, q, ψ(x)). One expects the fixed point Floer

cohomology of φ(d) to reflect that of ψ, and indeed

(5.16) HF ∗(φ(d)) ∼= H∗(T 2;

V

)⊗HF ∗(ψ).

To be precise, this is easy to show in situations where the construction of fixed point Floer

cohomology can be carried out with smooth moduli spaces of holomorphic curves, for instance

if c1(M) = 0. The general case, which uses virtual perturbations, should be similar, but would

require more attention to the details (hence is strictly speaking conjectural). See [167, Section

4] for further discussion of (5.16) and its generalization to other cohomology classes d.

Suppose that H1(M ;R) = 0, that ψ∗ = id on cohomology, and that HF ∗(ψ) has total rank

different from that of H∗(M). Then (5.16) implies that d does not lie in the flux subgroup of

E; hence, that group does not coincide with H1(E;Z), which distinguishes E from the trivial

mapping torus T 2 ×M . If one assumes that ψ is fragile [177, Section 1], then E will be

symplectically deformation equivalent (and in particular diffeomorphic) to T 2 ×M . This is

a good source of nonstandard (deformation equivalent, but not symplectomorphic) symplectic

structures.

We want to mention one more general property:
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Proposition 5.9 (Arnol’d). For any symplectic automorphism φ, the total rank of HF ∗(φk)

grows at most exponentially in k.

Proposition 5.10 (Arnol’d). Equip the vector space H1(M ;R) with some Euclidean metric.

There are constants C,D such that for all d ∈ H1(M ;R),

(5.17) rank HF ∗(φ(d)) ≤ D‖d‖C.

This is not unexpected, and indeed, the proofs (which we will outline later on) are ele-

mentary. Proposition 5.10 is noteworthy because it provides a (weak) global bound, which

complements local statements such as (5.14). Finally, note that even thought we have not

mentioned the twistings ξ in the two Propositions above, that’s just because the inequalities

hold for any choice of those (with the same constants).

Lagrangian Floer cohomology

The “open string” or Lagrangian intersection version of Floer cohomology is trickier to use,

because of the complicated structure of the auxiliary choices that enter into its definition.

Let’s first consider the “topologically unobstructed” case, which does not suffer from such

complications. Inside a fixed M , consider Lagrangian submanifolds L ⊂ M which are ori-

ented, Spin, and such that

(5.18) 〈[ωM ], [u]〉 = 0 for each map u : (D, ∂D) −→ (M,L).

Floer cohomology associates to each pair (L0, L1) of such submanifolds a Z/2-graded vector

space HF ∗(L0, L1) over

V

. There are also twisted versions, in which each Li carries a bundle

ξLi of the same kind as before. Floer cohomology is invariant under Hamiltonian isotopies

of either of the two submanifolds involved. The application to flux goes via the implication

(5.19) d ∈ Γ =⇒ HF ∗(φ(d)(L0), L1) ∼= HF ∗(L0, L1) for all L0, L1.

We also would like to mention the analogue of Proposition 5.9 in this context:

Proposition 5.11 (Arnol’d). Let φ be a symplectic automorphism of M . Then there is a

constant D > 0 depending only on φ, such that the following holds. For any pair (L0, L1) of

Lagrangian submanifolds, there is a constant C such that

(5.20) rank HF ∗(φk(L0), L1) ≤ DkC for all k > 0.

As before, the same bound holds for all choices of of bundles on L0, L1.

Example 5.12. Let M be a closed surface of genus > 0, and E the symplectic mapping torus

(5.15) of some ψ ∈ Symp(M). To any non-contractible simple closed curves α ⊂ M , one

can associate a Lagrangian torus

(5.21) Lα = S1 × {0} × α ⊂ E.

This is incompressible, meaning that its fundamental group injects into π1(E), and we also

have π2(E) = 0, which implies that (5.18) holds for Lα. The (much more straightforward)
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counterpart of (5.16) says that

(5.22) HF ∗(Lα0
, Lα1

) ∼= H∗(S1;

V

)⊗HF ∗(α0, α1).

Lagrangian intersection Floer cohomology in M essentially reduces to the (nontrivial, but

purely topological) theory of geometric intersection numbers [68]. Suppose from now on that

ψ has infinite order in the mapping class group. Then there are curves α0, α1 such that

(5.23) limk→∞ rank HF ∗(ψk(α0), α1) =∞.

By combining this with the same elementary considerations as in Example 5.8, one sees that

the image of (k, 0) under the pullback H1(T 2;R) → H1(E;R) can not lie in Γ, for any

k ∈ R \ {0}.

We should stress that this is only a toy model. The same conclusion about the flux subgroup

can be derived using fixed point Floer cohomology, since that has been fully computed for

surface diffeomorphisms [54]. It is even possible that it might be within reach of elementary

topological arguments involving π1(E), in the manner of [103, Theorem A.2] or Example

5.5.

To illustrate the issues with Lagrangian Floer cohomology in general, let’s consider the case of

Lagrangian surfaces L (oriented, with a Spin structure) in a closed symplectic four-manifold

M . More specifically, we are interested in the groups HF ∗(φ(L), L), for some φ ∈ Symp(M).

Such groups can always be defined, but they are not unique. To make the additional choices

more explicit, let’s take a compatible almost compatible structure J which is generic in the

following sense:

• There are no non-constant J-holomorphic spheres of Chern number < 1. Those of

Chern number 1 are regular, and intersect L transversally.

• There are no non-constant J-holomorphic discs with boundary on L of Maslov

number < 2. Those of Maslov number 2 are regular.

Given such a J , we can make an additional choice of a bundle ξL as before. For φ(L),

we then choose φ∗(J) and φ∗(ξL). The resulting Floer cohomology is well-defined by a

cancellation mechanism first encountered in [142]. The problematic part is that passing

from one such J to a different one, while preserving Floer cohomology, requires a highly

nontrivial identification of the spaces of ξL on both sides (and more generally, one may not

want to base one’s definition on choosing such a J at all, but instead on a more abstract

obstruction theory). Understanding this requires the full formalism of [71]. Still, the outcome

is that if the auxiliary choices are suitably correlated, HF ∗(φ(L), L) becomes invariant under

Hamiltonian deformations of φ or L. Moreover, the analogue of Proposition 5.11 holds.

Example 5.13. The symplectic mapping torus construction has a relative version, which

has been extensively explored since it gives rise to knotted symplectic submanifolds [69]. The

simplest class of examples goes as follows. Let Conf m(S2) be the configuration space of

unordered m-tuples of points on S2, for some m ≥ 3. Its fundamental group, the spherical
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m-stranded braid group, sits in a short exact sequence

(5.24) 1→ Z/2 −→ π1(Conf m(S2)) −→ π0(Diff +(S2, {m points}))→ 1.

Fix a loop β in configuration space, representing some conjugacy class [β] in the spherical

braid group. We can associate to it the symplectic surface

(5.25) S = Sβ = {(p, q, x) : x ∈ β(q)} ⊂ E = T 2 × S2.

Take a simple closed non-contractible curve α ⊂ S2\β(0), and consider the Lagrangian torus

Lα ⊂ E \ S defined in (5.21). The analogue of (5.22) is

(5.26) HF ∗E\S(Lα0
, Lα1

) ∼= H∗(S1)⊗HF ∗S2\β(0)(α0, α1),

where we have included the symplectic manifolds under consideration in the notation, in order

to avoid misunderstandings. Defining the Floer cohomology groups in (5.26) is straightfor-

ward, since (5.18) is satisfied (even though E \ S is noncompact, that does not cause any

technical issues, since one can work in E but use holomorphic curves which avoid S). Let

d = (1, 0) ∈ H1(E;R). For a suitable choice of one-forms, the associated symplectic isotopy

will preserve S, and then

(5.27) φ(d)(Lα) = Lψ(α)

where ψ is (a symplectic representative of) the image of β under (5.24). In particular, for

any k ∈ Z and any α one knows from (5.26) that

(5.28) HF ∗E\S(φkd(Lα), Lα) ∼= H∗(S1)⊗HF ∗S2\β(0)(ψ
k(α), α).

From now on, we consider only pure braids β (so S is the disjoint union of m tori, each of

which can be identified with T 2 by projection), and also we want to assume that our braids are

framed, which amounts to a trivialization of the normal bundle to (each connected component

of) S.

Take another closed four-manifold Ẽ containing a symplectic torus S̃ ∼= T 2 with trivialized

normal bundle. Suppose that the following two conditions are satisfied:

• One has π1(Ẽ \ S̃) ∼= Z, in such a way that the meridian of S̃ maps to 0, and the

two longitudes to 1 and 0, respectively.

• For a generic compatible almost complex structure on Ẽ with respect to which S̃ is

holomorphic, there is no holomorphic sphere which passes through S̃.

Concrete examples of such manifolds are easy to construct, see [183]. Let’s perform the fibre

connected sum [80]

(5.29) M = Mβ = E#(

m copies︷ ︸︸ ︷
Ẽ ∪ · · · ∪ Ẽ),

where we glue each connected component of S to a copy of S̃. The outcome is a symplectic

four-manifold with π1(M) ∼= Z. All the tori Lα will carry over to M (in a way which is

unique up to Hamiltonian isotopy).
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By construction, M carries a unique cohomology class whose restriction to E \Sβ equals that

of d. For simplicity, let’s denote that class again by d. A (technically highly nontrivial) degen-

eration argument in the spirit of [96] shows that the cohomology groups HF ∗(φ(kd)(Lα), Lα)

in M are the same as in E \ S. In particular, by the analogue of Proposition 5.11, we get a

bound

(5.30) rank HF ∗(φ(kd)(Lα), Lα) ≤ DkC for k > 0,

where C depends on the choice of α, but D depends only on φ(d) up to Hamiltonian isotopy.

As we will now see, this allows one to distinguish between the manifolds Mβ, but in a way

which is not effective.

Namely, by a suitable choice of β, one can achieve that there are α such that the ranks of

the Floer cohomology groups in (5.28) grow exponentially in k (one can see this easily using

Thurston’s classification of surface diffeomorphisms [68]). After that, the exponential growth

rate can be made arbitrarily large, simply by replacing the chosen β with some power. By

comparison with (5.30), one concludes that there are infinitely many distinct (not pairwise

symplectically isomorphic) Mβ. This is closely related to the results in [183] (those were

proved using fixed point Floer cohomology, which is a little harder to compute but yields

more clear-cut statements).

Growth of intersections

Our final task is to explain the proof of Propositions 5.9, 5.10, and 5.11. The argument is

taken from [17], and applies in a variety of geometric situations; we will begin by considering

diffeomorphisms, and add the symplectic structures later.

Let M be a closed Riemannian manifold. Under any diffeomorphism φ ∈ Diff (M), the

Riemannian volume of submanifolds grows at most by a constant, more precisely

(5.31) vol(φ(L)) ≤ ‖Dφ‖dim(L)vol(L).

Similarly, if (φt) is the flow of a vector field X, one has

(5.32)
d

dt
vol(φt(L)) ≤ dim(L)‖∇X‖vol(φt(L)),

and hence for any t ≥ 0,

(5.33) vol(φt(L)) ≤ et dim(L)‖∇X‖vol(L).

Take two submanifolds L0, L1 ⊂ M of complementary dimension. Let intU (L0, L1) be the

number of intersection points not removable by a small perturbation. Here, U is a neigh-

bourhood of the point corresponding to L1 inside the space of all submanifolds, with the

C∞-topology (by taking U small, one can ensure that all L̃1 in U are isotopic to L1). The

definition is

(5.34) intU (L0, L1)
def
= minL̃1

(|L0 ∩ L̃1|),



GROWTH OF INTERSECTIONS 49

where the minimum is taken all L̃1 in U which intersect L0 transversally. We will later

modify this definition further to fit the situation in symplectic geometry.

Arnol’d’s insight is that (5.34) is governed by the volume, in the following sense.

Lemma 5.14 ([17, Lemma 1]). For any L1 and U there is a constant C = C(L1, U) such

that

(5.35) intU (L0, L1) ≤ C vol(L0) for all L0.

Proof. This is essentially a probabilistic argument. Among a suitable family of small

perturbations of L1, we prove that there must be at least one which intersects L0 transversally

and in not more than Cvol(L0) points.

Claim: There is a map

(5.36) ι : P × L1 −→M,

where P is a small closed ball around the origin in RN for some large N , with the following

properties. First, ι|{p} × L1 is an embedding for any p, specializing to the given inclusion

for p = 0. We denote the images of these embeddings by L̃1,p, and also assume that they all

lie in the neighbourhood U . The final requirement is that ι should be a submersion.

To verify this claim, one first constructs a map satisfying the first requirement, and such

that Dι is onto at every point of the form (0, x). Then, making P smaller yields the desired

submersion property. In fact, let’s agree that we shrink it by slightly more than strictly

necessary.

Claim: Fix some Riemannian metric on P ×L1. Then there is a constant C > 0 such that

for any submanifold L0 ⊂M ,

(5.37) vol(ι−1(L0)) ≤ C vol(L0).

If this is true for some metric on P × L1, then it is true for any other metric. Hence, we

may assume without loss of generality that the metric is chosen in such a way that ι is a

Riemannian submersion. Then,

(5.38) vol(ι−1(L0)) =

∫
L0

vol(ι−1(x)) |dx|.

Note that outside a subset of Lebesgue measure zero, ι−1(x) intersects ∂P×L1 transversally,

hence is a compact manifold with boundary, with well-defined volume. Take some x0 ∈ L0.

There is a ball P̃ slightly larger than P , and an extension ι̃ of ι to P̃ ×L1, such that ι̃−1(x0)

intersects ∂P̃ × L1 transversally. Then, the same holds for all x sufficiently close to x0.

Hence, vol(ι̃−1(x)) is locally a continuous function near x = x0. This yields a local bound

for vol(ι−1(x)) in the same region, and since L0 is compact, we get an overall bound C valid

for all x.
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Claim: We have

(5.39)

∫
P

|L0 ∩ L̃1,p| |dp| ≤ vol(ι−1(L0)),

where: the integral on the left is with respect to the standard flat metric on P , normalized

so that vol(P ) = 1; and the volume on the right side is with respect to the metric on the

submanifold ι−1(L0) induced by the product of our metric on P and an arbitrary Riemannian

metric on L1.

The intersection L0 ∩ L̃1,p is transverse (hence in particular finite) for all p outside a closed

subset of measure zero. Let P reg be its complement. Then, the projection

(5.40) ι−1(L0) ∩ (P reg × L1) −→ P reg

is a finite covering. Moreover, the pullback of |dp| yields a density which is pointewise less

or equal than that used to compute the volume of ι−1(L0).

After combining the inequalities above into

(5.41)

∫
P

|L0 ∩ L̃1,p| |dp| ≤ C vol(L0),

one sees that there must be some subset of positive measure inside P on which |L0 ∩ L̃1,p| ≤
C vol(L0). Inside that subset, one can find a p where the intersection is transverse. �

Let’s assume from now on that M is symplectic (not necessarily in a way which is compatible

with the metric) of dimension 2n; that our submanifolds are Lagrangian; and that the topol-

ogy of the space of Lagrangian submanifolds is defined in such a way that only Hamiltonian

isotopies are continuous (this affects the definition of neighbourhoods U). In the proof of

Lemma 5.14, we can construct ι in such a way that all the L̃1,p are Lagrangian, and depend

in a Hamiltonian way on p. Then, that Lemma still holds with our modified definition of

intU (L0, L1). In view of this and (5.31), we have:

Proposition 5.15. Take φ ∈ Symp(M). Then for any Lagrangian submanifolds (L0, L1),

and any U , there is a constant C such that

(5.42) intU (φk(L0), L1) ≤ ‖Dφ‖nkC for all k > 0.

�

The number on the left hand side of (5.42) is an upper bound for the total rank of La-

grangian Floer cohomology (whenever that is defined). Hence, Proposition 5.11 follows im-

mediately, and so does its analogues for other situations where Lagrangian Floer cohomology

is well-defined. Next, recall that any symplectic fixed point problem can be converted to a

Lagrangian intersection problem by looking at the graph and the diagonal. Applying that

to Proposition 5.15 immediately yields Proposition 5.9. Proposition 5.11 is obtained in a

similar way, but using (5.32).



LECTURE 6

Liouville manifolds

This lecture has three aims. The first one is to review some elementary notions of sym-

plectic topology, with an emphasis on explicit constructions of open symplectic manifolds.

The original sources are [66, 205]; expository accounts can be found in [148] (specifically

for the low-dimensional case) and [53] (a comprehensive reference including many new de-

velopments). The second aim is to show how a version of Floer cohomology (symplectic

cohomology) can be applied to these manifolds. Among the existing literature on this topic,

we follow [134] most closely; but the state of the art is probably better represented by [36].

The final aim is to explain some possible limitations of the use of symplectic cohomology as

an invariant.

Acknowledgments. The discussion of Weinstein handle attachment (and in particular Exam-

ple 6.5) reflects discussions with Mohammed Abouzaid.

Symplectic manifolds with Liouville flows

We will consider exact symplectic manifolds, meaning symplectic manifolds (M,ωM ) which

additionally come with a distinguished one-form primitive θM , dθM = ωM . The vector field

ZM defined by iZMωM = θM is a Liouville vector field, which expands the symplectic form:

(6.1) LZMωM = d(iZMωM ) = ωM .

We will always require that ZM should be transverse to ∂M , which implies that θM |∂M is

a contact one-form. Within this fairly general class of manifolds, we will more specifically

consider the following cases:

• A Liouville cobordism is a compact M with the properties mentioned above. We

then write ∂−M and ∂+M for the (open and closed) subsets of the boundary where

ZM points inwards and outwards, respectively.

A Liouville cobordism is called trivial if every flow line of ZM is a compact interval

(with endpoints on ∂±M). In particular, M is then diffeomorphic to ∂−M × [0, 1].

• A Liouville domain is the special case of a Liouville cobordism where ∂−M = ∅.

51
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• A Liouville manifold (really, this should be called a finite type complete Liouville

manifold) is an open manifold M without boundary, with the following property.

There is an exhausting (proper and bounded below) function h ∈ C∞(M,R), such

that dh(ZM ) > 0 outside a compact subset. Moreover, we require that the flow

of ZM exists for all positive times (the corresponding statement for negative times

follows from the previous requirement).

Example 6.1. Let M be a complex manifold which is Stein. One can equip M with a strictly

plurisubharmonic exhausting function h. Then the regular sublevel sets of h are Liouville

domains for θM = −dch and its exterior derivative ωM = −d(dch). The Liouville vector

field is the gradient of h with respect to the Kähler metric associated to ωM .

Example 6.2. Let M ⊂ CN be a smooth affine algebraic variety. Then, taking h(x) =
1
4‖x‖

2 and proceeding as before equips M with the structure of a Liouville manifold (one has

dh(∇h) = ‖dh‖2 6= 0 outside a compact subset, because ‖dh‖2 is a real polynomial). By

construction, ωM is the restriction of the standard (constant) symplectic form on CN to M .

Example 6.3. If L is a closed manifold, then M = T ∗L with its canonical one-form is a

Liouville manifold.

Compact manifolds with boundary lend themselves well to gluing processes. Most obviously,

if M1 and M2 are Liouville cobordisms such that ∂+M1 is diffeomorphic to ∂−M2 in a way

which is compatible with the respective one-forms, then

(6.2) M = M1 ∪∂+M1∼∂−M2
M2

naturally becomes a Liouville cobordism (the Liouville vector fields give canonical collar

neighbourhoods, which one uses to define the differentiable structure on M). More generally,

suppose that ∂+M1 and ∂−M2 are isomorphic as (oriented) contact manifolds. In that case,

the gluing process (6.2) needs to be modified as follows:

(6.3) M = M1 ∪∂+M1∼∂−C C ∪∂+C∼∂−M2
M2.

The intermediate piece C is a trivial cobordism, whose negative boundary is diffeomorphic

to ∂+M1 compatibly with the one-forms; and whose positive boundary is diffeomorphic to

∂−M2, in such a way that θC |∂+N corresponds to ecθM2
|∂−M2 for some constant c. This of

course means that one needs to rescale ωM2
by the same factor ec when forming (6.3).

The outcome of (6.3) is no longer strictly unique (because of the choice of c), which brings

us to the overdue question of what the appropriate notion of isomorphism is for Liouville

domains. The most narrow notion would be this:

• Let M1,M2 be Liouville domains. A symplectic isomorphism φ : M1 → M2 is

called exact rel boundary if φ∗θM2 = θM1 + dk for some function k which vanishes

near the boundary.

However, this notion, as well as that of plain symplectic isomorphism, is too rigid for most

purposes; the reason being that it preserves quantitative invariants such as volume and
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capacities, which we do not want to consider. We therefore want to allow the two following

operations as well:

• Attaching a trivial cobordism to the boundary;

• Deformation (of θM and ωM , within the class of Liouville domains).

In fact, it is enough to allow one of those operations, and then the other can be expressed

as a combination of that and symplectic isomorphisms which are exact rel boundary. Let’s

call the resulting equivalence relation Liouville isomorphism.

The situation is a little simpler for Liouville manifolds, for which there can be no quan-

titative invariants (since (M, θM , ωM ) is Liouville isomorphic to (M, ecθM , e
cωM ) for any

c ∈ R, using the flow of ZM ). In this context, one defines a Liouville isomorphism to be

a diffeomorphism such that φ∗θM2 = θM1 + dk for some compactly supported function k.

Deformation invariance is built in by a Moser-style argument. More precisely:

Lemma 6.4. Fix an open manifold M without boundary. On it, take a family of exact

symplectic structures ωt = dθt, with associated vector fields Zt, and a family of exhausting

functions ht, both depending smooth on t ∈ [0, 1]. Suppose that for each t, the flow of Zt
is defined for all positive times. Suppose also that for all (t, x) outside a compact subset of

[0, 1]×M , we have dht(Zt) > 0. Then (M,ω0, θ0) is Liouville isomorphic to (M,ω1, θ1). �

Still remaining on the same subject, note that one can pass from Liouville domains to

Liouville manifolds by attaching an infinite cone:

(6.4) Mcomplete = M ∪∂M ([0,∞)× ∂M),

where the conical part carries the one-form er(θM |∂M) (r is the coordinate on [0,∞)) and

its exterior derivative. There is also a truncation construction in the opposite direction, and

the two establish a bijection on the level of Liouville isomorphism types.

Finally, given that the symplectic form is exact, it makes sense to impose corresponding

exactness conditions on Lagrangian submanifolds. For a closed Lagrangian submanifold,

exactness means that [θM |L] ∈ H1(L;R) is zero. Here are two generalizations:

• Suppose that M is a Liouville domain, and L ⊂M a Lagrangian submanifold with

∂L = L ∩ ∂M , which is of Legendrian type near the boundary. The last-mentioned

condition means that θM |L vanishes in a neighbourhood of ∂L; equivalently, ∂L ⊂
∂M is Legendrian, and the Liouville flow is tangent to L near the boundary. Then,

we say that L is exact rel boundary if [θM |L] ∈ H1(L, ∂L;R) vanishes.

• Let M be a Liouville manifold, and L ⊂ M a properly embedded Lagrangian

submanifold which is of Legendrian type at infinity, meaning that θM |L vanishes

outside a compact subset. Then, we say that L is exact rel infinity if [θM |L] ∈
H1

cpt(L;R) vanishes.
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Weinstein handle attachment

Suppose that we are given a Liouville domain M1 of dimension 2n, and a submanifold

K1 ⊂ ∂M1 which is Legendrian for our contact structure, meaning that dim(K1) = n − 1

and θM1
|K1 = 0. Suppose also that we have a compact manifold L2 and a diffeomorphism

(6.5) ∂L2
∼= K1 ⊂ ∂M1.

Recall that the normal bundle of K1 ⊂ ∂M1 is R ⊕ T ∗K1
∼= T ∗L2|∂L2. One can therefore

attach a ball cotangent bundle D∗L2 to M1 along a tubular neighbourhood of K1. Strictly

speaking, the outcome has concave corners, but one can smooth them to get a manifold with

boundary. In fact, a slightly fattened version of the same construction can be thought of as

attaching a Liouville cobordism M2 (which homotopy retracts to ∂M1 ∪K1∼∂L2 L2). Let’s

denote the result of this attachment process by M .

Example 6.5. Suppose that M1 itself contains a Lagrangian submanifold L1 which is of

Legendrian type near the boundary, exact rel boundary, and such that ∂L1 = K1. Then

L = L1 ∪∂L1∼∂L2
L2 is a closed exact Lagrangian submanifold in M .

Example 6.6. The most important special case is where we start with a Legendrian K1 ⊂
∂M1 diffeomorphic to a sphere. In order to identify that sphere with the boundary of the

standard ball L2 = Dn, we suppose that a distinguished element π0(Diff (Sn−1,K1)/O(n))

has been chosen (for n ≤ 4 this quotient is trivial). One says that M is obtained by attaching

a critical Weinstein handle to M1 along K1.

More generally, suppose that we have K1 ⊂ ∂M1 which is contact isotropic, meaning that

θM1
|K1 = 0, but whose dimension can be arbitrary (≤ n− 1 because of the isotropy condi-

tion). Such a manifold carries a canonical symplectic vector bundle of rank 2(n−1−dim(K1)),

namely

(6.6) TK⊥1 /TK1 −→ K1,

where the orthogonal complement is with respect to the symplectic form on the contact

hyperplane bundle ker(θM1
|∂M1) ⊂ T (∂M1). Take a compact manifold L2 together with

a symplectic vector bundle ν. Suppose that there is a diffeomorphism ∂L2
∼= K1, covered

by a bundle isomorphism ν|∂L2
∼= TK⊥1 /TK1. Then we can again carry out a suitable

attachment process, using the disc bundle of T ∗L2 ⊕ ν.

Example 6.7. If we again suppose that K1 is a sphere, and L2 a ball, the additional bundle

data is a trivialization of (6.6). For dim(K1) < n−1, one calls the resulting process attaching

a subcritical Weinstein handle. In the lowest-dimensional case, one starts with two points

in ∂M1 and attaches a 1-handle (in that case, no additional choices are required, since the

linear symplectic group is connected).

Symplectic cohomology

Fix a coefficient field K, which can be arbitrary. Symplectic cohomology associates to a

Liouville domain or manifold M a Z/2-graded K-vector space SH ∗(M), of at most countable
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dimension. This comes with a rich structure of operations, of which the only one relevant

for now is the structure of a graded commutative ring with unit. Symplectic cohomology is

invariant under Liouville isomorphism.

Example 6.8. The symplectic cohomology of Cn is zero.

Example 6.9. Suppose that M = T ∗L, where L is closed and oriented. If char(K) 6= 2,

assume additionally that L is Spin. Then

(6.7) SH ∗(M) ∼= Hn−∗(LL;K),

where LL is the free loop space [202, 163, 1] (the isomorphism depends on the Spin structure:

changing this structure by a class α ∈ H1(L;Z/2) yields a change in (6.7) which is ±Id on

each component on the loop space, depending on how α evaluates on loops). Importantly,

(6.7) carries the ring structure on symplectic cohomology to the string product [2].

Example 6.10. The product of two Liouville manifolds is naturally again a Liouville man-

ifold (the same is true for Liouville domains after rounding off corners). One then has a

Künneth formula [139], which is an isomorphism of Z/2-graded rings

(6.8) SH ∗(M1 ×M2) ∼= SH ∗(M1)⊗ SH ∗(M2).

Also important is the Viterbo functoriality property of symplectic cohomology [203]. Namely,

suppose that M is obtained by attaching a Liouville cobordism to M1, as in (6.2) or (6.3).

One then has a canonical homomorphism (of unital rings)

(6.9) SH ∗(M) −→ SH ∗(M1).

In particular, if SH ∗(M) vanishes, so does SH ∗(M1), because the unit element is zero. The

maps (6.9) are functorial with respect to repeated attachment.

Remark 6.11. One use of Viterbo functoriality is to show that symplectic cohomology is

invariant under symplectic isomorphisms φ : M1 → M2 which are exact, meaning that

φ∗θM1 = θM2 + dk for some function k. As explained in [36, Lemma 1.1], any symplectic

isomorphism between Liouville manifolds can be deformed to an exact one. Hence, sym-

plectic cohomology is actually a symplectic invariant of Liouville manifolds in the standard

(undecorated) sense of the word.

The following theorems allow one to change the topology of a Liouville domain without

affecting its symplectic cohomology:

Theorem 6.12 (Cieliebak [52]). If M is obtained from M1 by attaching a subcritical Wein-

stein handle, the map (6.9) is an isomorphism.

Theorem 6.13 (Bourgeois-Ekholm-Eliashberg). Consider four-dimensional Liouville do-

mains, and use coefficients in a field with char(K) = 0. Suppose that M is obtained from

M1 by attaching a Weinstein handle along a stabilized Legendrian knot. Then (6.9) is an

isomorphism.

The last result may require some explanation. Stabilization is a local modification of a Leg-

endrian knot, which depends on a choice of orientation [67, Section 2.7]. For Legendrian
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knots in R3, one sees easily that the Chekanov homology [51] of a stabilized knot vanishes.

When translated into pseudo-holomorphic curve technology, that argument depends on the

existence of a low-energy once-punctured holomorphic disc, hence carries over to ∂M1. The-

orem 6.13 is a then a consequence of [36, Theorem 5.6 and Section 7.2]. Strictly speaking,

one has to be a little careful, since [36] uses a definition of symplectic homology (and Viterbo

functoriality) which is based on Symplectic Field Theory, and therefore technically some-

what different from that in the original literature (this also explains the restriction on the

coefficient field K). However, it is generally expected that the two are equivalent, by an

extension of the arguments in [37]; we have tacitly assumed that when stating the result.

We have so far adopted a “black box” approach to symplectic cohomology, but it makes

sense to give at least a partial idea of what geometric information it encodes. Let M be

a Liouville domain. The form ωM |∂M has one-dimensional null space. Let’s assume that

all closed characteristics, which means loops tangent to that nullspace, are nondegenerate.

Equivalently, these characteristic are periodic orbits of the Reeb field, which is the unique

vector field R∂M ∈ C∞(T (∂M)) in the null space such that θM (R∂M ) = 1. Fix a Morse

function h ∈ C∞(M,R) such that h−1(1) = 1 and ZM .h = h near the boundary. Symplectic

cohomology can be written as the cohomology of a Z/2-graded chain complex which has

generators of two kinds. First, each critical point of h gives rise to a generator, whose (mod

2) degree agrees with the Morse index. In fact, this gives rise to a subcomplex isomorphic

to the usual Morse complex of h, hence to a homomorphism (of unital rings)

(6.10) H∗(M ;K) −→ SH∗(M).

Secondly, each periodic orbit of R∂M (this includes iterates of a prime periodic orbit) gives

rise to a pair of generators (of different mod 2 degrees). Of course, this is far from a complete

description of symplectic cohomology, since we have not said anything about the differential,

which involves pseudo-holomorphic curves. However, it is still fair to say that closed Reeb

orbits are the primary ingredient (in fact, symplectic cohomology was originally introduced

as a tool to study Reeb dynamics).

Open symplectic mapping tori

We have discussed the symplectic mapping torus construction for closed symplectic manifolds

in Lecture 5. There is a variant which is suitable for the Liouville case. Namely, given a

Liouville manifoldM and a Liouville automorphism ψ, with its compactly supported function

k satisfying ψ∗θM = θM + dk, define

(6.11)

E = R2 ×M/(p, q, x) ∼ (p, q − 1, ψ(x)),

θE = p dq + θM + d(q k(x)),

ωE = dθE = dp ∧ dq + ωM ,

which is again a Liouville manifold. It is a general fact that symplectic cohomology splits

into a direct sum of pieces indexed by connected components of the free loop space. In
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particular, one can write

(6.12) SH ∗(E) =
⊕
k∈Z

SH ∗(E)(k),

where k measures the degree of loops after projection E → R × S1. Then, there is a long

exact sequence

(6.13) · · · → SH ∗(E)(0) −→ SH ∗(M)
id−ψ∗−−−−→ SH ∗(M)→ · · ·

This closely related to the results of [140], and can be thought of as the Floer-theoretic

analogue of the classical (topological) long exact sequence

(6.14) · · · → H∗(E) −→ H ∗(M)
id−ψ∗−−−−→ H∗(M)→ · · ·

Lemma 6.14. SH ∗(E) vanishes if and only if SH ∗(M) does.

Proof. If SH ∗(M) vanishes, so does SH ∗(E)(0). But for general reasons, the unit

element of SH ∗(E) must lie in that summand. In converse direction, if SH ∗(M) is nonzero,

then its unit element lies in the kernel of id − ψ∗, and hence SH ∗(E)(0) 6= 0. �

One does not expect ψ∗ : SH ∗(M)→ SH ∗(M) to carry a lot of information about ψ. As a

concrete example:

Conjecture 6.15. Suppose that dim(M)/2 is even, and let τL be the Dehn twist along a

Lagrangian sphere. Then, τ2
L acts as the identity on SH ∗(M).

Hence, SH ∗(E)(0) should mostly reflect the symplectic topology of M , rather than that of

ψ. The other summands SH ∗(E)(k), k 6= 0, are much more interesting, and provide a rich

tool for studying open symplectic mapping tori. This can be motivated by looking at the

underlying Reeb dynamics, which turns out to be related to the dynamics (fixed points,

periodic points) of ψ.

Nonstandard Liouville structures

We continue our discussion of open mapping tori. For simplicity, let’s suppose from now on

that M is simply-connected. In that case, projection yields an isomorphism

(6.15) π1(E) ∼= π1(R× S1) = Z.

Think of E and M as completions of Liouville domains Etrunc and M trunc . Let’s suppose

that ψ is compactly supported, and in fact comes from a symplectic automorphism of M trunc

which is the identity near the boundary. One can construct Etrunc so that it contains a piece

[−1, 1] × S1 × ∂M trunc , with the product contact structure. Then, to a point x ∈ ∂M trunc

one can associate an isotropic loop {0}× S1 ×{x} in ∂Etrunc , which generates (6.15). Let’s

assume that ∂M trunc is connected. Then, the isotopy class of that loop is independent of all

choices. We attach a subcritical Weinstein handle to it, and then complete the result to a

simply-connected Liouville domain N .
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Lemma 6.16. If SH ∗(M) 6= 0, then SH ∗(N) 6= 0.

Proof. In dimensions > 4, Theorem 6.12 ensures that SH ∗(N) ∼= SH ∗(E). This fails

in dimension 4, but Viterbo functoriality at least ensures that if SH ∗(E) 6= 0, then also

SH ∗(N) 6= 0. Applying Lemma 6.14 completes the argument. �

Example 6.17 (Adapted from [134]). Suppose that n > 2 is even. Consider the affine

hypersurface

(6.16) M = {x2
1 + · · ·+ x2

n−1 + x3
n = 1} ⊂ Cn.

This is the Milnor fibre of the (A2) singularity. Its only nontrivial homology group is

(6.17) Hn−1(M) ∼= Z2, with intersection pairing

(
0 −1

1 0.

)
In fact, there are two embedded Lagrangian spheres L1, L2 ⊂ M (vanishing cycles) which

represent generators of (6.17), and whose intersection number is L1 ·L2 = 1. The existence

of these has two consequences. First of all, each sphere gives rise to Viterbo restriction map

SH ∗(M) → SH ∗(T ∗Sn−1), which shows that SH ∗(M) 6= 0. Secondly, by using the Dehn

twists along both spheres, one can every matrix in SL2(Z), which means every automorphism

of (6.17), is represented by an automorphism ψ of M .

(6.18) ψ∗ =

(
0 1

−1 1

)
,

then id − ψ∗ is invertible, which by (6.14) implies that E has the integer homology of S1.

After attaching a two-handle as explained above, we get a contractible Liouville manifold M

of dimension 2n. That manifold also carries an exhausting Morse function whose critical

points all have index ≤ n. It is therefore simply-connected at infinity, and the h-cobordism

theorem applies, showing that it is diffeomorphic to R2n. On the other hand, the symplectic

cohomology of the Milnor fibre M is nonzero (this follows from Viterbo functoriality, because

M contains an exact Lagrangian sphere). Hence, SH ∗(N) 6= 0 by Lemma 6.16, which implies

that N is not symplectically isomorphic to standard R2n.

In [134], a version of this construction was used to show that there are infinitely many non-

isomorphic Liouville manifolds which are diffeomorphic to R2n, for any n > 2. This still uses

symplectic cohomology, but involves a closer analysis of the spaces SH ∗(E)(k), k 6= 0, which

we will not describe here.

Symplectic fibrations over surfaces

Suppose that we have a Liouville manifold M , together with compactly supported Liouville

automorphisms ψ1, . . . , ψg. Take a once-punctured genus g surface S, and recall that

(6.19) π1(S) = 〈α1, β1, . . . , αg, βg〉

is a free group. Let E be the locally trivial symplectic fibration of S with fibre M , whose

monodromy around the αi is ψi, and with trivial monodromy around the βi. In particular,
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the monodromy around the puncture is again trivial, since a small loop around it is conjugate

to [α1, β1] · · · [αg, βg]. One can make S, and then as before also E, into a Liouville manifold.

Note that the structure of E at infinity depends only on M and g, and not on the choice

of the ψi (if one cuts E down to a Liouville domain Etrunc , then the same would hold for

the contact structure on ∂Etrunc). Finally, π1(E) is large since (assuming M connected) it

surjects onto π1(S), but one could kill the fundamental group by attaching two-dimensional

Weinstein handles. As before, let’s denote the result of this process by N .

One can write

(6.20) SH ∗(E) = SH ∗(E)(0) ⊕ SH ∗(E)(1) ⊕ · · ·

where the (0) summand correspond to loops which project to contractible loops in S, and

the (k) summand for k > 0 corresponds to loops which project to a loop going k times

clockwise around the puncture (the other components of the free loop space contribute zero

to symplectic cohomology). Then,

(6.21) SH ∗(E)(k) ∼= H∗(S1;K)⊗ SH ∗(M) for k > 0.

For the remaining summand in (6.20), there is an analogue of (6.13), namely a long exact

sequence

(6.22) · · · → SH ∗(E)(0) −→ SH ∗(M)
(id−ψ∗1 ,...,id−ψ

∗
g ,0,...,0)

−−−−−−−−−−−−−−−−→ SH ∗(M)⊕2g → · · ·

Bearing in mind Conjecture 6.15 and related ideas, one finds that SH ∗(E) only contains a

limited amount of information about ψ1, . . . , ψg. Of course, there are more sophisticated

symplectic invariants (notably, ones coming from Symplectic Field Theory), but still, the

study of such Liouville manifolds E (or N) remains a challenging issue. In the case g = 1,

one can compactify S to a torus, and correspondingly partially compactify E; that brings

one into a situation similar to that from Lecture 5, potentially allowing ideas of flux and

non-Hamiltonian isotopies to come into the picture. However, this approach can’t be applied

to N .
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Background





LECTURE 7

Homological algebra

Out of the many available frameworks for “chain level categories”, we choose to work with

the version based on Stasheff’s A∞-algebras [189], mainly because of its natural occurrence

in symplectic topology. The motivation for, and history of, A∞-categories is interesting

in itself, but outside our scope. We will not even fully reproduce the definitions (there

are many available references, among them [106, 120, 176, 108, 116, 28]), but only

say enough to fix the notation and conventions. Among other things, we will mention the

notion of smoothness for A∞-categories, since that has turned out to be important in the

development of noncommutative algebraic geometry. As a reprieve from the steady stream

of basic definitions, we briefly consider growth issues for iterated convolution functors.

First notions

Fix a coefficient field K. An A∞-category A consists of a set (all our categories are small)

of objects Ob(A); morphism spaces homA(X,Y ) which are Z-graded vector spaces; and

composition maps

(7.1) µdA : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1) −→ homA(X0, Xd)[2− d] for d ≥ 1,

satisfying the A∞-associativity equations. Our sign conventions follow [176], so that the

third of these equations (the one that most deservedly bears the name) can be written as

(7.2)
µ2
A(a3, µ

2
A(a2, a1))− (−1)|a1|µ2

A(µ2
A(a3, a2), a1) = −µ1

A(µ3
A(a3, a2, a1))

− (−1)|a1|+|a2|µ3
A(µ1

A(a3), a2, a1) + (−1)|a1|µ3
A(a3, µ

1
A(a2), a1)− µ3

A(a3, a2, µ
1
A(a1)).

The associated cohomological category H(A) has the same objects; it has morphisms

(7.3) HomH(A)(X,Y ) = H∗(homA(X,Y ), µ1
A);

and compositions induced by µ2
A, more precisely

(7.4) [a2] · [a1] = (−1)|a1|[µ2
A(a2, a1)].

We always require that H(A) should have identity morphisms (equivalently, one says that

A is cohomologically unital), hence is a linear graded category in the classical sense of the

word. One can also use the subcategory H0(A) which only contains degree 0 morphisms. We

say that two objects X,Y of A are quasi-isomorphic if they become isomorphic in H0(A).

A little more generally:

63
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Definition 7.1. We say that X is a homotopy retract of Y if it becomes a retract in H0(A).

This means that there are closed degree 0 morphisms ρ ∈ homA(Y,X) and ι ∈ homA(X,Y ),

such that µ2
A(ρ, ι) is homologous to the identity of X (in more algebraic language, one could

say “homotopy direct summand” instead of “homotopy retract”).

Definition 7.2. We say that X is dependent on Y if the composition

(7.5) H0(homA(Y,X))⊗H0(homA(X,Y )) −→ H0(homA(X,X))

is onto, or equivalently contains the identity in its image. If A admits finite direct sums,

this means that X is a homotopy retract of a finite direct sum of copies of Y .

The notion of A∞-category is complemented by that of A∞-functor F : A → B. Such a

functor consists of the action on objects, together with maps

(7.6)

Fd : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1) −→ homB(F(X0),F(Xd))[1− d] for d ≥ 1,

satisfying an appropriate homomorphism equation (a polynomial condition on the Fd). The

leading order term F1 induces a graded linear functor H(F) : H(A)→ H(B). One uses that

to define quasi-isomorphism and quasi-equivalence for A∞-categories, in the obvious way.

A∞-functors from A to B themselves form an A∞-category fun(A,B). A significant fact is

the following:

Lemma 7.3. Let F : A → B be a quasi-equivalence. Then there is a quasi-equivalence

G : B → A such that G ◦ F is quasi-isomorphic to the identity in fun(A,A), and F ◦ G is

quasi-isomorphic to the identity in fun(B,B). �

Some comments and variations on the basic definitions:

• An A∞-algebra is the same as an A∞-category with one object (and A∞-functors

then specialize to A∞-homomorphisms).

Here is a slight extension, which can sometimes be useful. For any m ≥ 1, consider

the semisimple ring R = Km = Ke1 ⊕ · · · ⊕Kem (with e2
i = ei, eiej = 0 for i 6= j).

Then, an A∞-algebra over R is the same as an A∞-category with m ordered objects

(X1, . . . , Xm). Explicitly, if A is an A∞-algebra over R, one turns it into an A∞-

category by taking ejAei to be the space of morphisms Xi → Xj .

• A∞-categories make sense with Z/N -gradings for any even N (and even for odd

N if char(K) = 2). Nevertheless, the Z-graded version remains our default choice,

since it relates more readily to established intuition from homological algebra.

• Any dg (differential graded) category A becomes an A∞-category by setting

(7.7) µ1
A(a) = (−1)|a|da, µ2

A(a2, a1) = (−1)|a1|a2a1, µdA = 0 for d ≥ 3.

We will carry out this conversion tacitly, and just consider dg categories as a spe-

cial case of A∞-categories. A frequently example is the dg category Ch of chain

complexes of K-vector spaces.
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• In converse direction, any A∞-category is quasi-isomorphic to a dg category. One

place where this is convenient is when defining the tensor product A ⊗ B of A∞-

categories. It is possible to approach this directly, but that requires some choice of

diagonals, leading to explicit but lengthy combinatorial formulae [165]. However,

the situation is straightforward if one of the two factors is a dg category, and one

can always reduce to that up to quasi-isomorphism.

• For functors, any dg functor between dg categories gives rise to an A∞-functor. In

converse direction, given any A∞-functor F : A → B between dg categories, one

can construct a diagram

(7.8) B̃

A
F

//

F̃

??

B

G

'

__

which commutes up to quasi-isomorphism in fun(A, B̃); and where B̃ is a dg cat-

egory, F̃,G are dg functors, and G is a quasi-equivalence. Hence formally F is the

“fraction” G−1F̃. There is a similar statement with a “right fraction” instead of a

left one.

• One says that A is strictly unital if every object X has an endomorphism eX ∈
hom0

A(X,X) such that

(7.9)
µ1
A(eX) = 0, µ2

A(a, eX) = a, µ2
A(eX , a) = (−1)|a|a,

µdA(ad, . . . , a1) = 0 for any d > 2, if ai = eX for some i.

Any A∞-category is quasi-isomorphic to a strictly unital one, and sometimes strict

unitality can simplify the formulation of certain constructions. If A,B are strictly

unital, one can consider strictly unital A∞-functors between them. Such functors,

and the corresponding notion of strictly unital A∞-transformations, form an A∞-

subcategory which is quasi-equivalent to the whole of fun(A,B).

• A is called minimal if µ1
A = 0. Any A∞-category is quasi-isomorphic to a minimal

one, by the Perturbation Lemma.

• We say that A is proper if each space (7.3) is of finite total dimension.

• Assume that char(K) = 0. A strictly cyclic A∞-category of dimension n ∈ Z is a

strictly proper A∞-category together with nondegenerate pairings

(7.10)
〈·, ·〉 : hom∗A(Y,X)⊗ homn−∗

A (X,Y ) −→ K,

〈a1, a2〉 = (−1)(|a2|−1)(|a1|−1)+1〈a2, a1〉,

such that the expressions ξd+1(ad+1, . . . , a1) = 〈ad+1, µ
d
A(ad, . . . , a1)〉 are cyclically

symmetric with appropriate signs:

(7.11) ξd+1(ad, . . . , a1, ad+1) = (−1)(|ad+1|−1)(|a1|+···+|ad|−d)ξd+1(ad+1, . . . , a1).



66 7. HOMOLOGICAL ALGEBRA

A better notion of cyclicity, which requires only properness, was introduced in

[116, Section 10]. Every A∞-category which is cyclic in the sense defined there is

quasi-equivalent to a strictly cyclic one.

Twisted complexes

Any A∞-category A has a canonical enlargement Atw , the category of twisted complexes,

which allows shifts and mapping cones. It is best to introduce this in two steps. First,

consider the additive enlargement A⊕, whose objects are formal sums

(7.12) C =
⊕
i∈I

Wi ⊗Xi

over some finite set I, with finite-dimensional graded vector spaces Wi, and objects Xi of

A. The morphisms are matrices whose entries combine linear maps of vector spaces and

morphisms of the constituent objects in A. The A∞-structure is similarly inherited from A.

Now, a twisted complex is a pair (C, δC), where C is as in (7.12) and the differential is an

element δC ∈ hom1
A⊕(C,C), which explicitly means

(7.13) δC = (δC,ij), δC,ij ∈
(

Hom(Wj ,Wi)⊗ homA(Xj , Xi)
)1

.

There are two additional conditions. First, C must admit a finite filtration by subobjects

in A⊕, with respect to which δC is strictly lower-triangular. Secondly, δC must satisfy a

Maurer-Cartan type equation. Morphism spaces in Atw are the same as in A⊕, but the

A∞-structure comes with additional insertions of the differential.

Example 7.4. Given a ∈ hom0
A(X0, X1) which is closed, µ1

A(a) = 0, one can define its

mapping cone

(7.14) C = X0[1]⊕X1, δC =

(
0 0

a 0

)
,

which is a twisted complex. Here, the shift operation X0[1] means K[1]⊗X0 (where K[1] is

the one-dimensional vector space placed in degree −1).

Using a more general construction of mapping cones, one equips the category H0(Atw ) with

a triangulated structure in the classical sense. We denote this category by Dtw (A). It is one

of the versions of the “derived category of an A∞-category” (the word derived is probably

inappropriate, since no localisation takes place, but by now well-established in the literature).

Modules

A (right) A∞-module M is a collection of graded vector spaces M(X), X ∈ Ob(A), together

with operations

(7.15) µ1;d
M : M(Xd)⊗ homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1) −→M(X0)[1− d], d ≥ 0,
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satisfying a suitable associativity equation. We always assume that M is cohomologically

unital, hence induces a module H(M) over H(A). Such A∞-modules form a dg category

Amod . In comparison with classical module categories, the bar resolution is built into the def-

inition of morphisms in Amod , which in particular leads to the following statement (showing

that the two possible definition of “quasi-isomorphism of A∞-modules” are equivalent):

Lemma 7.5. If a closed morphism M → N induces an isomorphism H(M) → H(N), it is

an isomorphism in H0(Amod). �

Due to the presence of mapping cones, the category H0(Amod) is again triangulated; we

denote it by Dmod(A). Additionally, this category is idempotent closed (also called Karoubi

complete). This means that, given an A∞-module M and an idempotent endomorphism [π] ∈
H0(homAmod (M,M)), there is another A∞-module which is the corresponding homotopy

retract. There is a cohomologically full and faithful A∞-functor, the Yoneda embedding

(7.16) A −→ Amod .

Concretely, this maps an object Y to the module M = Y yon with M(X) = homA(X,Y ),

and with the A∞-module structure induced from the A∞-structure of A. One can extend

(7.16) to twisted complexes, either by writing down the resulting modules explicitly, or more

conceptually through the following diagram:

(7.17) A
inclusion //

Yoneda

��

Atw

Yoneda

��vv
Amod (Atw )mod

restriction
oo

Some additional remarks:

• There is a notion of opposite A∞-category Aopp , and in these terms A∞-modules

can be defined as functors into chain complexes:

(7.18) Amod ∼= fun(Aopp ,Ch) ∼= fun(A,Chopp).

Similarly, left A∞-modules (which we had not mentioned so far, but which of course

are perfectly sensible) would be functors from A itself to Ch.

• If A is a dg category, every dg module is an A∞-module. In general, the spaces

of dg module morphisms differ from those of A∞-module homomorphisms, since

the latter come “already derived”. More concretely, if M is K-projective in the

sense of [27] then the dg and A∞-versions of hom(M,−) are quasi-isomorphic. In

converse direction, every A∞-module is quasi-isomorphic to a dg module.

• If A is strictly unital, one can define the notion of strictly unital A∞-module, and

strictly unital homomorphisms between such modules. This yields a dg subcategory

which is quasi-equivalent to the whole of Amod .
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• If A is minimal, one can consider A∞-modules M which are themselves minimal,

meaning that µ1
M = 0. Every A∞-module is quasi-isomorphic to a minimal one.

• An A∞-module M is called proper if the cohomology groups H(M(X)) are of finite

total dimension for all X. Such modules form a full subcategory Aprop ⊂ Amod .

• An A∞-module is called perfect if it is a homotopy retract of the Yoneda image of

a twisted complex. Perfect modules form a full subcategory Aperf . By definition,

every perfect complex can be constructed by starting from objects of A (or rather,

their Yoneda images) and taking shifts, mapping cones, and homotopy retracts. In

particular, if A is proper then so is Aperf . We write Dperf (A) = H0(Aperf ).

Lemma 7.6. If M is perfect and N is proper, then H∗(homA(M,N)) is of finite (total)

dimension.

Proof. Suppose first that M = Xyon is the Yoneda image of some X ∈ Ob(A). Then

there is a canonical quasi-isomorphism

(7.19) N(X)
'−→ homAmod (M,N).

The general case is derived from that by going through the construction steps mentioned

above (shifts, mapping cones, and homotopy retracts). �

Example 7.7. Take a trivial example, the A∞-category K (with a single object, and only

multiples of the identity as endomorphisms). Then, the cohomologically full and faithful

embeddings

(7.20) Ktw −→ Kperf −→ Kprop

are all equivalences. Indeed, any finite-dimensional chain complex of vector spaces can be

made into an object of Ktw ; on the other hand, a strictly unital proper A∞-module over K is

the same as a chain complex of vector space with finite-dimensional (total) cohomology; and

the two resulting dg categories of chain complexes are themselves quasi-equivalent. Similarly,

the strictly unital version of Kmod is the dg category of (arbitrary) chain complexes of vector

spaces.

Bimodules

Let A and B be A∞-categories. An (A,B)-bimodule Q consists of graded vector spaces

Q(X,Y ) for all (X,Y ) ∈ Ob(B)×Ob(A), together with operations

(7.21)
µs;1;r
Q : homA(Ys−1, Ys)⊗ · · · ⊗ homA(Y0, Y1)⊗Q(Xr, Y0)

⊗ homB(Xr−1, Xr)⊗ · · · ⊗ homB(X0, X1) −→ Q(X0, Ys)[1− r − s], r, s ≥ 0

satisfying an appropriate bimodule equation, and as before, a unitality condition on the

cohomology level. A∞-bimodules form a dg category (A,B)mod .
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Arguably the most important use of bimodules is through their action on modules. Any

bimodule Q gives rise to an A∞-functor (sometimes called “convolution”)

(7.22) ΦQ : Amod −→ Bmod , ΦQ(M) = M ⊗A Q.

Of course, bimodules themselves admit a tensor product, which corresponds to the compo-

sition of convolution functors. We refer to [200, 174] for more details.

Some examples and comments:

• A itself is an (A,A)-bimodule (called the “diagonal bimodule”). More precisely, the

structure maps of the diagonal bimodule are related to the A∞-category structure

of A by

(7.23) µs;1;r
A (a′′s , . . . , a

′′
1 ; a; a′r, . . . , a

′
1) = (−1)|a

′
1|+···+|a

′
r|−r+1µs+1+r

A (a′′s , . . . , a, a
′
r, . . . , a

′
1)

Tensor product with A yields a functor which is quasi-isomorphic to the identity,

but not strictly equal to it (one of the less fortunate aspects of the definition of

tensor product).

• To any A∞-functor F : A→ B one can associate a (A,B)-bimodule Q = Graph(F),

called the graph of F. One can view this as the result of pulling back the diagonal

bimodule of B by F on the left hand side only. Explicitly,

(7.24)
Q(X,Y ) = homB(X,F(Y )),

µs;1;r
Q (as, . . . , a1; q; br, . . . , b1) =

∑
(−1)|b1|+···+|br|+r−1µr+1+k

B (Fik(as, . . . , as−ik+1),

. . . ,Fi1(ai1 , . . . , a1), q, br, . . . , b1),

where the sum is over all partitions i1 + · · ·+ ik = s. Convolution with Q fits into

a diagram (commutative up to quasi-isomorphism of A∞-functors)

(7.25) A

Yoneda

��

F // B

Yoneda

��
Amod

ΦQ

// Bmod .

This shows how bimodules can be thought of as generalization of functors.

• If R is a B-module, and L a left A-module, one can define an (A,B)-bimodule

Q = L⊗R by

(7.26) Q(X,Y ) = L(Y )⊗R(X)

with operations µs;1;0
Q and µ0;1;r

Q inherited from L and R, respectively, and all other

operations set to zero. The associated convolution functor takes any module M to

(M ⊗A L)⊗R, where M ⊗A L is just a chain complex.
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• If A and B are strictly unital, one can define a dg category of strictly unital (A,B)-

bimodules, which as usual turns out to be quasi-equivalent to (A,B)mod .

• Properness for bimodules is defined exactly as for modules.

• If Q is a bimodule, then for any fixed object Y it yields a module Q(−, Y ). Equiva-

lently up to quasi-isomorphism, this module can be thought of as the tensor product

(7.27) Q(−, Y ) ' Y yon ⊗A Q.

We say that Q is right perfect if Q(−, Y ) is a perfect module for each Y . For such

bimodules, ΦQ maps Aperf to Bperf , which is easy to see from (7.27). All graph

bimodules are right perfect.

• Even though we have not defined them as such, (A,B)-bimodules are the same,

up to quasi-equivalence of dg categories, as modules over Aopp ⊗B. In particular,

there is a Yoneda embedding

(7.28) Aopp ⊗B −→ (A,B)opp .

Up to quasi-isomorphism, this maps a pair (X,Y ) of objects to the tensor product

of Yoneda modules Xyon ⊗ Y yon , in the sense of (7.26) (here Xyon is the right

Yoneda module over Aopp , which means the left Yoneda module for A).

One can extend (7.28) to (Aopp ⊗ B)tw , and that is used to define the notion of

perfect bimodule, just as in the module case. If Q is perfect, then ΦQ maps proper

modules to perfect modules.

Example 7.8. The dual diagonal bimodule A∨ is the bimodule with

(7.29) A∨(X,Y ) = homA(Y,X)∨,

and with bimodule operations obtained (roughly speaking) by partially dualizing µr+1+s
A . Sup-

pose that A is proper. Then

(7.30) ΦA∨ : Aperf −→ Aprop

is a cochain level implementation of the Serre functor for perfect modules. This means that

if P and Q are perfect modules, then

(7.31) H∗(homAmod (P,ΦA∨(Q))) ∼= H∗(homAmod (Q,P ))∨

functorially in both P and Q. For instance, if A is strictly cyclic of dimension n, in the

sense introduced above, then

(7.32) A∨ ∼= A[n],

which means that the Serre functor is quasi-isomorphic to the n-fold downwards shift. In

fact, one often uses the existence of a quasi-isomorphism (7.32) as a weak replacement for

cyclicity. Let’s call A∞-categories for which such a quasi-isomorphism exists weakly cyclic
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of dimension n (we are trying to avoid the word “Calabi-Yau” since it has acquired several

different connotations).

Smoothness

The last-mentioned class of bimodules leads to a nontrivial property of A∞-categories:

Definition 7.9. A is smooth if the diagonal bimodule is perfect.

If that is the case, the functor ΦA, which is quasi-isomorphic to the identity, maps proper

modules to perfect ones. Hence, over a smooth A∞-category, every proper module is perfect.

As a consequence of that and Lemma 7.6, the space of (cohomology level) morphisms between

two proper morphisms is finite-dimensional.

Example 7.10. Consider the coordinate ring of an affine algebraic variety over C. This

is an algebra, hence a fortiori an A∞-algebra. It is smooth if and only if the variety is

smooth in the ordinary geometric sense (this follows from the classical homological criterion

for regularity of local rings).

Example 7.11. Take an A∞-category A with a finite ordered set of objects, say (X1, . . . , Xm).

We say that A is directed if it is strictly unital and

(7.33) homA(Xi, Xj) =


0 i > j,

K eXi i = j,

finite-dimensional i < j.

Directed A∞-categories are proper by definition, and they are also always smooth. In fact,

the diagonal bimodule is a twisted complex over Aopp ⊗A, in a canonical way (the prototype

for this was Beilinson’s resolution of diagonals for coherent sheaves on projective space). As

a consequence, Atw , Aperf , Aprop are all quasi-equivalent.

Example 7.12. Take an A∞-category in which the only morphisms are multiples of the

identity endomorphisms of the objects. If the set of objects is finite, this is a trivial kind of

directed A∞-category. However, if that set is infinite, the category is not smooth.

A∞-categories which are proper and smooth have received considerable attention, as a pos-

sible fruitful framework for noncommutative algebraic geometry. There are sophisticated

results about modules over such a category, as well as the “moduli space” of such categories

itself [197, 196]; and there are even deeper issues, which aim at Hodge theory and a theory

of motives in the noncommutative context [98].

Iterated convolution

Let A be an A∞-algebra, and P a perfect A-module. By definition, P can be built (up to

quasi-isomorphism) by starting with a finite number of shifted copies of the free module A,
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then combining and modifying these copies by mapping cones and homotopy retracts. Define

the size ‖P‖ to be the minimal number of initial copies of A needed for this construction.

For instance, ‖P‖ = 0 iff P is quasi-isomorphic to zero; ‖P‖ ≤ 1 if and only if P is a

homotopy retract of A[k] for some k ∈ Z; and ‖P‖ ≤ 2 if and only if P is a homotopy retract

of the mapping cone of a map A[k] → A[l]. We then have the following easy quantitative

refinement of Lemma 7.6:

Lemma 7.13. Let P be a perfect module, and M a proper module. Then

(7.34) dimH∗(homAmod (P,M)) ≤ ‖P‖ · dimH∗(M).

�

Lemma 7.14. Let P be a perfect module, and Q a bimodule which is right perfect. Then

(7.35) ‖ΦQ(P )‖ ≤ ‖P‖ · ‖Q‖.

Proof. Since P can be built starting from ‖P‖ copies of A, ΦQ(P ) = P ⊗A Q can be

built starting from ‖P‖ copies of ΦQ(A) ' Q. But each of these copies of Q can be built

from ‖Q‖ copies of A. �

One can apply this to the iterated tensor product Q⊗Ak = Q ⊗A · · · ⊗A Q, and see that

‖Q⊗Ak‖ ≤ ‖Q‖k for all k ≥ 0. Combining this with Lemma 7.13 yields

(7.36) dimH∗(homAmod (P ⊗A Q⊗Ak,M)) ≤ ‖P‖ · ‖Q‖k · dimH∗(M).

Suppose that A is proper. Then one clearly has dimH∗(Q) ≤ ‖Q‖ · dimH∗(A), hence the

dimension of H∗(Q⊗Ak) grows at most exponentially in k. Moreover, if A is proper and

smooth, there is a constant C = C(A) such that

(7.37) dimH∗(hom(A,A)mod (A, Q⊗Ak)) ≤ C ‖Q‖k.

Quotients

Let A be an A∞-category and B ⊂ A a full subcategory. By a quotient A∞-category we

mean an A∞-category C together with an A∞-functor F : A→ C such that:

• Any object of C is quasi-isomorphic to one in the image of F (essential surjectivity).

• The image of any object of B under F is quasi-isomorphic to zero (passage to C

kills B).

• Given any other A∞-category D, composition with F yields an A∞-functor

(7.38) · ◦F : fun(C,D) −→ fun(A,D)

which is cohomologically full and faithful, and whose image up to quasi-isomorphism

is the subcategory of functors A→ D which kill B.



QUOTIENTS 73

It is easy to see that the pair (C,F) is essentially unique, so we will usually just write

C = A/B. The existence of quotients was first established by Keller [105]; alternative

constructions were given in [62, 126].

Example 7.15 (Taken from [62]). Suppose that A is a dg category. Define C as a dg category

with Ob(C) = Ob(A), and

(7.39)

homC(X,Y ) = homA(X,Y )

⊕
⊕

Z0∈Ob(B)

homA(Z0, Y )⊗ homA(X,Z0)[1]

⊕
⊕

Z0,Z1∈Ob(B)

homA(Z1, Y )⊗ homB(Z0, Z1)⊗ homA(X,Z0)[2]

⊕ · · ·

The differential combines the given ones on each homA space with composition (as in the

classical bar construction). In particular, if X ∈ Ob(B), then the identity endomorphism of

X becomes nullhomologous in C, because it lies in the image of the composition homB(X,X)⊗
homB(X,X)→ homB(X,X).

Example 7.16. For any proper A∞-category, one has Aperf ⊂ Aprop. Define the singular

derived category of A to be the cohomological category associated to Aprop/Aperf . This is a

more abstract version of the basic definitions from [42, 147].

We want to consider the computation of morphism spaces in quotient categories. Start with

(7.39), which can be written more succinctly as

(7.40) homA/B(X,Y ) ' Cone
(
Y yon ⊗B Xyon −→ homA(X,Y )

)
.

Here Y yon is the Yoneda module which we then restrict to B; Xyon is the same thing with

left modules; and the tensor product is that of A∞-modules over B (while the discussion

in Example 7.15 was for dg categories, the general case follows by quasi-isomorphism). In

parallel with the use of resolutions in classical homological algebra, there are cases when

(7.40) simplifies further. To formulate the problem in general, take Y ∈ Ob(A), map it to

A/B, take the associated Yoneda module in (A/B)mod , and then pull that back to Amod ,

denoting the result by Ȳ yon . By construction,

(7.41) Ȳ yon(X) = homA/B(X,Y )

and the A∞-module structure of Ȳ yon expresses the functoriality of (7.41) in X ∈ Ob(A).

Lemma 7.17. Suppose that the object Y has the property that H∗(homA(X,Y )) = 0 for all

X ∈ Ob(B). Then Ȳ yon is quasi-isomorphic to the ordinary Yoneda module Y yon , and in

particular H∗(homA/B(X,Y )) ∼= H∗(homA(X,Y )) for any X.

This follows from (7.40) since the Yoneda module of Y restricts to an acyclic module over

B. Actually, it serves only a warmup for the following more general:

Lemma 7.18. Suppose that there is a sequence of objects and morphisms in H0(A),

(7.42) Y = Y0
[t1]−−→ Y1

[t2]−−→ Y2 −→ · · ·
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with the following properties:

• For each k, Cone(tk)inOb(Atw ) is quasi-isomorphic to an object of Btw .

• For any X ∈ Ob(B) we have lim−→kH
∗(homA(X,Yk)) = 0.

Then Ȳ yon is quasi-isomorphic to the homotopy direct limit of the sequence

(7.43) Y yon
0 −→ Y yon

1 −→ Y yon
2 · · ·

In particular, H∗(homA/B(X,Y )) ∼= lim−→k H
∗(homA(X,Yk)).

Without loss of generality, we may assume that A is strictly unital. The homotopy direct

limit is defined via the telescope construction, which one can describe as follows. Replace

Yk by the quasi-isomorphic twisted complex Ck indicated by the following diagram:

(7.44) Y0 Y1 · · · Yk−1 Yk

Y0[1]

−eY0

OO

t1

CC

Y1[1]

−eY1

OO DD

· · · Yk−1[1]

−eYk−1

OO

tk

CC

Then, the [tk] correspond to inclusions Ck−1 ↪→ Ck. There are corresponding inclusions of

the Yoneda complexes, and the homotopy direct limit is the union

(7.45) M = lim−→k C
yon
k .

Now if one similarly considers the expressions

(7.46) Cone
(
Cyon
k ⊗B Xyon −→ homAtw (X,Ck)

)
there are inclusions of the (k−1)-st one into the k-th one, and the first assumption in Lemma

7.18 says that the inclusions are all quasi-isomorphisms. One can therefore pass to the limit

and consider

(7.47) Cone
(
M ⊗B Xyon −→M(X)

)
.

The second Assumption in the Lemma says that M becomes acyclic when restricted to B,

hence (7.47) is quasi-isomorphic toM(X). To summarize, we have shown that homA/B(X,Y )

is quasi-isomorphic to M(X). One can realize this quasi-isomorphism as the leading order

term of an A∞-module map Ȳ yon 'M , which is the desired statement.

Via mapping cones, quotients can also be used to define the localisation of A with respect

to a set of morphisms S = {S(X0, X1)}, S(X0, X1) ⊂ H0(homA(X0, X1)). Namely:

Definition 7.19. Let B ⊂ Atw be the full A∞-subcategory consisting of mapping cones over

elements of S. Then, S−1A is defined to be the image of A under A→ Atw → Atw/B.
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Hochschild homology

Following [104, 187], let’s consider the idea of a homology theory for A∞-categories. The

discussion here is only partly formalized: we start with a reasonable-looking list of properties

for such a theory, and extract some useful consequences (for readers interested in a more

systematic discussion, one possible approach is [191]). In any case, we ultimately have a

single specific such theory in mind, namely Hochschild homology, and the axiomatic approach

is just one way to understand its role while keeping computations to a minimum.

First properties

We again work over a fixed field K. Let’s say that a homology theory H∗ should associate to

anA∞-category A a graded vector space H∗(A), which is functorial underA∞-functors. More

precisely, quasi-isomorphic A∞-functors should induce the same map, which in particular

implies that H∗(A) is invariant under quasi-equivalences. We require the following basic

properties:

• (Morita invariance) The Yoneda embedding A → Aperf induces an isomorphism

H∗(A) ∼= H∗(Aperf ).

• (Künneth formula) There is a canonical isomorphism H∗(A⊗B) ∼= H∗(A)⊗H∗(B).

• (Opposite property) There is a canonical isomorphism H∗(Aopp) ∼= H∗(A).

• (Normalisation) There is a fixed isomorphism

(8.1) H∗(K) ∼=

{
K ∗ = 0,

0 ∗ 6= 0.

Moreover, for any P ∈ Ob(Kperf ) and its associated functor K → Kperf (see Ex-

ample 7.7, in which the notation used here is decoded), the induced map H∗(K)→
H∗(Kperf ) ∼= H∗(K) is multiplication with the Euler characteristic of P .

This formulation is internally incomplete, since there are various compatibility requirements

between these isomorphisms, which have not been stated explicitly; the single exception to

that is the normalisation property, in whose statement we have included a compatibility

requirement with Morita invariance, since that is particularly important for our purpose.

75
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As pointed out in [187], the properties above already yield the existence of a Chern character

for perfectA∞-modules. Namely, a P ∈ Ob(Aperf ) corresponds to anA∞-functor K→ Aperf ,

which induces a map K = H0(K) → H0(Aperf ) ' H0(A). We denote the image of 1 under

that map by

(8.2) [P ]H ∈ H0(A).

Because of functoriality, this is an invariant of the quasi-isomorphism class of P . Moreover,

passing from P to P [k] changes (8.2) by (−1)k, because of normalisation. Dually, given a

proper module M ∈ Ob(Aprop), which is an A∞-functor Aopp → Kprop ∼= Kperf , we get a

class

(8.3) [M ]∨H ∈ H0(A)∨ = Hom(H0(A),K).

If we compose the functors corresponding to P and M , the result is a functor K ∼= Kopp →
Kprop which maps the unique object of K to the chain complex homAmod (P,M). The in-

duced map on our homology groups can be described in two ways: as the canonical pairing

between (8.2) and (8.3); or directly in terms of the normalization property. Comparing these

two yields the following (which on one hand is almost a tautology, and on the other hand

important as a first version of a “Cardy relation”):

Lemma 8.1. For any perfect module P and proper module M ,

(8.4) 〈[M ]∨H, [P ]H〉 = χ
(
H∗(homAmod (P,M))

)
. �

Here is a slightly different perspective on the same construction. There is a natural A∞-

functor Aprop ⊗ (Aperf )opp −→ Kprop , which takes a pair (M,P ) to the chain complex

homAmod (P,M). This induces a pairing

(8.5) H∗(Aprop)⊗H∗(Aperf ) ∼= H∗(Aprop ⊗ (Aperf )opp) −→ H∗(Kprop) ∼= K.

Any proper module has an associated class [M ]H ∈ H0(Aprop). Under the pairing (8.5), the

image of that class is (8.3), and (8.4) is then obvious.

Consider the convolution functor ΦQ : Aperf → Bperf associated to a right perfect (A,B)-

bimodule. By Morita invariance, this induces a map

(8.6) H∗(ΦQ) : H∗(A) −→ H∗(B),

which depends only on the quasi-isomorphism type of Q, and is functorial under tensor

product of bimodules. If one takes Q to be the graph bimodule of an A∞-functor F : A→ B,

then (8.6) agrees with the map induced by F. Again, there is a universal viewpoint on this.

Write (A,B)r-perf ⊂ (A,B)mod for the full subcategory of bimodules which are right perfect.

Tensor product yields a map

(8.7) H∗(Aperf )⊗H∗((A,B)r-perf ) −→ H∗(Bperf ),

and the maps (8.6) are obtained by specializing this to a given class

(8.8) [Q]H ∈ H0((A,B)r-perf ).
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The smooth proper case

Let Q be an (A,B)-bimodule which is perfect. Then, one can improve on (8.8) and associate

to it a class

(8.9) [Q]H ∈ H∗(Aopp ⊗B) ∼= H∗(A)⊗H∗(B).

The action of ΦQ : Aprop → Bperf on H∗ is then given by contraction with (8.9), using (8.5),

hence has finite rank. We can apply this to the diagonal bimodule, and obtain the following:

Lemma 8.2 ([188]). Suppose that A is smooth. Then the map H∗(Aprop)→ H∗(A) induced

by inclusion Aprop → Aperf has finite rank. �

Let A be a proper A∞-category. Since any perfect module over A is proper, one can restrict

(8.5) to get a pairing

(8.10) (·, ·)H : H∗(A)⊗H∗(A) −→ K.

Theorem 8.3 ([187], where the result is attributed to Kontsevich-Soibelman). Suppose that

A is smooth and proper. Then H∗(A) is of finite total dimension, and (8.5) is nondegenerate.

Proof. Finite-dimensionality follows from the previous Lemma. For the second part,

we inspect more closely the argument given there, which says that the identity map on H∗(A)

factors as

(8.11) H∗(A)
[A]H⊗id−−−−−→ H∗(A)⊗H∗(A)⊗H∗(A)

id⊗pairing−−−−−−−→ H∗(A).

This immediately shows that the pairing is nondegenerate (on the left, and therefore also on

the right). �

Exactness and homotopy invariance

Some additional properties of a homology theory can be formulated by prescribing the value

it attains for specific examples of categories, generalizing the normalisation condition. Take

the following:

• (Weak exactness) Let A be a directed A∞-category with objects (X1, . . . , Xm).

Then H∗(A) ∼= Km, concentrated in degree zero.

The Yoneda modules associated to the objects Xi have classes (8.2). They are also proper,

hence have dual classes (8.3). By Lemma 8.1, the composition of the two resulting maps

(8.12) Km −→ H0(A) −→ Km

is given by the matrix with entries χ(homA(Xi, Xj)), which is invertible by directedness.

Hence, both maps in (8.12) are isomorphisms.

At this point, we need the definition of the Grothendieck group of an A∞-category: K0(A)

is the abelian group generated by classes [C]K for any C ∈ Ob(Atw ), with the relations
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[Cone(C1 → C2)]K = [C2]K − [C1]K (this implies that the classes of objects of A themselves

are already generators). It may be tempting to think of K0(A) itself as a homology theory,

but it does not satisfy Morita invariance: passage to idempotent completions (Karoubi com-

pletions) generally makes the Grothendieck group much larger, a phenomenon that has been

studied in depth [195].

Lemma 8.4. If H∗(·) has the weak exactness property, the assignment (8.2) defines a group

homomorphism K0(Aperf ) → H0(A). Similarly, (8.3) yields a map K0(Aprop) → H0(A)∨.

Finally, the maps (8.6) only depend on [Q]K ∈ K0((A,B)r-perf ). �

Proof. Consider first the simplest non-semisimple directed category. This category,

which we call A→2 , has two objects X1, X2 and a one-dimensional morphism space

(8.13) homA→2
(X1, X2) = K, concentrated in degree zero

(these properties, together with directedness, determine A→2 ). It is the universal model for a

morphism, in the following rather obvious way. Given any A∞-category A and a morphism

in H0(A), there is an A∞-functor (unique up to quasi-isomorphism) A2 → A which maps

the generator (8.13) to that morphism.

A simple Euler characteristic computation shows that the classes of the objects X1, X2 and

Cone(X1 → X2) in (A→2 )perf go to (1, 0), (1, 1) and (0, 1) under the second map in (8.12).

Since that map is an isomorphism, we have

(8.14) [Cone(X1 → X2)]H = [X2]H − [X1]H.

By the universal property, the same will hold for cones of morphisms in any A∞-category.

Applying that to Aperf proves the first statement; applying it Aprop and then using (8.5)

proves the second statement; and similarly with (A,B)r-perf and (8.7) for the last one. �

There is a somewhat stronger property one could require:

• (Exactness) Let B ↪→ A be a full A∞-subcategory, and A/B the quotient. Then

there is a long exact sequence

(8.15) · · · → H∗(B) −→ H∗(A) −→ H∗(A/B) −→ H∗+1(B)→ · · ·

This implies weak exactness, by an inductive argument: if A is directed and B ∼= K is

the full subcategory corresponding to the first object, then A/B is directed with one less

object than A. More importantly, (8.15) provides a link between the different degrees of H∗,
which had been conspicuously missing from our discussion so far. Note that even though

we use a subscript following standard notational conventions, our grading of H∗ is in fact

cohomological, as witnessed by the fact that the differential in (8.15) raises the degree.

So far, our discussion centered on what, in an analogy to the Eilenberg-Steenrod axioms,

would be a combination of excision and the long exact sequence. What about homotopy

invariance? The fact that quasi-isomorphic functors induce the same map on H∗(·) can be

taken as answering that, but there is also a totally different possible viewpoint:
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• (Homotopy invariance) For the polynomial algebra K[t] considered as an A∞-

algebra in the obvious way, the inclusion of constants K → K[t] induces an iso-

morphism on H∗(·).

However, it is doubtful whether there are homology theories which satisfy this as well as

the previous conditions (periodic cyclic homology, which has homotopy invariance, does not

have the normalisation property in the form we have stated it).

The definition

After this long preliminary discussion, we finally introduce the theory of interest, together

with a twisted version. Given any A-bimodule Q, define the Hochschild homology of A with

coefficients in Q to be

(8.16) HH ∗(A, Q) = H∗(Q⊗Aopp⊗A A),

where we think of Q as a right module over Aopp ⊗A; of A as a left module over the same;

and tensor them together to get a chain complex. The standard Hochschild chain complex,

somewhat simpler than the one suggested by (8.16), has this form:

(8.17) CC ∗(A, Q) =
⊕

Q(Xd, X0)⊗ homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1)[d],

where the direct sum is over all d ≥ 0 and objects (X0, . . . , Xd). The differential is

(8.18)

∂(q) = µ0;1;0
Q (q),

∂(q ⊗ a) = q ⊗ µ1
A(a) + (−1)|a|−1µ0;1;0

Q (q)⊗ a+ µ0;1;1
Q (q; a) + (−1)(|a|−1)|q|µ0;1;1

Q (a; q),

· · ·

Clearly, (8.16) is covariantly functorial in Q. Moreover, for any A∞-functor F : A→ B and

any B-bimodule Q we get a map

(8.19) HH ∗(A,F
∗Q) −→ HH ∗(B, Q)

where F∗ is pullback on both sides.

Remark 8.5. If A and Q are strictly unital, there is a quasi-isomorphic reduced version of

(8.17), where each homA(X,X) factor that occurs gets quotiented out by KeX . This slightly

smaller complex, denoted by CC red
∗ (A, Q), can sometimes be useful in computations.

Ordinary Hochschild homology HH ∗(A,A) is obtained by specializing to the diagonal bimod-

ule Q = A. Any A∞-functor F : A → B comes with a canonical bimodule homomorphism

A → F∗B. In view of the previous discussion, it follows that HH ∗(A,A) is covariantly

functorial; alternatively, the maps induced by functors can be defined directly in terms of

(8.17). We will now consider its other properties as a “homology theory” in the previously

explained sense:
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• (Morita invariance) This is straightforward from (8.16): the inclusion A → Aperf

induces a restriction map from Aperf -bimodules to A-bimodules, which is a quasi-

equivalence and sends the diagonal to the diagonal.

• (Künneth formula) This is a consequence of (8.16), obviously best proved by passing

to quasi-isomorphic dg categories. For explicit formulae see [124, Section 4.2].

• (Opposite property), (Normalisation), (Weak exactness) These are straightforward

in terms of (8.17) (using the reduced complex in the last two cases).

• (Exactness) This is a nontrivial result, proved in [104].

• (Homotopy invariance) Hochschild homology does not have this property. Instead,

as a special case of the Hochschild-Kostant-Rosenberg theorem [90], one has:

(8.20) HH ∗(K[s],K[s]) ∼=

{
K[s] ∗ = 0,−1,

0 otherwise.

The failure of homotopy invariance is actually useful, since it allows for the existence of

“Lefschetz trace” type formulae. As a toy model, suppose that we have a chain complex C

of vector spaces with finite-dimensional cohomology, together with an endomorphism c of

that complex. These data can be described by an A∞-functor K[s] → Kperf , mapping s to

c. By explicit computation, one shows that the induced map on Hochschild homology is

(8.21)
K[s] ∼= HH 0(K[s],K[s]) −→ HH 0(Kperf ) ∼= K,

sk 7−→ Str(ck).

If one thinks of this map as an element of HH 0(K)[[u]] ∼= K[[u]], where uk is dual to sk,

then the expression can be written as
∑
k u

k Str(ck). Now suppose that over some A∞-

category A, we have a perfect module P together with a (closed degree zero) endomorphism

p ∈ homAmod (P, P ). In the same way as before, this gives rise to an element

(8.22) [p]HH ∈ HH 0(A,A)[[u]],

and the relevant “Lefschetz trace” formula says that for any proper A-module M ,

(8.23) 〈[M ]∨HH , [p]HH 〉 =
∑
k

uk Str
(
· [p]k : H∗(homAmod (P,M))→ H∗(homAmod (P,M))

)
.
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Hochschild cohomology

Hochschild cohomology is to Hochschild homology as Ext is to Tor . However, its internal

structure is far richer. HH ∗(A,A)[1] carries the structure of a graded Lie algebra, reflecting

its role in the deformation theory of the A∞-structure on A (Hochschild cohomology itself

parametrizes first order deformations, and the bracket yields the second order obstruction).

Furthermore, HH ∗(A,A) carries the structure of a graded commutative algebra, which is

the endomorphism algebra of the diagonal bimodule A. Both operations combine to form a

Gerstenhaber algebra structure [73].

On the chain level, the complex CC ∗(A,A)[1] carries the structure of a dg Lie algebra, which

transfers (non-canonically) to an L∞-structure on HH ∗(A,A)[1], encoding the deformation

theory of the A∞-algebra A to arbitrarily high order. Similarly, the dg algebra structure on

CC ∗(A,A) induces an A∞-structure on HH ∗(A,A), but that loses the information about its

homotopy commutativity. To recover a fuller picture, one needs to use a version of Deligne’s

conjecture (for which now many proofs are available), which says that CC ∗(A,A) carries the

structure of an algebra over the (chain level) little disc operad. Since that operad is formal

[192], it follows that HH ∗(A,A) carries the structure of a homotopy Gerstenhaber algebra

in an appropriate sense.

Our aim in this lecture is much more modest, and is limited to considering the two classical

structures (Lie bracket and product) on Hochschild cohomology essentially separately. We

will be particularly interested in the following: the role of Hochschild cohomology in classi-

fying A∞-structures with fixed cohomology [97]; and the deformation theory of the diagonal

bimodule, which is related to the commutativity of the product.

The Lie bracket

Let A be a graded vector space over a field K, assumed to be of characteristic 0 (see Remark

9.10 for a discussion of this assumption). Write

(9.1) T (A[1]) = K⊕A[1]⊕A⊗2[2]⊕ · · ·

We turn (9.1) into a coalgebra, with coproduct

(9.2) ad ⊗ · · · ⊗ a1 7−→
d∑
i=0

(ad ⊗ · · · ⊗ ai+1)⊗ (ai ⊗ · · · ⊗ a1)

81
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and counit which is the projection to K. Write

(9.3) CC ∗(A,A) = Hom(T (A[1]),A) =
∏
d≥0

Hom(A⊗d,A)[−d].

There is an isomorphism between this and the graded space of coderivations of our coalgebra

(see e.g. [60, Proposition 4.19]). More precisely,

(9.4) Coder(T (A[1])) ∼= CC ∗(A,A)[1].

In one direction, one takes a coderivation and composes it with the projection T (A[1]) →
A[1]. In the opposite direction, one takes a homogeneous element γ = (γd)d≥0 of CC ∗(A,A)

and associates to it the coderivation

(9.5) Γ(ad ⊗ · · · ⊗ a1) =
∑
i,j

(−1)(|γ|−1)(|a1|+···+|ai|−i)ad ⊗ · · · γj(ai+j , . . . , ai+1) · · · ⊗ a1.

Here, the degrees |a| and |γ| are taken in A and CC ∗(A,A), which means without taking

shifts into account. While we are on the subject of signs, note that we think of coderiva-

tions as acting from the right, which affects (9.5) through the Koszul sign conventions. For

instance, if γ0 = 0 then

(9.6) Γ(a2 ⊗ a1) = (−1)(|γ|−1)(|a1|−1)Γ(a2)⊗ a1 + a2 ⊗ Γ(a1),

where |γ| − 1 is the degree of the coderivation Γ, and |a1| − 1 the degree of a1 in T (A[1]).

Coder(T (A[1])) is naturally a graded Lie algebra. The corresponding structure (the Ger-

stenhaber bracket) on CC ∗(A,A)[1] is

(9.7) [β2, β1] = β2 ◦ β1 − (−1)(|β2|−1)(|β1|−1)β1 ◦ β2,

where

(9.8)

(β2◦β1)d(ad, . . . , a1) =
∑
i,j

(−1)(|β1|−1)(|a1|+···+|ai|−i)βd−j+1
2 (ad, . . . , β

j
1(ai+j , . . . , ai+1), . . . , a1).

(9.8) by itself has no meaning in terms of coderivations, but will become important later on.

In parallel with what we’ve said for coderivations, a coalgebra endomorphism of T (A[1])

is determined by its composition with the projection to A[1], which means that it can be

described by a sequence of maps Gd : A⊗d → A[1− d]. The actual analogue of (9.4) is:

Lemma 9.1. A sequence G = (Gd) defines an endomorphism of T (A[1]) if and only if G0 = 0.

If moreover G1 is invertible as a linear map, then the endomorphism is an automorphism.

Proof. Suppose that ε ∈ T (A[1]) is a coaugmentation. This means that its composition

with the counit is 1, and that the following diagram commutes:

(9.9) K ε //

id

��

T (A[1])

comultiplication

��
K⊗K ε⊗ε // T (A[1])⊗ T (A[1]).



THE LIE BRACKET 83

If we expand it as

(9.10) ε = 1 + ε1 + ε2 + · · · ∈ K⊕A1 ⊕ (A⊗A)2 ⊕ · · ·

then (9.9) says that ε2 = ε1 ⊗ ε1, ε3 = ε2 ⊗ ε1 = ε1 ⊗ ε2 = · · · , and hence that εd =

ε1 ⊗ · · · ⊗ ε1 for any d. Because (9.10) has to terminate, it follows that ε1 = 0, hence there

is no coaugmentation other than the trivial one. Every endomorphism has to preserve that

coaugmentation, which shows that necessarily G0 = 0. On the other hand, given any such

G, the associated endomorphism is

(9.11) ad ⊗ · · · ⊗ a1 7−→
∑

Grk(ad, . . . , ad−rk+1)⊗ · · · ⊗ Gr1(ar1 , . . . , a1),

where the sum is over all partitions d = r1 + · · ·+ rk. �

The issue with (9.10) in the case ε1 6= 0 is one of “convergence” (for the same reason, T (A[1])

is not a cofree coalgebra in the strict sense; see the discussion after [60, Definition 4.17], or

[127, Section II.3.7]). Let’s temporarily ignore such problems, and make a formal attempt

to integrate a derivation γ ∈ CC 1(A,A) to an automorphism G = exp(γ) of T (A[1]). This

yields the formulae

(9.12)

G0 = γ0 + 1
2γ

1(γ0) + 1
3γ

2(γ0, γ0) + 1
6γ

1(γ1(γ0)) + · · · ,

G1 = idA + γ1 + 1
2γ

1(γ1) + 1
2γ

2(·, γ0) + 1
2γ

2(γ0, ·) + · · · ,
. . .

The summands are indexed by planar trees with d inputs and one output. The constant in

front of a tree with k vertices is 1/k! times the number of ways in which the vertices can

be ordered compatibly with the input-to-output orientation (the same concept of ordered

planar trees describes the face structure of permutohedra). Of course, since G0 is nonzero,

and all the formulae contain infinite sums, this is not meaningful in general.

To get around this problem, one can proceed in two different ways. CC ∗(A,A) has a complete

decreasing filtration, the length filtration, by the subspaces F pCC ∗(A,A) of maps which

vanish on A⊗k, k < p. This is compatible with the Lie bracket up to a shift by 1:

(9.13) [F pCC ∗(A,A), F qCC ∗(A,A)] ⊂ F p+q−1CC ∗(A,A).

In particular, F 2CC 1(A,A) is a pro-nilpotent Lie algebra. If one allows only γ lying in that

subspace, then all sums in (9.12) are finite, leading to a well-defined automorphism G with

(9.14)

G0 = 0,

G1 = id ,

G2 = γ2,

G3 = γ3 + 1
2γ

2(·, γ2) + 1
2γ

2(γ2, ·),
· · ·

Slightly more generally, one could allow γ1 to be nontrivial as long as it is nilpotent. There is

another case which can be treated in the same way. Namely, suppose that K = R or C, and

that A is finite-dimensional in each degree. Take γ ∈ F 1CC 1(A,A). Then (9.12) converges
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componentwise in the standard topology, yielding

(9.15)

G0 = 0,

G1 = exp(γ1),

G2 =
∑
i,j,k

1

(i+ j + k + 1)!

(
j + k

j

)
(γ1)iγ2((γ1)j , (γ1)k),

. . .

The other (more obvious) approach is to introduce a formal parameter u. One can then

consider formal one-parameter families of automorphisms of T (A[1]) which specialize to the

identity at u = 0. Such an automorphism is given by a sequence of maps Gdu : A⊗d →
(A[[u]])[1− d] such that G1

u = id + o(1), and Gdu = o(1) for d 6= 1, where o(1) means of order

u or higher. In particular, one may now have a nonzero term G0
u, as long as it is o(1) (with

respect to the situation in Lemma 9.1, the difference is that the u-adically completed tensor

algebra T̂ (A[[u]])[1] admits many augmentations). Given any γu ∈ uCC 1(A,A)[[u]] (note

this is o(1) by assumption), one can define such a family by taking

(9.16) Gu = exp(γu).

The formulae in (9.12) are now all u-adically convergent, since there are only finitely many

terms which are nonzero at a fixed power of u.

A∞-structures

We will consider A∞-structures on A, but for now without any unitality requirement, which

means µA = {µ1
A, µ

2
A, . . . } satisfying the A∞-associativity equations. One can think of µA

as an element of F 1CC 1(A,A), and then the equations are

(9.17) 1
2 [µA, µA] = 0.

Equivalently, µA is a differential on the coalgebra T (A[1]) whose composition with the coaug-

mentation K → T (A[1]) vanishes. Given any such µA, one can introduce a differential

∂ = [µA, ·] on CC ∗(A,A). The resulting complex is called the Hochschild cochain complex

of A, and its cohomology is the Hochschild cohomology HH ∗(A,A). For general reasons,

HH ∗(A,A)[1] inherits a Lie bracket from (9.7).

Remark 9.2. It is instructive to compare this with (8.17), which for the present case of an

A∞-algebra would be written as CC ∗(A,A) = A ⊗ T (A[1]). In parallel with that situation,

there is a generalization to Hochschild cohomology with coefficients in an A∞-bimodule Q,

which is the cohomology of the complex CC ∗(A, Q) = Hom(T (A[1]), Q) with differential

(9.18)

(∂β)d(ad, . . . , a1) = −
∑
s,r

(−1)|β|(|a1|+···+|ar|−r)µs;1;r
Q (ad, . . . , ad−s+1;

βd−s−r(ad−s, . . . , ar+1); ar, . . . , a1)

+
∑
i,j

(−1)|β|+|a1|+···+|ai|−iβd−i−j+1(ad, . . . , µ
j
A(ai+j , . . . , ai+1), . . . , a1).
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In view of (7.23), this indeed reduces to the previous definition if Q = A is the diagonal

bimodule.

Remark 9.3. Another recurring feature (compare Remark 8.5) is that for strictly unital A,

there is a reduced version CC ∗red(A,A) of the Hochschild complex, consisting of multilinear

maps which vanish when any one of the inputs is the identity. This encodes deformations

of A inside the class of A∞-algebras with the same strict unit. Actually, since the inclusion

CC ∗red(A,A) ↪→ CC ∗(A,A) is a quasi-isomorphism, any deformation of A is equivalent to

such a strictly unital one.

We now consider the role of Hochschild cohomology in the deformation theory of A∞-

structures. Let Kε = K[ε]/ε2.

Definition 9.4. A first order deformation of the A∞-algebra A is a Kε-linear A∞-structure

µAε on Aε = A⊗Kε, which reduces to µA if one sets ε = 0.

Explicitly, such a deformation can be written as

(9.19) µAε = µA + ε β for β ∈ F 1CC 2(A,A).

From (9.17) one sees that β is a Hochschild cocycle. There is an obvious notion of iso-

morphism of deformations, and this corresponds to being cohomologous in F 1CC ∗(A,A).

Hence, H2(F 1CC ∗(A,A)) classifies first order infinitesimal deformations of A up to isomor-

phism. Now suppose that we have a deformation which extends to second order, meaning

over C[ε]/ε3. Writing that as

(9.20) µA + εβ + ε2γ

and taking the Taylor expansion of (9.17), one finds that

(9.21) ∂γ + 1
2 [β, β] = 0.

This gives a (necessary and sufficient) cohomological obstruction for extending a given first

order deformation to second order. All of this is an instance of the standard Maurer-Cartan

formalism of deformation theory [79], which means that it is a consequence of writing the

A∞-equations in the form (9.17).

Remark 9.5. One can also allow curved deformations, where µ0
Aε

can be nonzero as long

as it is o(1), and the notion of equivalence of deformations is similarly generalized, allowing

all of HH ∗(A,A) to appear in the deformation theory. This is particularly important in a

categorical context, as we will now explain (a similar discussion would apply if one remained

within the world of A∞-algebras, but considered them up to Morita invariance).

Hochschild cohomology for A∞-categories can be built in the same way as Hochschild homol-

ogy (8.17), using composable chains of morphism spaces (in fact, one could formulate the

entirety of this lecture on that level of generality, even though we have not done so for the
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sake of brevity). Concretely, this means that the underlying chain complex is

(9.22)

CC ∗(A,A) =
∏
d

∏
X0,...,Xd

Hom
(
homA(Xd−1, Xd)⊗ · · ·

· · · ⊗ homA(X0, X1), homA(X0, Xd)
)
[−d].

The resulting cohomology theory HH ∗(A,A) is invariant under quasi-equivalences. More-

over, the inclusion A ↪→ Aperf yields a quasi-isomorphism HH ∗(Aperf ,Aperf )→ HH ∗(A,A).

Hence, if Aperf is quasi-equivalent to Bperf , then curved deformations of A, up to isomor-

phism, correspond bijectively to such deformations of B. This would fail if one removed

the word “curved”. Indeed, an ordinary deformation of A generally gives rise to a curved

deformation of Atw , because not every twisted complex over A can be deformed to a twisted

complex over Aε.

One can apply this deformation theory to classify A∞-structures with a fixed cohomology

[97]. For that, take a graded algebra A, and view it as an A∞-algebra with only one

nontrivial operation. Consider A∞-deformations of that algebra are defined formally to all

orders, meaning over K[[ε]]. There is an additional grading in this situation, which we want to

exploit. Namely, give elements of A their natural degrees; give ε degree one; and require that

Aε be homogeneous in this sense. Then, the only nontrivial components of the deformation

are

(9.23) A⊗d −→ εd−2A[2− d], d ≥ 3.

If we set ε = 1, then these components define an A∞-structure, which extends the algebra

structure of A by higher order operations. Write CC s(A,A[t]) for the space of maps A⊗s → A

of degree t. The Hochschild differential arising from the algebra structure on A has bidegree

(1, 0) in this respect, leading to bigraded cohomology groups HH s(A,A[t]). To first order,

the homogeneous deformation theory introduced above is governed by HH d(A,A[2−d]) with

d ≥ 3. By combining this idea and the Perturbation Lemma (see Lecture 7), one obtains for

instance the following:

Proposition 9.6 (Intrinsic formality, an analogue of [88]). Suppose that HH d(A,A[2−d]) =

0 for all d ≥ 3. Then, any A∞-algebra A whose cohomology is isomorphic to A (as a graded

algebra), is actually quasi-isomorphic to A (as an A∞-algebra). �

Proposition 9.7 (See for instance [172, Section 3]). Suppose that there is exactly one value

of d > 2 such that HH d(A,A[2 − d]) is nonzero. Then, any A∞-algebras A together with

a cohomology level isomorphisms H(A) ∼= A determines an element of HH d(A,A[2 − d]).

Moreover, from those elements one can recover the A∞-structure up to quasi-isomorphism.

�

The Yoneda product

We return to (9.8), which defines a product on CC ∗(A,A)[1] that is neither commutative nor

associative. Its failure to be commutative is measured by (9.7). Its failure to be associative
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takes on the following form:

(9.24) (γ ◦ α) ◦ β − γ ◦ (β ◦ α) = (−1)(|α|−1)(|β|−1)〈γ, α, β〉+ 〈γ, β, α〉,

where we introduce the notation (only of temporary importance)

(9.25)

〈γ, α, β〉d(ad, . . . , a1) =
∑
i,j,k,l

(−1)∗γd−l−j+2(ad, . . . ,

αl(ak+l, . . . , ak+1), . . . , βj(ai+j , . . . , ai+1), . . . , a1),

with the sign given by ∗ = (|β| − 1)(|a1|+ · · ·+ |ai| − i) + (|α| − 1)(|a1|+ · · ·+ |ak|). There

is one particular case where the terms (9.25) cancel, namely

(9.26) γ ◦ [α, β] = (γ ◦ α) ◦ β − (−1)(|α|−1)(|β|−1)(γ ◦ β) ◦ α.

Now suppose that A carries an A∞-algebra structure. Define a product on CC ∗(A,A) by

(9.27) β ∗ γ = 〈µA, β, γ〉.

This is compatible with the differential, in the same sense as in the A∞-associativity equa-

tions (we omit that computation). Moreover,

(9.28)

(−1)|γ|β ∗ γ − (−1)(|γ|−1)|β|γ ∗ β = (−1)|γ|
(
(µA ◦ γ) ◦ β − µA ◦ (γ ◦ β)

)
= (−1)|γ|∂γ ◦ β − (γ ◦ µA) ◦ β − (−1)|γ|∂(γ ◦ β)− (−1)|β|(γ ◦ β) ◦ µA

= (−1)|γ|
(
∂γ ◦ β − (−1)|γ|γ ◦ ∂β − ∂(γ ◦ β)

)
,

where the last step uses (9.26). Hence, the product on HH ∗(A,A) induced by (−1)|γ|β ∗ γ
is graded commutative. Note that by definition, that product makes the canonical map

HH ∗(A,A) → H∗(A) (induced by the projection onto the first term of the Hochschild

complex) into a homomorphism of graded algebras.

We want to take a more roundabout way which gives an alternative, and more conceptual,

explanation for homotopy commutativity. The starting point for that is the interpretation

of Hochschild cohomology as bimodule homomorphisms; from this point onwards, we again

assume that A is cohomologically unital. For any bimodule Q there is a quasi-isomorphism

(9.29) CC ∗(A, Q) −→ hom(A,A)mod (A, Q),

From now on, we will only use the case of the diagonal bimodule Q = A. In that case, the co-

homology level isomorphism induced by (9.29) identifies the product (9.27) with the Yoneda

product (composition of bimodule maps). The commutativity of the Yoneda product in this

particular situation is a consequence of a general categorical Eckmann-Hilton argument [63],

which we will now explain. Take two endomorphisms [φ], [ψ] of the diagonal bimodule in

the category H∗((A,A)mod). Using the quasi-isomorphism

(9.30) A⊗A A ∼= A,
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we construct the diagram

(9.31) A
[ψ] //

∼=

��

A
[φ] //

∼=
��

A

∼=

��

A⊗A A

[φ⊗eA]

%%
A⊗A A

[eA⊗ψ]
99

[φ⊗eA] %%

[φ⊗ψ] // A⊗A A

A⊗A A

[eA⊗ψ]

99

A
[φ] //

∼=

OO

A
[ψ] //

∼=

OO

A.

∼=

OO

This is commutative (up to, in the case of the bottom triangle, the Koszul sign (−1)|φ| |ψ|),

so by going around its outer edges one obtains the desired result.

There is also a deformation-theoretic version of the argument, which is particularly simple in

degree 1. To emphasize that this is different from our previous discussion of the deformation

theory of A∞-algebras, and also for compatibility with similar notation in the rest of the

book, we denote the formal variable by u, so that the analogue of Definition 9.4 is this:

Definition 9.8. Take an A-bimodule Q. A first order deformation of Q is an A-bimodule

structure on Qu = Q⊗Ku which is Ku-linear and reduces to µQ if one sets u = 0.

If one writes µQu = µQ + uφ, then it follows that φ defines a class

(9.32) [φ] ∈ H1(hom(A,A)mod (Q,Q)).

Conversely, this class determines the deformation up to isomorphism. The second order

obstruction is given by the Yoneda square [φ]2 ∈ H2(hom(A,A)mod (Q,Q)). Slightly more

generally, consider the graded Lie bracket

(9.33)
H∗(homAmod (Q,Q))⊗2 −→ H∗(homAmod (Q,Q)),

[φ]⊗ [ψ] 7−→ [φ] [ψ]− (−1)|φ|·|ψ|[ψ] [φ].

Its deformation-theoretic meaning, in degree 1, is as follows. Suppose that [φ] and [ψ] classify

deformations Qu and Qv over Ku and Kv, respectively, Then (9.33) is the obstruction to

combining them into a deformation over K[u, v]/(u2, v2).

Note that there is a related problem which is always unobstructed. Namely, if Qu is a first

order deformation of Q, and Rv a first order deformation of R, then Qu⊗Rv is a deformation

of Q⊗R over K[u, v]/(u2, v2). For Q = R = A, the tensor product is a deformation of A⊗AA.

However, one can transfer that deformation back to A via (9.30). Hence (9.33) must vanish

in that case. By using deformations whose formal variables have nonzero degrees, one can
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extend this argument to give another proof of graded commutativity of the product on

HH ∗(A,A).

The preceding discussion looks somewhat like the beginning of a T 1-lifting argument [102].

The general aim of such arguments is to show unobstructedness of formal deformations to

all orders. There is indeed such a result in our case, but it is best approached in a different

way:

Lemma 9.9. For any element [β] ∈ HH 1(A,A), there is a deformation of the diagonal

bimodule over K[[u]], whose reduction to K[u]/u2 is classified by [β].

Fix a cochain representative β, and form the formal one-parameter family ofA∞-homomorphisms

Gu = exp(uβ) in the sense of (9.16) (these may have a curvature term G0
u, which is of order

o(1), meaning infinitesimally small). One can associate to Gu an A-bimodule

(9.34) Oinf = Graph(Gu),

which we call the infinitesimal orbit bimodule. Its underlying graded vector space A[[u]], and

the A∞-bimodule structure defined as in (7.24). Expansion in u yields

(9.35)

µs;1;r
Oinf (a′′s , . . . , a

′′
1 ; a; a′r, . . . , a

′
1) = (−1)|a

′
r|+···+|a

′
1|+r−1

(
µs+1+r
A (a′′s , . . . , a, . . . , a

′
1)

+ u
∑
i,j

µr+s+2−j
A (a′′s , . . . , γ

j(a′′i+j , . . . , a
′′
i+1), . . . , , a, . . . , a′1) + · · ·

)
Since the order u term is the image of γ under (9.29), this explicit construction proves Lemma

9.9.

Remark 9.10. The definition of Hochschild cohomology works over a field K of arbitrary

characteristic. The same is true of its role in the first deformation theory of A∞-structures,

even though that theory can then no longer interpreted as part of the general Maurer-Cartan

formalism. More concretely, one rewrites (9.17) without denominators as µA ◦ µA = 0. For

a deformation Aε, one then Taylor-expands

(9.36)
µAε ◦ µAε = (µA + εβ + ε2γ + · · · ) ◦ (µA + εβ + ε2γ + · · · )

= ε · ∂β + ε2(∂γ + β ◦ β) + · · ·

In particular, Propositions 9.6 and 9.7 continue to hold in arbitrary characteristic. On the

other hand, the discussion of formal exponentiation of derivations, (9.16), and therefore also

Lemma 9.9, require the assumption that char(K) = 0.
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The Fukaya category of a surface

Setting up Fukaya categories for general symplectic manifolds is quite an involved process (see

[71]; we got a taste of that in Lecture 5, when discussing Lagrangian Floer cohomology).

There are several ways of simplifying the problem, by drastically shrinking the level of

generality. Among them are:

• Considering only Weinstein manifolds, where the symplectic form is exact, and im-

posing similar conditions on the Lagrangian submanifolds. This allows one to avoid

Novikov fields as well as “curved” A∞-structures, hence to stay on a level of diffi-

culty comparable to the early Floer theory literature (there are other possibilities

which lead to similar simplifications, such as suitable “monotonicity” conditions,

e.g. [141, 204], but we will not consider them here).

• Restricting to the lowest-dimensional case (of a surface). In that dimension, La-

grangian submanifolds are just (arbitrary) embedded curves, and there are no gen-

uinely symplectic phenomena. Correspondingly, one can avoid pseudo-holomorphic

curves, and argue in a purely combinatorial or topological framework. This still

comes at a price: pseudo-holomorphic curve theory allows a large class of pertur-

bations of the relevant equations; the combinatorial theory lacks that flexibility,

which makes some formal workarounds necessary.

To make things as simple as possible, we adopt both these restrictions at the same time,

which means that our symplectic manifolds are open (punctured) surfaces. These are also

“symplectically Calabi-Yau”, meaning that their first Chern class vanishes, allowing us to

make Fukaya categories Z-graded.

We proceed in several iterations, gradually increasing the level of sophistication. Fix the

surface M (with some auxiliary structures) and a coefficient field K.

• The Donaldson-Fukaya category DF (M) is a Z-graded category linear over K, en-

coding “cohomology level” data, which means the Floer cohomology groups of

simple closed loops (with some auxiliary structures), and the triangle product on

those groups. The combinatorial approach, of which we give a version, is explained

in detail in [56] (which of course has a lot of precursors, e.g. computations in [113]).

• Directed Fukaya categories Fuk→(L1, . . . , Lm) are associated to finite ordered col-

lections of simple closed curves (L1, . . . , Lm). They partially refine the cohomology

91
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level structure to an A∞-structure, using directedness to avoid technical compli-

cations with self-intersections. They depend on the choice of objects and their

ordering, hence are not invariants of M . The combinatorial aspects of this are

described in [176, Section 13] or [23].

• The Fukaya category is an A∞-category Fuk(M) with DF (M) ∼= H(Fuk(M)). We

construct it using a formal quotient trick (there is at least one alternative approach

to this technical issue, namely: to introduce the Fukaya category as an A∞-pre-

category in the sense of [115]; and then either work with it directly as in [3], or

else apply a rectification procedure as in [206]).

There are several variations and generalizations of these ideas. Maybe the conceptually most

important one is this:

• The wrapped Fukaya category W(M) contains Fuk(M) as a full A∞-subcategory,

but enlarges it by allowing non-compact curves, which go towards the punctures.

For general Weinstein manifolds, the definition of W(M) involves Hamiltonian dynamics

“at infinity” [8], but in the two-dimensional case there is a quotient trick similar to our

definition of F(M), which we will outline briefly. We end by discussing F(M) and W(M) in

the simplest nontrivial example, which is when M is a cylinder.

Acknowledgments. The quotient construction of Fukaya categories is borrowed from (cur-

rently unpublished) joint work of Mohammed Abouzaid and the author.

Geometric setup

Let M be a punctured surface (obtained by removing a nonempty finite set of points from a

closed oriented surface). We equip it with a symplectic form, which here means an everywhere

positive two-form ωM , as well as a primitive θM . Additionally, we choose a nowhere vanishing

vector field YM .

Remark 10.1. θM matters only up to adding exact one-forms, so the overall amount of

choice is an affine space over H1(M ;R). Similarly, YM only matters up to homotopy, so

the effective choices are an affine space over H1(M ;Z). Another way to think of YM is to

choose a positively oriented complex structure JM . Then, there is a unique nowhere vanishing

C∞ complex one-form ηM such that ηM (YM ) = 1. In higher dimensions, the corresponding

choice is that of a C∞ complex volume form, for some compatible almost complex structure

JM .

We will consider oriented simple closed loops L ⊂ M with the following conditions and

decorations:

• (Exactness) [θM |L] ∈ H1(L;R) must vanish. More concretely,
∫
L
θM = 0.
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• (Grading) We want to choose a one-parameter family of nowhere zero sections

(YL,r)0≤r≤1 of TM |L such that YL,0 is positively tangent to L, and YL,1 = YM |L.

In fact, this family only matters up to deformations rel endpoints. The obstruction

to its existence is the rotation number of L with respect to YM ; and the possible

choices form an affine space over Z. Following [169], one calls this a grading of L.

• (Local coefficients) L should also come with a flat K-vector bundle ξL → L. Up to

isomorphism, this is classified by a conjugacy class in GLr(K), where r is the rank.

Borrowing terminology from physics, let’s call such objects closed exact Lagrangian branes.

Remark 10.2. Since we ask for all our categories to be small, the flat vector bundles should

be taken from some fixed “repertoire”, in order to avoid set-theoretic issues. We leave it to

the reader to flesh out this issue.

A collection of closed exact Lagrangian branes is said to be in general position if: any two

of them intersect transversally; and there are no triple intersection points. Of course, this

can always be achieved by a small perturbation (within the same isotopy class of branes).

It is maybe worth while to spell out what we mean by an isotopy between two closed exact

Lagrangian branes L and L′. Take a closed connected surface I ⊂M × [0, 1] which intersects

each M × {r} transversally, and with ∂I = I ∩ (M × {0, 1}) = (L × {0}) ∪ (L′ × {1}); this

implies that I is an annulus. We want the isotopy to be Hamiltonian, meaning that the

pullback of ωM to I is exact; we need it to carry an orientation and grading compatible with

those of L and L′; and we also want to have a flat bundle ξI → I together with specified

isomorphisms

(10.1)
ξI |L× {0} ∼= ξL,

ξI |L× {1} ∼= ξL′ .

Remark 10.3. In the general construction of Fukaya categories (at least if the coefficient field

is of characteristic char(K) 6= 2, making signs meaningful), an additional Spin condition on

the Lagrangian submanifolds is necessary. In the surface case, we implicitly assume that each

curve comes with the trivial Spin structure (the one coming from the unique trivialization of

TS1). Instead of changing the Spin structure to the opposite one, one then changes the sign

of the holonomy of ξL.

Also interesting is the corresponding class of symplectic automorphisms φ : M →M :

• (Exactness) φ should be exact with respect to θM , meaning that φ∗θM − θM is an

exact one-form.

• (Grading) ηM and φ∗ηM should lie in the same connected component of the space

of nowhere vanishing one-forms, and in fact fix a path connecting them (as before,

only the homotopy class of the path matters).

• (Local coefficients) We additionally fix a flat K-line bundle ξφ →M .
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x0

L1

L0

Figure 1.

Such extended automorphisms act on closed exact Lagrangian branes. For instance, if we

take φ = idM , with the trivial grading and a general flat line bundle ξφ, the action on objects

twists the flat vector bundles

(10.2) ξL −→ ξL ⊗ ξφ|L.

Floer cohomology

Suppose that (L0, L1) are closed exact Lagrangian branes which are in general position. We

can assign to them a Z-graded chain complex CF ∗(L0, L1); Floer cohomology HF ∗(L0, L1)

is defined as the cohomology of that complex. To any intersection point x ∈ L0 ∩ L1 one

associates a degree (or absolute Maslov index) i(x) ∈ Z, using the gradings of both L0 and

L1 (we refer to [176, Section 13] for the detailed conventions). Then

(10.3) CF k(L0, L1)
def
=

⊕
i(x)=k

Hom(ξL0,x, ξL1,x).

The differential on (10.3) is obtained as a sum of contributions associated to orientation-

preservingly immersed bigons or lunes with boundary sides on L0, L1, and (convex) corners

at x0, x1 (Figure 1). To any such bigon u one associates a sign σ(u) ∈ ±1, which depends

on the orientations of (L0, L1) (see again [176, Section 13]) as well as an isomorphism

(10.4) τ(u) : Hom(ξL0,x1
, ξL1,xi1) −→ Hom(ξL0,x0

, ξL1,x0
),

obtained by using parallel transport along the boundary sides. The contribution of u to

the differential is σ(u)τ(u). Elementary combinatorial arguments show that the resulting

operation has degree 1 and squares to zero.

Similarly, if (L0, L1, L2) are in general position, there is a canonical map

(10.5) CF ∗(L1, L2)⊗ CF ∗(L0, L1) −→ CF ∗(L0, L2),

obtained by counting immersed triangles (as indicated in Figure 2) with signs and weights

similar to (10.4). One can show by elementary means that (10.5) is a chain map, and induces

a product on Floer cohomology which is associative for quadruples (L0, L1, L2, L3) which are

in general position. This means that in that case, the two ways of bracketing yield the same

map

(10.6) HF ∗(L2, L3)⊗HF ∗(L1, L2)⊗HF ∗(L0, L1) −→ HF ∗(L0, L3)
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Figure 2.

(note that there are less generic situations, such as when L0 = L2, where one can make sense

of (10.6) by bracketing in a particular way).

Because of the general position requirement, the structures defined so far not quite constitute

a category. To make up for that deficiency, we need some additional Floer-theoretic data.

Suppose that (L,L′) are in general position and related by an isotopy I. That isotopy gives

rise to a distinguished continuation element

(10.7) cI ∈ HF 0(L,L′).

Remark 10.4. cI depends on the choice of (10.1). For instance, multiplying those maps by

constants bk ∈ K× changes cI by b1/b0. There is one special case where the isomorphism

are unique, namely when K = Z/2 and the ξLk have rank 1; restricting to that case would

simplify the construction of DF (M) a little.

Here are the fundamental properties of continuation elements:

• (Deformation invariance) cI is invariant under deformation of I rel endpoints;

• (Composition) If we have I as well as another isotopy I ′ from L′ to L′′, and

(L,L′, L′′) are in general position, then the image of cI′ ⊗ cI under the cohomology

level product HF ∗(L′, L′′) ⊗ HF ∗(L,L′) → HF ∗(L,L′′) agrees with the element

given by the composite isotopy.

• (Pseudo-invertibility) Suppose that L1 is isotopic to L′1 by an isotopy I1, and that

(L0, L1, L
′
1) is in general position. Then left multiplication with cI1 yields an iso-

morphism HF ∗(L0, L1) ∼= HF ∗(L0, L
′
1). Similarly, if L0 is isotopic to L′0 by an

isotopy I0, and (L0, L
′
0, L1) is in general position, right multiplication with cI0

yields an isomorphism HF ∗(L′0, L1) ∼= HF ∗(L0, L1).

We will not describe the combinatorial definition of the cI . The prototypical case is when

M is an annulus and L its meridian; the general situation can be reduced to that one by

passing to a suitable covering. The only part which involves more complicated topology is

the proof of pseudo-invertibility, which can be done (assuming that the other properties have

been established first) by breaking up the isotopy into small pieces.
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Lemma 10.5. Suppose that L1 is isotopic to L′1 by an isotopy I1, and that (L0, L1, L
′
1) is in

general position. Let Ī1 be the result of reversing I1. Then the maps

(10.8) HF ∗(L0, L1)

cI1
++
HF ∗(L0, L

′
1)

cĪ1

kk

are inverses of each other.

This is not immediately obvious: the composition of I1 and its inverse is an isotopy between

L1 and itself, which has no associated element (10.7) because the endpoints coincide, hence

are not in general position. The following argument is a typical workaround for such situa-

tions (for instance, the same argument yields the corresponding result for left multiplication).

Proof. Choose an auxiliary small perturbation L∗1 of L1, such that (L0, L1, L
′
1, L
∗
1) are

in general position. Take the isotopy I∗ from L1 to L∗1. By the composition property and

deformation invariance,

(10.9) (cI∗cĪ1)cI1 = cI∗ ∈ HF 0(L1, L
∗
1).

The bracketing on the left hand side of (10.9) ensures that all the products are defined. As

a consequence, for all x ∈ HF ∗(L0, L1) we have:

(10.10)

cI∗x = ((cI∗cĪ1)cI1)x

= (cI∗cĪ1)(cI1x)

= cI∗(cĪ1(cI1x)).

Here, associativity is applied twice, for the quadruples of objects are (L0, L1, L
′
1, L
∗
1) and

(L0, L
′
1, L1, L

∗
1), which are in general position. Finally, left multiplication with cI∗ is an

isomorphism HF ∗(L0, L1)→ HF ∗(L0, L
∗
1), hence x = cĪ1(cI1x), as desired. �

We are now ready to define the Donaldson-Fukaya category DF (M). Objects are exact

closed Lagrangian branes. The morphisms are

(10.11) Hom∗DF(M)(L0, L1)
def
= HF ∗(L0, L

′
1),

where L′1 is isotopic to L1 by a fixed isotopy, and transverse to both L0 and L1. It is

important to remember that L′1 depends on L0 as well as L1 (even though the notation does

not reflect that). Composition of morphisms is given by

(10.12)

Hom∗DF(M)(L1, L2)⊗Hom∗DF(M)(L0, L1) = HF ∗(L1, L
′
2)⊗HF ∗(L0, L

′
1)

∼= HF ∗(L′1, L
∗
2)⊗HF ∗(L0, L

′
1)

product−−−−−→ HF ∗(L0, L
∗
2)

∼= HF ∗(L0, L
′′
2) = Hom∗DF(M)(L0, L2).

Here, (L0, L
′
1), (L1, L

′
2) and (L0, L

′′
2) are the pairs whose Floer cohomology defines the

morphisms in the Donaldson-Fukaya category. One chooses an auxiliary L∗2 isotopic to L2,

so that each of the triples

(10.13) (L0, L
′
1, L
∗
2), (L1, L

′
2, L
∗
2), (L1, L

′
1, L
∗
2), (L0, L

′′
2 , L

∗
2)
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is in general position. The isomorphisms in (10.12) are all given by multiplication with

continuation elements. Of course, one needs to prove that this is independent of the choice

of perturbations (which involves Lemma 10.5) and associative. Having defined DF (M)

in this way, a further use of the continuation elements shows that isotopic closed exact

Lagrangian branes give rise to isomorphic objects. We will not pursue the details of this

further. Eventually, the perturbations become part of the basic machinery underlying Floer

theory: one writes HF ∗(L0, L1) for any pair (L0, L1), where (10.11) is understood, and

similarly for the product.

Example 10.6. The endomorphism ring of any object L is

(10.14) HF ∗(L,L) ∼= H∗(L; Hom(ξL, ξL)),

where the right hand is ordinary cohomology with twisted coefficients in the endomorphism

bundle. This isomorphism is canonical, and compatible with the ring structure. More gen-

erally, if we have two objects L0, L1 which share the same underlying curve L (including the

orientation and grading), but carry different flat bundles, then

(10.15) HF ∗(L0, L1) ∼= H∗(L; Hom(ξL0
, ξL1

)).

All these results carry over to higher-dimensional closed exact Lagrangian submanifolds (with

different proofs, of course).

Directed Fukaya categories

Let (L1, . . . , Lm) be a finite ordered collection of closed exact Lagrangian branes, which

are in general position. One can associate to such a collection an A∞-category A =

Fuk→(L1, . . . , Lm) which has the Li as objects, and is directed (Example 7.11). The non-

trivial morphism spaces are homA(Li, Lj) = CF ∗(Li, Lj) for i < j. Correspondingly, the

nontrivial A∞-compositions (i.e. those that are not uniquely determined by the strict uni-

tality assumption) are

(10.16) µdA : CF ∗(Lid−1
, Lid)⊗ · · · ⊗ CF ∗(Li0 , Li1) −→ CF ∗(Li0 , Lid)[2− d]

for d ≥ 1 and 1 ≤ i0 < · · · < id ≤ m. One defines them by a count of immersed (d+ 1)-gons.

For d = 1, 2 this reduces to the previously defined differential and product (up to the usual

slight differences in sign conventions (7.7)).

At this point, it is worth while to make a strategic observation. As we have just seen, di-

rectedness simplifies the technical issues involved in defining Fukaya categories considerably,

since it removes the need to define morphisms from an object to itself geometrically. The dis-

advantage is that in a directed A∞-category, no two distinct objects can be quasi-isomorphic.

Our plan for defining Fuk(M) is to start with an algebraic structure which has an ordering

property similar to directedness, and then add the “missing” quasi-isomorphisms in a purely

algebraic way, by localisation.
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Defining the Fukaya category

For any exact closed Lagrangian brane L, fix a family of perturbations L(1), L(2), . . . (each

L(k) being isotopic to L) with the following property: any finite subset (L
(k0)
0 , . . . , L

(km)
m ),

with k0, . . . , km pairwise distinct, is in general position. This may seem tricky at first glance,

but it can be achieved, for instance by choosing all such perturbations from a sufficiently

large countable set of simple closed curves. One chooses the first perturbations L(1) from

that set, for all L (with no particular restriction); then the second perturbations, making

sure that each of them is in general position with respect to all the L(1) (which yields only

countably many conditions, hence can be satisfied); and so on.

We will first construct an A∞-category A whose objects are the L(k) (but really considered

as pairs consisting of L and k). Morphisms are

(10.17) homA(L
(k0)
0 , L

(k1)
1 ) =


CF ∗(L

(k0)
0 , L

(k1)
1 ) k0 < k1,

K · eL(k) L
(k0)
0 = L

(k1)
1

0 otherwise.

We should emphasise that the middle case of (10.17) really applies only to the endomorphisms

of a given object (it can happen that L
(k0)
0 has the same underlying curve as L

(k1)
1 , with the

same grading and isomorphic flat bundles; but that does not matter unless the objects are

actually the same element of the set Ob(A)). We define a strictly unital A∞-structure on A

exactly as in the directed case.

Let’s fix, for each L and k, an isotopy from L(k) to L(k+1). Denote the associated continuation

elements by

(10.18) cL,k ∈ HF 0(L(k), L(k+1)) = H0(homA(L(k), L(k+1))).

Take the set S of all such morphisms, and form the localisation S−1A in the sense of Lecture

7. In the localised category, L(k) and L(l) becomes quasi-isomorphic for any (k, l). Moreover:

Lemma 10.7. For any two objects,

(10.19) H∗(homS−1A(L
(k0)
0 , L

(k1)
1 )) ∼= HF ∗(L0, L1).

Proof. For an object L
(k1)
1 , consider the sequence

(10.20) L
(k1)
1

cL1,k1−−−−→ L
(k1+1)
1

cL1,k1+1−−−−−→ L
(k1+2)
1 · · ·

Given any other L
(k0)
0 , we have

(10.21)
lim−→k1

H∗(homA(L
(k0+1)
0 , L

(k1)
1 )) ∼= lim−→k1

HF ∗(L
(k0+1)
0 , L

(k1)
1 )

∼= lim−→k1
HF ∗(L

(k0)
0 , L

(k1)
1 ) ∼= lim−→k1

H∗(homA(L
(k0)
0 , L

(k1)
1 )),

where the direct limits are formed with respect to (10.20), and the nontrivial map between

them is given by multiplication with cL0,k0
on the right. These are precisely the conditions
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needed to apply Lemma 7.18, which shows that

(10.22)

H∗(homS−1A(L
(k0)
0 , L

(k1)
1 )) ∼= lim−→k1H

∗(homA(L
(k0)
0 , L

(k1)
1 )) ∼= lim−→k1HF ∗(L

(k0)
0 , L

(k1)
1 ).

Because of the isotopy invariance of Floer cohomology, the direct limit stabilizes as soon as

k1 > k0. For the same reason, the outcome is isomorphic to HF ∗(L0, L1). �

With this in mind, we define

(10.23) Fuk(M)
def
= S−1A.

One can show that this is independent of the choice of perturbations L(k), and of the iso-

topies between L(k) and L(k+1), up to quasi-equivalence; and that (10.19) is compatible with

products, which means that H∗(Fuk(M)) is canonically equivalent to DF (M), as required.

Remark 10.8. The standard definition of Fukaya category is based on pseudo-holomorphic

curves, even in the case of surfaces, see e.g. [176]. If one denotes that construction by C,

then it is not hard to show that there is an A∞-functor A → C which maps the elements

of S to quasi-isomorphisms, and which therefore (by the universal property of categorical

quotients) induces a quotient A∞-functor S−1A → C. Using Lemma 10.7, one sees easily

that the quotient functor is a quasi-equivalence, which proves the compatibility of the two

approaches.

The wrapped version

Suppose now that M is actually a (two-dimensional) Weinstein manifold. This means that

its structure at infinity is that of a finite disjoint union of cylindrical ends

(10.24) [1,∞)× S1 ↪→M, θM = p dq , ωM = dp ∧ dq.

We want to fix such coordinates on the ends. Along with the previous objects, we now

allow certain non-compact curves, namely properly embedded (connected oriented) L ⊂ R
which are exact rel infinity, as defined in Lecture 6. Concretely, this means that L has two

ends, which look like half-infinite lines {q = const} in the coordinates (10.24), and that

the (compactly supported) one-form θM |L has zero integral. We choose a grading and flat

bundle ξL as before. Let’s call the resulting larger class of objects exact Lagrangian branes.

If two such branes (L0, L1) are in general position, the intersection L0 ∩ L1 must be finite,

and it is straightforward to define HF ∗(L0, L1). However, a simple perturbation such as

(10.11) no longer yields a unique result, because isotopies may create or cancel intersection

points at infinity. The solution to that is to include an “infinite reservoir” of intersection

points at infinity into the definition. Concretely, one defines the wrapped Floer cohomology

(10.25) HW ∗(L0, L1) = lim−→tHF ∗(φtH(L0), L1)

where H is a Hamiltonian function on M which satisfies H(p, q) = p for p � 0 on the

ends (10.24), and whose Hamiltonian vector field is therefore XH = ∂q at infinity. If one

considers the flow φtH for a generic choice of t, then φtH(L0) ∩ L1 will be compact, and
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therefore HF ∗(φtH(L0), L1) can be defined by a further compactly supported perturbation

(which we have suppressed from the notation). The direct limit in (10.25) is taken over

larger and larger such t. The maps between the different groups are defined using canonical

continuation elements

(10.26) cL,t1,t0 ∈ HF ∗(φt1H(L), φt0H(L)), t1 > t0.

These are partially similar to (10.7), but taking the product with them does not usually

induce an isomorphism, which means that the direct limit (10.25) fails to stabilized (indeed,

while each of the Floer cohomology groups on the right hand side is finite-dimensional,

wrapped Floer cohomology is infinite-dimensional in many cases).

One can define a wrapped version of the Donaldson-Fukaya category, with exact Lagrangian

branes as objects and (10.25) as morphisms. On the chain level, there is a wrapped version

W(M) of the Fukaya category; in analogy with our construction of F(M), this can be defined

by starting with an “ordered” version and inverting (10.26).

The cylinder

Take M = R×S1, with θM and ωM as in (10.24), and with a constant (in (p, q)-coordinates)

vector field YM . For simplicity, we assume that the coefficient field K is algebraically closed.

Any exact simple closed curve on M is necessarily isotopic (through such curves) to the

meridian {0} × S1. The meridian has a standard orientation and grading, which we adopt.

The remaining choice is that of local coefficient system (or flat bundle), which is determined

up to isomorphism by its monodromy A ∈ GLr(K). Denote the resulting exact closed

Lagrangian brane by LA (or by La for r = 1, in which case A consists of a single element

a ∈ K×). After a suitable perturbation, the chain complex CF ∗(LA0
, LA1

) can be identified

with this:

(10.27)
Hom(Kr0 ,Kr1) −→ Hom(Kr0 ,Kr1),

X 7→ A1X −XA0.

Proposition 10.9. Dtw (Fuk(M)) is equivalent to DbCohcpt(M
∨), the bounded derived cat-

egory of compactly supported coherent sheaves on the affine algebraic curve M∨ = Gm (the

punctured affine line).

If one is willing to ignore the triangulated structure, this could be proved by establishing a

one-to-one match between isomorphism classes objects, as in [154]. The object LA corre-

sponds to the sheaf XA defined by

(10.28) 0 −→ O⊕rM∨
A−wI−−−−→ O⊕rM∨ −→ XA −→ 0,

where w is the coordinate on M∨, and I the identity matrix. Note that, because M∨ is

one-dimensional, any object of the derived category is isomorphic to the direct sum of its

cohomology sheaves. Moreover, each compactly supported coherent sheaf is a finite direct

sum of (10.28).
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On the other hand, there is an underlying cochain level statement, which implies the coho-

mology level statement in a form that includes the triangulated structure, and whose proof

is simpler and more conceptual. It is based on the following chain of observations:

• Each LA is quasi-isomorphic to a twisted complex constructed out of La. Hence,

it is sufficient to consider the full A∞-subcategory with objects {La}.

• There are no morphisms from La to Lb for a 6= b. Hence, it is sufficient to consider

each object La separately.

• HF ∗(La, La) ∼= H∗(La;K) is an exterior algebra in one variable. One can show

(either as a consequence of the general classification theory from Lecture 9, or by

a more direct argument involving passing to a strictly unital model) that the un-

derlying A∞-structure must be quasi-isomorphic to the trivial (formal) one, which

we denote by Λ.

As a consequence,

(10.29) Fuk(M)tw ∼=
⊕
a∈C∗

Λtw .

The same argument applies on the coherent sheaf side.

Proposition 10.9 is a simple example of Kontsevich’s Homological Mirror Symmetry (HMS)

[113], with M∨ the mirror of M . However, in view of (10.29) the content of that statement

is maybe disappointing: the categories involved do not seem to reflect the geometry of

the underlying manifolds, and they are also not particularly well-behaved (not smooth, for

instance; compare Example 7.12). Therefore, the following wrapped version is maybe more

meaningful:

Proposition 10.10. Dtw (W(M)) is equivalent to DbCoh(M∨).

This reduces to computing the endomorphisms of the object L = R × {0} (). One shows

that

(10.30) HW ∗(L,L) ∼= K[w,w−1],

concentrated in degree 0. The underlying A∞-structure is then again necessarily formal (for

degree reasons). Under the mirror equivalence, this object corresponds to the structure sheaf

OM∨ .
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A four-dimensional example

We return to local mirror symmetry, in an example which is close to the one that already

appeared in Lecture 3. However, this time we want to go into more depth concerning the

symplectic topology, and specifically the Fukaya category, or our manifold. This gives us the

chance to demonstrate several of the approaches to such categories that have been explored

in recent years (the discussion stops short of an actual proof of Kontsevich’s Homology

Symmetry Conjecture, even though such a proof is in principle within reach of the existing

technology).

Acknowledgments. Mohammed Abouzaid and Nicholas Sheridan graciously allowed me to

include their proofs of Lemma 11.6, and so did Ailsa Keating for Remark 11.11. Obviously,

any errors in the presentation are my own.

Affine conic fibrations and their mirrors

To place the following example in context, we recall one of the early approaches to construct-

ing local mirrors [92, 84]. Take an integer polytope P ⊂ Rn−1. This singles out a class of

Laurent polynomials

(11.1)

W : (C∗)n−1 −→ C,

W (y1, . . . , yn−1) =
∑

ν∈P∩Zn−1

zνy
ν .

Within the linear space of such W (or equivalently the space of possible coefficients {zν}),
there is a Zariski open subset of “nondegenerate” ones (these have the property that W−1(0)

is smooth, and satisfy additional nondegeneracy conditions at infinity, in the manner of [41]).

We choose a Laurent polynomial in that subset, and form the conic fibration

(11.2) M = {(x, y) ∈ C2 × (C∗)n−1 : x1x2 +W (y1, . . . , yn−1) = 0}.

As the name suggests, projection p : M → (C∗)n−1 has conic fibres, which degenerate exactly

along W−1(0). If one equips M with an appropriate Kähler form, it becomes a Liouville

manifold. We also equip it with the trivialization of the canonical bundle given by

(11.3) ηM = resM
dx1 ∧ dx2 ∧ dy1/y1 ∧ · · · dyn−1/yn−1

x1x2 +W (y1, . . . , yn−1)
.

Suppose that we have a maximal triangulation of P , which means a decomposition into

integer simplices of minimal volume. There is an additional condition (the triangulation

103
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must be induced from a piecewise affine convex function P → R). Form the cone over P ,

which is the set of points in Rn−1×R of the form (tp, t) for p ∈ P and t ≥ 0. The triangulation

gives rise to a fan structure on the cone, which determines a smooth toric Calabi-Yau variety

N . The projection Rn−1 ×R→ R corresponds to a toric function F : N → C. If we remove

F−1(0), then this function is just the projection (C∗)n → C∗. However, instead we want to

remove the fibre over a nonzero point, say F−1(1) ∼= (C∗)n−1:

(11.4) M∨ = N \ F−1(1).

This is a non-compact smooth Calabi-Yau variety, which we call the naive mirror of M .

The word “naive” is appropriate, because the construction is heuristic. A better motivated

version can be carried out in the general context of Strominger-Yau-Zaslow mirror symmetry

with instanton corrections, either in the algebro-geometric framework of the Gross-Siebert

program [86, 85] or by counting holomorphic discs [20, 48]. In particular, this provides a

precise mirror map, which should replace the use of nondegenerate Laurent polynomials in

the definition of M . However, we will stick to the “naive” version for the sake of simplicity.

There are at least two possible versions of HMS in this context:

Dperf Fuk(M)
?∼= DbCohcpt(M

∨),(11.5)

Dperf W(M)
?∼= DbCoh(M∨).(11.6)

These are obviously analogues of Propositions 10.9 and 10.10 (which can actually be thought

of as a special case, even if a somewhat degenerate one, with n = 0). The reservations ex-

pressed there, namely that the categories involved do not reflect the geometry appropriately,

also apply to (11.5), making (11.6) the more formally satisfying statement.

Remark 11.1. One difference between the formulations of HMS here and in Lecture 10 is

the appearance of Dperf instead of Dtw . We recall that, for any A∞-category A, Dperf (A) is

the Karoubi completion (obtained by formally introducing retracts of idempotent endomor-

phisms) of Dtw (A). This completion is unwelcome from a symplectic geometry viewpoint,

since it leads us further away from the original objects (Lagrangian submanifolds). But it

seems indispensable, both because the categories on the right hand side of (11.5), (11.6) are

already Karoubi complete, and because of the role played by split-generation results [176, 4]

in understanding the Fukaya category.

It is maybe worth while mentioning that, due to a general algebraic result of [195], the

difference between Dtw (A) and Dperf (A) is essentially one of Grothendieck groups. Namely,

if T is any triangulated category which is Karoubi complete, and S ⊂ T a full triangulated

subcategory whose Karoubi completion is T, then S can be completely reconstructed from the

subgroup K0(S) ⊂ K0(T). In particularly simple examples, this may allow one to prove that

Dtw and Dperf of the Fukaya category coincide (this was the case for the annulus).

Example 11.2. Take P = [0, 1] ⊂ R. For W (y) = y − 1, one gets

(11.7) M = {(x1, x2) ∈ C2 : x1x2 6= 1},
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with the holomorphic volume form

(11.8) ηM =
dx1 ∧ dx2

1− x1x2
.

It is important to write down ηM because H1(M) ∼= Z, which means that there are dif-

ferent homotopy classes of C∞ trivializations of KM (leading to different Z-graded Fukaya

categories). A suitable choice of Kähler form is ωM = dθM = d(−dch), where the Kähler

potential is

(11.9) h = 1
4 |x1|2 + 1

4 |x2|2 + 1
2 (log |1− x1x2|)2.

On the other side of the mirror, the associated toric variety is N = C2, and F (w1, w2) =

w1w2. Hence,

(11.10) M∨ = {(w1, w2) ∈ C2 : w1w2 6= 1}

is isomorphic to M (a low-dimensional coincidence).

Example 11.3. Take P to be a minimal integer simplex. This yields

(11.11) M = {(x1, x2, y1, . . . , yn) ∈ C2 × (C∗)n : x1x2 = y1 + y2 + · · ·+ yn − 1}.

This time, the mirror has quite different topology:

(11.12) M∨ = {w1 · · ·wn 6= 1} = Cn \ (C∗)n−1.

Example 11.4. Let’s again start from Example 11.2, but generalize that in a different di-

rection. Namely, take P (m) = [0,m] ⊂ R. For a suitable choice of Laurent polynomial, one

gets an M (m) which is a Z/m-covering of the space M from (11.7). On the other side, for

the unique decomposition of P (m), the associated toric variety N (m) is the minimal resolu-

tion of the (Am−1) quotient singularity C2/G, where G ∼= Z/m is generated by diag(ζ, ζ−1),

ζ = e2πi/m. To form M (m),∨ one removes the preimage of the conic {w1w2 = 1} ⊂ C2/G.

This time, M (m),∨ is still diffeomorphic to M (m), but carries a different complex structure

(the m = 2 case is the example of local mirror symmetry which appeared in Lecture 3, with

the notations for the two manifolds switched around).

On the categorical level, the relation to Example 11.2 is expressed as follows. Take M∨ as

in that Example. Thanks to the McKay correspondence [100], one has

(11.13) DbCoh(M (m),∨) ∼= DbCohG(M∨),

and similarly for the compactly supported versions. On the other hand, G acts on the Fukaya

category of M (by tensoring objects with flat line bundles on M whose holonomy is a root

of unity), and this leads to a relationship with the Fukaya category of M (m) analogous to

(11.13). Making this precise requires one to admit certain immersed Lagrangian submanifolds

as objects of the Fukaya category of M . We will return to this issue later on, when carrying

out concrete computations.
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y = y∗ = 1

S

y = 0

Figure 1.

Lagrangian spheres

From now on, we concentrate on the simplest of the examples introduced above, namely the

manifold M from Example 11.2. In this case, the conic fibration

(11.14) y = 1− x1x2 : M −→ C∗

has a single singular point, lying over y∗ = 1 ∈ C∗. We had mentioned in Lecture 3 that

there is a way to go from paths in the base to (S1-invariant) Lagrangian surfaces in the

total space. Explicitly, let’s start with an immersed path γ : I → C∗, whose domain is

either I = S1 or I = [0, 1]. In the first case, γ should avoid y∗; in the second case we want

γ−1(y∗) = {0, 1}, and γ′(0) should not be a positive multiple of γ′(1) (but can be a negative

multiple). One associates to γ a Lagrangian immersion, whose image is

(11.15)
{
x1x2 = 1− γ(t) for some t ∈ I, and |x1| = |x2|

}
⊂M.

The domain of this immersion is a torus if I = S1, and a sphere if I = [0, 1]. In the first

case, the pullback of θM to the torus is exact if and only if

(11.16)

∫
I

γ∗(dc(log |y|)2) = 0.

Let’s start by taking I = [0, 1], and with γ that has no selfintersections other than at the

endpoints, and goes once around y = 0 (Figure 1). This gives rise to a Lagrangian sphere with

a single self-intersection point, which we denote by S. This sphere is automatically exact, and

one can equip it with some grading as well as the unique Spin structure. Generally speaking,

immersed Lagrangian submanifolds can be accomodated into the Fukaya category only after

a substantial effort [13]. However, in this particular case the sphere lifts to an embedded one

in the universal cover of M , which makes the definition of Floer cohomology unproblematic

[186]. Throughout this lecture, we use Floer cohomology with complex coefficients.

Lemma 11.5. HF ∗(S, S) ∼= Λ∗(C2) is an exterior algebra with two generators.

Sketch of proof. In such a situation (an exact Lagrangian submanifold with a single

self-intersection point, which disappears when lifting to the universal cover) one has [12]

(11.17) HF ∗(S, S) ∼= H∗(S;C)⊕ Ca⊕ Ca∗,
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where the extra generators a, a∗ have degrees that add up to n = dim(S), and can be chosen

so that the ring structure on HF ∗(S, S) satisfies

(11.18)
a a∗ = [point ] ∈ Hn(S;C),

a∗a = (−1)|a|·|a
∗|[point ].

In our case, we only need to check that a, a∗ have degree 1, and then the ring structure is

completely determined by (11.18) and degree arguments. The relevant degree is the absolute

Maslov index between the two branches of S at the selfintersection point. In our case, if we

take γ to be exactly the unit circle, then S becomes special Lagrangian, which makes the

computation particularly simple, compare [194]. �

Lemma 11.6 (Abouzaid). The A∞-structure underlying HF ∗(S, S) is formal (quasi-isomorphic

to that with vanishing higher order products).

Proof. This is an application of the general computational method developed in [6]

(some of the underlying ideas go back to [160]). The Abouzaid model for the cochain level

structure is given by the dga

(11.19) A = Ω∗(S)⊕ Ω∗(U)[−1]⊕ Ω∗c(U)[1].

The first summand in (11.19) consists of (complex-valued) differential forms on S ∼= S2.

For the rest, we take an open disc U and embeddings ι+, ι− : U → S whose images are

neighbourhoods of the two preimages of the selfintersection point, and which have opposite

orientations. The ring structure is given by

(11.20)
(α2, β2, γ2)(α1, β1, γ1) =

(
α2 ∧ α1) + (−1)|γ1|ι−,∗(β2 ∧ γ1) + (−1)|β1|ι+,∗(γ2 ∧ β1),

ι∗−(α2) ∧ β1 + (−1)|α1|β2 ∧ ι∗+(α1), ι∗+(α2) ∧ γ2 + (−1)|α1|γ2 ∧ ι∗−(α1)
)
.

Here, ι∗± is pullback, and ι±,∗ is extension of compactly supported differential forms (by

zero). (11.20) satisfies the usual sign conventions for dga’s (determining the signs is a bit

tricky, because the last two summands in (11.19) are shifted from their natural gradings).

Take 1 ∈ Ω0(S), an η ∈ Ω2
c(U) which is homologically nontrivial, and a ξ ∈ Ω1(S) such that

(11.21)
ι∗+ξ = ι∗−ξ,

dξ = ι+,∗η + ι−,∗η.

Then, the elements

(11.22)
(1, 0, 0), (ι+,∗η, 0, 0), (ι−,∗η, 0, 0), (ξ, 0, 0),

(0, 1, 0), (0, ι∗±ξ, 0), (0, η, 0), (0, 0, η)

span a quasi-isomorphic dg subalgebra of A. There is a two-sided differential ideal in that

subalgebra, spanned by

(11.23)
(ξ, 0, 0), (ι+,∗η + ι−,∗η, 0, 0),

(0, ι∗±ξ, 0), (0, η, 0).

That ideal is acyclic, and quotienting out by it yields a quasi-isomorphic to H∗(A). �
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Alternative proof (Sheridan). This is based on a modified version of the classifi-

cation theory for A∞-structures from Lecture 9. Let’s first see why such a modification

is necessary. We generalize slightly, and write A = Λ(V ) for the exterior algebra on an

n-dimensional vector space V . Its Hochschild cohomology is computed by a version of

Hochschild-Konstant-Rosenberg theorem:

(11.24) HH s(A,A[t]) ∼= Syms(V ∨)⊗ Λs+t(V ).

This is bad news, since the spaces classifying first order deformations of the A∞-structure

(s > 2, s + t = 2) are large. Moreover, these deformations are not obstructed to higher

order. In fact, they can be explicitly realized in terms of non-commutative deformations of

the Koszul dual algebra (which is the ring of functions on V̂ , the formal neighbourhood of

the origin in V ), using Kontsevich’s Formality Theorem [114].

Switching to a general discussion, consider A∞-algebras A which come together with a

bimodule homomorphism φ : A → A∨[n] from the diagonal bimodule to its dual (of some

fixed degree n). There is a cohomology theory which captures first order deformations of the

pair (A, φ), in a way analogous to Hochschild cohomology. The cohomology groups of that

theory, here denoted just by K∗ since there is no established terminology for them, sit in a

long exact sequence

(11.25) · · · → HH ∗+n−2(A,A∨) −→ K∗ −→ HH ∗(A,A) −→ HH ∗+n−1(A,A∨)→ · · ·

The map K2 → HH 2(A,A) corresponds to forgetting φ, and just considering deformations

of A. The other map HH n(A,A∨) → K2 corresponds to deformations of φ alone, keeping

A constant. The remaining piece of information is the connecting map, which we conjecture

to be the map induced by φ, HH ∗(A,A) −→ HH ∗+n(A,A∨), composed with Connes’ B

operator HH ∗(A,A∨)→ HH ∗−1(A,A∨).

We now specialize to the case when A is a graded algebra which is Frobenius of degree n,

hence comes with a bimodule isomorphism A → A∨[n]. The conjecture made above can

easily be verified in this case. Moreover, the Hochschild cohomology groups with coefficients

in A and A∨ are obviously isomorphic. Finally, there is a bigraded refinement K∗,∗ of the

groups above. One then gets a version of (11.25) of the form

(11.26) · · · → HH s−2(A,A[t]) −→ Ks,t −→ HH s(A,A[t]) −→ HH s−1(A,A[t])→ · · ·

where the connecting map is just the Connes operator. The classification of A∞-structures

A with H(A) ∼= A, together with A∞-bimodule maps φ which on cohomology induce the

given isomorphism, is governed by the groups

(11.27) Ks,t, s+ t = 2, s > 2,

in the same sense as in Propositions 9.6, 9.7.
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With this general theory at hand, we return to the case of the exterior algebra A = Λ(V ),

where (11.26) can be written as

(11.28)

· · · → Syms−1(V ∨)⊗ Λn−s−t+1(V ∨)
d−→ Syms−2(V ∨)⊗ Λn−s−t+2(V ∨) −→ Ks,t

−→ Syms(V ∨)⊗ Λn−s−t(V ∨)
d−→ Syms−1(V ∨)⊗ Λn−s−t+1(V ∨)→ · · ·

Here, we have used a choice of nonzero element of Λn(V ) to identify Λt(V ) ∼= Λn−t(V ∨),

since that allows us to write the Connes boundary operator as the de Rham differential d

(this is a well-known addition to the classical Hochschild-Kostant-Rosenberg theorem). Now

let’s specialize back to n = dim(V ) = 2, and to the case s+ t = 2 relevant to (11.27). Then

(11.28) turns into

(11.29) · · · → Syms−1(V ∨)⊗ V ∨ d−→ Syms−2(V ∨)⊗ Λ2(V ∨) −→ Ks,t

−→ Syms(V ∨)
d−→ Syms−1(V ∨)⊗ V ∨ → · · ·

The first de Rham differential in (11.29) is onto; the second one is injective except in the case

s = 0, which is irrelevant for us. The outcome is this: if A is any A∞-algebra with H(A) ∼=
Λ(C2) and which comes with a quasi-isomorphism of bimodules A ∼= A∨[−2], inducing the

standard duality Λi(C2) ∼= Λ2−i(C2)∨ on cohomology, then A is formal.

The rest of the proof is again completely general: as a weak form of cyclicity for Fukaya cat-

egories, the A∞-structure underlying HF ∗(S, S) is weakly cyclic in the sense of Example 7.8,

which means that it comes with the required bimodule quasi-isomorphism (see for instance

the proof of [179, Proposition 5.1]). �

Remark 11.7. There is a variant of this argument using the deformation theory for cyclic

A∞-structures [150], which is based on cyclic cohomology. After collapsing the bigrading for

the sake of simplicity, the cyclic cohomology of an n-dimensional exterior algebra is [124,

Chapter 3]

(11.30) HC ∗(A) ∼= ker(d : Ω̂n−∗ → Ω̂n+1−∗)⊕ Ĥn−∗+2 ⊕ Ĥn−∗+4 ⊕ · · · ,

where Ω̂∗ is the space of differential forms in a formal neighbourhood of 0, and Ĥ∗ the

cohomology of the de Rham complex of such forms. In particular,

(11.31) HC 2(Λ(C2)) ∼= C,

and once one re-introduces the bigrading, this one-dimensional space does not belong to

the part relevant for classifying cyclic A∞-structures. On the other hand, the geometric

application of this theory is harder, since it requires one to show that Fukaya A∞-structures

can be made cyclic (the general issue is discussed in [70], but the case under consideration

here would be less complicated).

From the point of view of (11.5), it is plausible to expect that S should correspond to the

skyscraper sheaf at the origin (w1, w2) = (0, 0) in the mirror (11.10) (there is obviously an

ambiguity in setting up the mirror map, so this is heuristic reasoning about what should

happen for a particular choice of map). This structure sheaf E satisfies Ext∗M∨(E,E) ∼=
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T

T ′

Figure 2.

Λ∗(C2), and one can use explicit Koszul resolutions to show that the underlying cochain

level structure is formal (alternatively, the second proof given here also goes through in the

algebro-geometric context).

Lagrangian tori

We want to consider two exact Lagrangian tori T, T ′ ⊂M , which are related to the Clifford

torus and Chekanov torus in affine space. This follows closely Auroux’ paper [20], even

though we avoid the use of wall-crossing formulae (making those rigorous requires more

advanced pseudo-holomorphic curve techniques); see also [47].

The first torus T ⊂ M is obtained from an embedded loop in the base C∗ which winds

once around the origin and around y∗ = 1. The second torus T ′ is defined in the same

way, but using a loop which only winds around the origin (see Figure 2). Because the loops

have to satisfy the exactness condition (11.16), they must intersect. Both T and T ′ can be

equipped with gradings, and with their trivial (compatible with the standard trivialization

of the tangent bundle of the torus) Spin structures. Finally, we choose flat complex line

bundles ξ, ξ′ on them, which are classified by their holonomies (s0, s1), (s′0, s
′
1) ∈ (C∗)2 (this

involves conventions that will be explained below).

Proposition 11.8. HF ∗(T, T ′) is nonzero if and only if

(11.32)
s′0 = s0,

s′1 = s1(1 + s0).

In fact, if this equation holds, then (up to a shift) T and T ′ are quasi-isomorphic objects of

Fuk(M).

Proof. One can arrange (see again Figure 2) that T and T ′ intersect cleanly in two

circles, C+ and C−. Then (assuming that the gradings have been chosen appropriately) an

application of basic Morse-Bott methods yields a long exact sequence

(11.33)

· · · → HF ∗(T, T ′)→ H∗(C+; Hom(ξ|C+, ξ
′|C+)) −→ H∗(C−; Hom(ξ|C−, ξ′|C))→ · · ·

When introducing the holonomies, we have implicity assumed that s0 is the holonomy around

a circle of T lying in the fibre of M → C∗, and similarly for s′0. Hence, the holonomy of

Hom(ξ|C±, ξ′|C±) is s′0/s0. If that is nontrivial, the cohomology of C± with these twisted
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coefficients vanishes, which shows that the condition s′0 = s0 is necessary. We will assume

from now that this is satisfied, so that the two last terms in (11.33) can be identified with

the ordinary cohomology groups H∗(C±;C) ∼= H∗(S1;C).

The map between these groups (11.33) is given by counting Floer trajectories that project to

one of the two shaded regions in Figure 2. One region contains no critical point, and (with

suitable conventions) it contributes

(11.34) − id : H∗(C+;C)→ H∗(C−;C).

The contribution from the other region is a map that occurs in the long exact sequence

[173]. The detailed analysis in [176, Section 17] shows that there are two homotopy classes

of Floer trajectories, whose boundary loops differ from each other by going once around the

fibre circle. Assuming as before that s0 = s′0, the resulting contribution is

(11.35) (s′1/s1 + s0s
′
1/s1) id : H∗(C+;C)→ H∗(C−;C).

(This vanishes if and only if s0 = −1; this choice is equivalent to equipping our tori with

trivial flat bundles but changing their Spin structures, which is what one does in the context

of the long exact sequence). Returning to our application, the Floer cohomology in (11.33)

is nonzero if and only if (11.34) and (11.35) add up to zero, which is exactly the second

condition in (11.32).

What we have shown so far is that if (11.32) is not satisfied, HF ∗(T, T ′) vanishes; and if it

satisfies, HF ∗(T, T ′) is isomorphic (as a graded vector space) to the ordinary cohomology

of a two-torus. In the second case, the same analysis of moduli spaces shows that the “cap

product” maps

(11.36)
H2(T ′;C)⊗HF 0(T, T ′) −→ HF 2(T, T ′),

HF 0(T, T ′)⊗H2(T ;C) −→ HF 2(T, T ′)

are nonzero. For general reasons of Poincaré duality in Floer cohomology, these maps are

dual to the triangle products

(11.37)
HF 0(T ′, T )⊗HF 0(T, T ′) −→ HF 0(T, T ) ∼= H0(T ;C),

HF 0(T, T ′)⊗HF 0(T ′, T ) −→ HF 0(T ′, T ′) ∼= H0(T ′;C).

Since all the Floer cohomology groups appearing in (11.37) are one-dimensional, it follows

that T and T ′ are indeed isomorphic in H0(Fuk(M)). �

From the point of mirror symmetry, the putative interpretation is as follows. T and T ′

correspond to the structure sheaves of the points

(11.38)
(w0, w1) = ((s0 + 1)s1, s

−1
1 ),

(w0, w1) = (s′1, (s
′
0 + 1)/s′1).

(One can take this as the starting point for a SYZ construction of the mirror, see [47]).

The formulae (11.38) define two charts C∗ × C∗ ↪→ M∨, which are precisely related by the

coordinate transformation (11.32). Neither chart contains the origin, and that predicts the

following easily checked statement:
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L0

L1

Figure 3.

T

U

T ′

U ′

Figure 4.

Proposition 11.9. HF ∗(T, S) and HF ∗(T ′, S) both vanish, for any choice of line bundles

on T, T ′. �

Conversely, one can use mirror symmetry to classify objects of the Fukaya category with a

given behaviour. A notable example of this process in the literature is [9]. For our particular

example, one has:

Proposition 11.10. Suppose that the Homological Mirror Symmetry conjecture holds in the

form (11.6) for (11.7), and that the equivalence of categories involved does have the properties

listed in the previous discussion:

• The Lagrangian sphere S corresponds to the structure sheaf of the origin in M∨;

• The tori T and T ′ correspond to the structure sheaves of points (11.38).

Then, if L ⊂ M is any exact Lagrangian torus which admits a grading, [L] ∈ H2(M) is

nonzero and primitive.

Proof. One has a ring isomorphism

(11.39) H∗(homFuk(M)(L,L)) = HF ∗(L,L) ∼= H∗(L;C).
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Let X be the putative mirror of L under (11.6), which is an object of DbCohcpt(M
∨) whose

endomorphism ring must match (11.39). Let H∗ be the cohomology sheaves of X.

Claim 2. There is only one nonzero Hk.

There is a spectral sequence

(11.40) Epq2 =
⊕
r

ExtpM∨(Hr, Hr+q) =⇒ Hom∗DbCoh(M∨)(X,X).

For dimension reasons, each group Ext1
M∨(Hk, Hk) survives to the E∞ page. On the other

hand, if Hk is nonzero, that Ext1 group has rank at least 2 (corresponding to the first order

deformation which move the point(s) where Hk is located). Comparison with the degree 1

part of (11.39) then leads to the desired conclusion.

Claim 3. Up to a shift, X is isomorphic to the structure sheaf of a point w ∈M∨.

The previous step that, after possibly shifting the grading, we may assume that X is a

single sheaf. It is also indecomposable, hence supported at a single point. The fact that

HomM∨(X,X) is one-dimensional then leads directly to the desired conclusion.

By the rest of the assumptions in the Proposition, X is isomorphic to the mirror of S, T ,

or T ′. Hence L is isomorphic to S, T or T ′ in H0(Fuk(M)). It is a general result that two

such isomorphic objects must have the same class in H2(M ;C). �

There are further questions, which don’t have obvious answers even if one assumes suitable

forms of mirror symmetry (notably, whether there is an exact Lagrangian torus which is

quasi-isomorphic to S in the Fukaya category; and whether there are Lagrangian tori which

are exact but do not admit gradings).

Remark 11.11 (Keating). It is worth while to consider briefly one possible generalization,

namely the m = 2 case of Example 11.4. As already discussed in Lecture 3, that manifold

is a conic fibration over C∗ with two singular fibres. The paths in Figure 3 yield the two

Lagrangian spheres S0, S1 from (3.47), and the loops from Figure 4 describe four Lagrangian

tori T, T ′, U, U ′, which however are not geometrically independent: up to Hamiltonian iso-

topy, two of them differ by a Dehn twist

(11.41) U ′ ' τS0(U).

Under mirror symmetry, these tori should correspond to three different rational maps from

(C∗)2 to the mirror. Here, “different” means that the coordinate transformation between

any two of them is not of monomial form. For generic choices of flat line bundles (but not

for all choices) one has HF ∗(S0, U) = 0, in which case U and τS0
(U) are quasi-isomorphic.

Because of this and (11.41), the rational maps corresponding to Z and Z ′ won’t be different

in the previously explained sense.
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Wrapped Floer cohomology

In [149], Pascaleff considered a certain non-compact Lagrangian submanifold R2 ∼= O ⊂
M , and computed its wrapped Floer cohomology, which is the ring of cohomology level

endomorphisms in the wrapped Fukaya category:

(11.42) HW ∗(O,O) = H∗(homW(M)(O,O)).

The computation uses methods similar to Proposition 11.8 (but is more complicated). The

outcome is:

Theorem 11.12 ([149, Theorem 1.3]). There is a ring isomorphism

(11.43) HW ∗(O,O) ∼= C[M∨].

The obvious mirror symmetry explanation is that under (11.6), O should correspond to a

locally free sheaf, let’s say the structure sheaf of M∨. Note that the underlying A∞-structure

A = homW(M)(O,O) is necessarily formal, since its cohomology is concentrated in degree

zero. One can therefore construct an A∞-functor

(11.44) homW(M)(O,−) : Fuk(M) −→ Amod ∼= C[M∨]mod ,

where the right side is the derived category of quasi-coherent sheaves on M∨. This is of

course one way to set up the desired mirror functor, with the main remaining task being to

show that it is full and faithful.

One can show that the Floer cohomology of O with any of the Lagrangian submanifolds

S, T , T ′ is one-dimensional. Hence, the image of each of these submanifolds under (11.44)

would indeed be the structure sheaf of a point of M∨. If one used (11.44) as a mirror

functor, one could then rigorously verify the previously stated formulae relating choices of

flat bundles with coordinates on the mirror, by computing the multiplicative structures on

Floer cohomology.

There is an alternative approach to the computation of wrapped Floer cohomology groups

(and the wrapped Fukaya categories) in M , which has the following two ingredients: first,

general conjectures on wrapped Fukaya categories, from [178, 174]; and second, mirror

symmetry considerations from [20, Section 5], made concrete in this case in [149] (see also

[49] for a discussion of the implications of these ideas, which is similar to the following one).

Consider

(11.45)

Q : M −→ C,

Q(x1, x2) = x1 +
x2

2

x1x2 − 1
.

This is a Lefschetz fibration (has only nondegenerate critical points, and no singularities at

infinity). In fact, if we consider a chart (x1, x2) = (r1 + r2, r
−1
2 ) for (r1, r2) ∈ (C∗)2 (this is

as in (11.38) but with the role of M and its mirror exchanged), then

(11.46) Q(r1, r2) = r1 + r2 +
1

r1r2
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is the well-known toric mirror to CP 2. The smooth fibres of (11.46) are three-punctured

elliptic curves, and adding M \ (C∗)2 ∼= C corresponds to filling in one of the punctures.

Homological mirror symmetry for (11.46) was first considered in [170] (see also [23]), where

it was shown that the Fukaya category Fuk(Q) of this Lefschetz fibration is derived equivalent

to the derived category of coherent sheaves on CP 2. A crucial observation from [22] is that

this result remains unchanged under (partial or full) fibrewise compactification.

We have not previously mentioned Fukaya categories of Lefschetz fibrations, and will not

engage into a detailed discussion now. For our immediate purpose, it is enough to know

that the non-compact Lagrangian submanifold O mentioned above can be thought of as a

Lefschetz thimble for Q, hence an object of Fuk(Q). The general conjecture from [174] says

that (11.42) can be computed as follows:

(11.47) HW ∗(O,O) ∼= lim−→pH
∗(homFuk(Q)(S

p(O), O)).

Here, S is the Serre functor. The direct limit in (11.47) uses a natural transformation from

the Serre functor to the identity, which is an additional piece of Floer-theoretic information

obtained from the geometry of the Lefschetz fibration. For (11.45), this additional piece

of information can be computed either using the general theory of [181], or else directly

geometrically [49]; and then (11.43) will follow.

This approach relies on (11.47), which we have presented as a conjecture, but in fact consid-

erable progress has been made towards establishing it. On the level of graded vector spaces,

one can derive that identity from Symplectic Field Theory surgery formulae [36, Appendix],

and this approach can at least in principle be extended to include ring structures [35]. On

the other hand, there is work in progress towards a more direct proof, which will yield results

on the level of A∞-structures [7].





LECTURE 12

Symplectic cohomology

We have already encountered symplectic cohomology SH ∗(M) as an invariant of a Liouville-

type symplectic manifold M (in Lecture 6). At this point, we want to dig a little deeper into

its structure and significance, specifically in relation with Fukaya categories. This has been

the focus of much recent attention [171, 4, 72, 158], in particular as regards the wrapped

version of the Fukaya category.

To see some of the motivation for this, suppose for simplicity that M is Spin, and consider

M × M̄ , where the sign of the symplectic form on the second factor has been reversed. The

diagonal ∆M ⊂ M × M̄ can be made into an object of the wrapped Fukaya category, and

one then has a ring isomorphism

(12.1) SH ∗(M) ∼= HW ∗(∆M ,∆M ).

Because of the formal analogy between the right hand side and Hochschild cohomology, one

is led to the following conjecture (which no longer depends on the Spin assumption):

(12.2) SH ∗(M)
?∼= HH ∗(W(M),W(M)).

See [72] for further discussion. Of course, there is a similar conjecture for the conjecture for

closed symplectic manifolds, involving quantum cohomology instead of symplectic cohomol-

ogy [113], but that seems unlikely to hold in general, whereas (12.2) is plausible at least for

Stein manifolds (with their natural Liouville structures; there are Liouville manifolds which

are not Stein [132], but little is known about their Fukaya categories). Here, we do not

try to establish any connection at this level of depth; instead, the discussion is limited to

describing the open-closed string maps which link symplectic cohomology and Lagrangian

Floer cohomology, and some of their properties.

Acknowledgments. I would like to thank Sheel Ganatra and Yiannis Vlassopoulos for very

useful discussions about higher Hochschild cohomology and open Calabi-Yau structures;

their unpublished writings [72, 117] have strongly influenced the exposition here.

Geometric setup

To harmonize the formalism here with that in Lectures 10–11, we work with Liouville man-

ifolds (M2n, ωM = dθM ) which have vanishing first Chern class, and choose a trivialization

of their canonical bundle KM = ΛnCTM , which means a C∞ complex volume form ηM for

117



118 12. SYMPLECTIC COHOMOLOGY

some compatible almost complex structure. This makes SH ∗(M) into a Z-graded vector

space (over an arbitrary coefficient field K), refining the Z/2-grading from Lecture 6.

Remark 12.1. As already mentioned in Lecture 6, there is a canonical decomposition

(12.3) SH ∗(M) =
⊕
c

SH ∗(M)(c)

indexed by connected components c of the free loop space LM , or equivalently conjugacy

classes in π1(M). Suppose that we change the trivialization of KM by multiplying it with

some function M → C∗, which represents a class γ ∈ H1(M ;Z). The effect on symplectic

cohomology is to shift the grading of SH ∗(M)(c) by 2〈γ, c〉. In particular, if we restrict to the

trivial summand (as is often done elsewhere in the literature), the choice of ηM is irrelevant.

Remark 12.2. In analogy with what we’ve done for fixed point Floer cohomology on closed

manifolds (in Lecture 5), one can define symplectic cohomology with coefficients in a flat K-

vector bundle over the free loop space LM . For simplicity, we will not make use of this, but it

would be convenient at several points; for instance, if one wished to remove the assumptions

of Spinness (or even orientability) from (6.7).

Finally, we define symplectic homology SH ∗(M) to be the dual of SH ∗(M) (this reverses the

situation for ordinary cohomology and homology). More precisely, we would like to consider

SH ∗(M) as coming from a chain complex with differential of degree +1, hence adjust the

gradings so that

(12.4) SH ∗(M) ∼= SH−∗(M)∨.

Batalin-Vilkovisky algebras

Definition 12.3. The operad of framed little (two-dimensional) discs [75, 164] is the fol-

lowing operad {FDd}d≥0 of topological spaces. Let D ⊂ C be the closed unit disc. A point

of FDd is given by a d-tuple of embeddings

(12.5)
ε1, . . . , εd : D → D \ ∂D,
εk(z) = akz + bk (ak ∈ C∗, bk ∈ C),

which have pairwise disjoint images. The action of the symmetric group on FDd permutes

the embeddings, and the maps

(12.6) ◦i : FDq × FDp −→ FDp+q−1

are obtained by composing embeddings (sticking a big disc inside a smaller one).

Each FDd is an open complex manifold of (complex) dimension 2d, homotopy equivalent

to the “framed ordered configuration space” (S1)d ×Conf ord
d (C). An explicit description of

the homology operad {H−∗(FDd;K)}d≥0 was given in [75], the outcome being that algebras

over it are identified with BV (Batalin-Vilkovisky) algebras. To make this explicit, let S∗ be

a graded vector space which is an algebra over the homology operad. FD0 is a point, and
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the generator of H0(FDd;K) ∼= K gives a distinguished element, the unit

(12.7) 1 ∈ S0.

Next, FD1 ' S1. We will always assume that [point ] ∈ H0(FD1) acts as the identity on S.

In the next degree, a (choice of) generator of H1(FD1) gives rise to the Batalin-Vilkovisky

or loop rotation operator

(12.8) ∆ : S∗ −→ S∗[−1],

which satisfies

(12.9)
∆(1) = 0 because H1(FD0) = 0,

∆2 = 0 because H2(FD1) = 0.

Next, FD2 ' (S1)3. We get a new generator in degree 0, the product

(12.10) S∗ ⊗ S∗ −→ S∗,

which is graded commutative, and for which (12.7) is a two-sided unit. All the higher

homology of FD2 is generated by H0(FD2) and H1(FD1) under compositions (12.6). One

noteworthy composed operation is the degree −1 bracket

(12.11) [b2, b1] = −(−1)|b2|∆(b2b1) + (−1)|b2|(∆b2)b1 + b2(∆b1),

which (as a consequence of the previously stated properties) is graded antisymmetric on

S∗[1], and satisfies [1, ·] = [·, 1] = 0. From FD3, we do not get any additional generators.

However, in degree 0 we get an additional relation, namely associativity of (12.10). And in

degree 1, we get the seven-term relation

(12.12)
∆(b3b2b1) = ∆(b3b2)b1 + (−1)|b3|b3∆(b2b1) + (−1)(|b3|−1)|b2|b2∆(b3b1)

− (∆b3)b2b1 − (−1)|b3|b3(∆b2)b1 − (−1)|b3|+|b2|b3b2(∆b1).

In terms of (12.11), one can interpret (12.12) as saying that [b, ·] acts as a derivation of

degree |b| − 1 on the algebra S∗:

(12.13) [b3, b2b1] = [b3, b2]b1 + (−1)(|b3|−1)|b2|b2[b3, b1].

Vanishing of ∆2 and (12.12) also imply that the bracket satisfies the graded Jacobi identity

on S∗[1]. The main theorem from [75] says that the generators and relations introduced

above form a complete list.

This general discussion is relevant to us for the following reason, to be explained in more

detail later:

Theorem 12.4. SH ∗(M) carries a natural structure of an algebra over {H−∗(FDd)}d≥0, or

equivalently of a BV algebra.

While the unital commutative ring structure already played an important role in Lecture 6,

the BV operator (12.8) is a new ingredient in our discussion, whose importance will increase

in the future. Theorem 12.4 appears in [175]; a more detailed construction can be found in

[157].
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Example 12.5. Consider the case of cotangent bundles M = T ∗L (Example 6.9, and with

the same assumptions on L). Choose a complex volume form ηM whose restriction to the

zero-section is real (this fixes ηM up to homotopy). Then, the isomorphism (6.7) will respect

the integer gradings on both sides. In terms of that isomorphism, the BV algebra structure of

symplectic cohomology has an interpretation in terms of string topology [50]. More precisely,

the BV operator corresponds to the homomorphism induced by

(12.14)
S1 × LL −→ LL,

(τ, u) 7−→ u(· − τ).

This can be proved using the same techniques as (6.7) itself (the possible exception is the ap-

proach in [202], which breaks circular symmetry, hence seems less suitable for this purpose).

The more difficult part of the relationship, namely that the product corresponds to the string

product, was proved in [2].

The mirror symmetry viewpoint

Let’s temporarily specialize to the simplest instance of Example 12.5, namely M = R×S1 =

T ∗S1. Write

(12.15) SH ∗(M) ∼= K[w,w−1, ∂w],

where the generator ∂w has formal degree 1, and the whole expression is a commutative

graded algebra (with unique relation ww−1 = 1). We find it convenient to choose the degree

one part of (12.15) in a slightly non-obvious way: namely, so that the decomposition

(12.16) SH ∗(M) ∼=
⊕
k

SH ∗(M)(k)

into summands parametrized by homotopy classes of loops, which means by k ∈ π0(LM) ∼=
π1(M) ∼= Z, is given by eigenvalues of the Euler (or homogeneous rescaling) operator w∂w.

Concretely, this means that

(12.17) SH ∗(M)(k) ∼= Kwk ⊕Kwk+1∂w.

With this taken into account, the BV operator satisfies

(12.18)
∆(wk∂w) = (k − 1)wk−1,

∆(wk) = 0.

Geometrically (for k 6= 0), this reflects the fact that the Reeb orbit representing wk−1 and

wk∂w is a |k − 1|-fold multiple. The associated bracket (12.11) satisfies

(12.19)
[wk∂w, w

l∂w] = (l − k)wk−l−1∂w,

[wk∂w, w
l] = lwk+l−1∂w.

Thinking of the mirror M∨ = Gm (as in Propositions 10.9 and 10.10), one finds that SH ∗(M)

is isomorphic to the Hochschild cohomology of that variety, which in this (smooth affine)
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case is

(12.20) HH ∗(M∨,M∨) ∼= H0(M∨,Λ∗T (M∨)).

The product and bracket on SH ∗(M) correspond to the standard product and bracket of

polyvector fields. These can also be viewed as the Gerstenhaber algebra structure defined on

(12.20) by identifying it with the Hochschild cohomology of coherent sheaves on M∨ (in the

general categorical sense of Lecture 9). The situation with (12.8) is a little more interesting:

the corresponding operation on (12.20) is given by

(12.21)

H0(M∨,Λ∗T (M∨))
∼=−→ H0(M∨,Ωn−∗M∨ )

d−→ H0(M∨,Ωn+1−∗
M∨ )

∼=−→ H0(M∨,Λ∗−1T (M∨)).

Here, the two isomorphisms are determined by the complex volume form

(12.22) ηM∨ =
dw

w
,

and the remaining map is the de Rham differential. For instance, the action of (12.21) on

vector fields can be written as

(12.23) Z 7−→ d(iZηM∨)

ηM∨
=
LZηM∨

ηM∨

and this indeed reproduces (12.18).

It seems plausible to expect the same relation between symplectic cohomology and Hochschild

cohomology in a general context of local mirror symmetry (Lectures 3 and 11), but this

conjecture has not been tested exhaustively so far. Maybe the most interesting point is that

the BV operator on SH ∗(M) contains information about the choice of complex volume form

on the B-model (mirror) manifold M∨.

Relation with the Fukaya category

There are canonical open-closed string maps [171]

SH ∗(M) −→ HH ∗(Fuk(M),Fuk(M)),(12.24)

HH ∗−n(Fuk(M),Fuk(M)) −→ SH ∗(M).(12.25)

The first of these is a map of (unital) Gerstenhaber algebras, which means that it is com-

patible with the ring structure and the bracket. The second map sends the Connes operator

on Hochschild homology to the (dual of the) BV operator. One can put both structures

under the same hat, as follows. As already mentioned in (the second proof of) Lemma

11.6, A = Fuk(M) is weakly cyclic (in the terminology of Example 7.8). This induces an

isomorphism

(12.26) HH ∗(A,A) ∼= HH ∗−n(A,A∨) ∼= HH ∗−n(A,A)∨,

where the second isomorphism can be read off directly from the underlying chain complexes.

With this isomorphism taken into account, (12.25) turns into the dual of (12.24). Equiva-

lently, one can use (12.26) to equip Hochschild cohomology with a counterpart of the Connes
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operator, following the algebro-geometric model of (12.21), see [199]; and then (12.24) be-

comes compatible with all the operations on symplectic cohomology.

Example 12.6. Take M = R× S1 as before, and assume that K is algebraically closed. As

a consequence of (10.29) we have

(12.27) HH ∗(Fuk(M),Fuk(M)) ∼=
∏
a∈K∗

HH ∗(Λ,Λ).

Λ is an exterior algebra in one variable, whose Hochschild cohomology can be written as

(12.28) HH ∗(Λ,Λ) ∼= C[[v, ∂v]].

The map

(12.29) SH ∗(M) = K[w,w−1, ∂w] −→ HH ∗(Fuk(M),Fuk(M)) ∼=
∏
a∈K∗

C[[v, ∂v]]

consists of taking the Taylor expansions of a Laurent polynomial around all possible points

a ∈ K∗ at the same time. In particular, it is far from being an isomorphism.

Example 12.7. Take M = T ∗Sn for some n > 1. In that case, it is easy to see that

Fuk(M)perf ∼= Aperf , where A is the subcategory having only the zero-section as an object

(hence quasi-isomorphic to the algebra K[θ]/θ2, where |θ| = n). Using techniques from [5],

one can prove that (12.24) is an isomorphism.

Open-closed string maps have a couple of straightforward applications. Let L ⊂ M be an

object of Fuk(M) (which means, a closed Lagrangian submanifold which is exact, graded,

Spin, and carries a flat K-bundle ξL). The first order term of (12.24) yields a homomorphism

of unital rings SH ∗(M)→ HF ∗(L,L), which fits into a commutative diagram

(12.30) SH ∗(M) // HF ∗(L,L)

H∗(M ;K)

OO

// H∗(L; Hom(ξL, ξL)).

∼=

OO

The left hand ↑ is the map already mentioned in (6.10), and the bottom → is the restriction

map to L ⊂M in cohomology, combined with the inclusion of the trivial line bundle K · id ⊂
Hom(ξL, ξL). In particular, if a class x ∈ Hn(M ;K) has the property that 〈x, [L]〉 6= 0,

then the image of x in SH n(M) is nonzero (one can give an alternative proof of this using

Viterbo functoriality, but that is effectively a much more difficult tool). Dually, we get a

map H∗(L; Hom(ξL, ξL))→ SH−∗(M), and in particular can use the fundamental homology

class on the left hand side to define an element

(12.31) [L]SH ∈ SH−n(M).

Under the map SH ∗(M)→ H−∗(M ;K) dual to (6.10), this becomes the ordinary fundamen-

tal class [L], hence one should think of (12.31) as a refined homology class. Equivalently,

it is simply the image of the Hochschild homology class of the object L under (12.25). The

latter interpretation has the advantage that it can be generalized to objects of Fuk(M)perf .
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Example 12.8. Suppose that M = R × S1, and that L = {0} × S1 equipped with a flat

K-vector bundle whose holonomy is A. If we use (12.15) and (12.22) to identify

(12.32) SH−1(M) ∼= C[[w,w−1]],

then

(12.33) ±[L]SH =
∑
k∈Z

Tr(A−k)wk =
∑
i

miδai(w).

where the sign depends on the orientation. In the second equality, we are assuming that K
is algebraically closed, and that A has (generalized) eigenvalues ai with multiplicity mi. The

formal Laurent expansion of the Dirac δ-function at the point w = a is δa(w) =
∑
k∈Z(w/a)k,

whence the equality. The outcome matches expectations from mirror symmetry (compare with

the discussion preceding Proposition 10.9). Taking the image under SH−1(M) → H1(M)

corresponds to retaining only the constant term of (12.33).

Relation with the wrapped Fukaya category

For this version of the Fukaya category, one again has natural open-closed string maps:

SH ∗(M) −→ HH ∗(W(M),W(M)),(12.34)

HH ∗−n(W(M),W(M)) −→ SH ∗(M).(12.35)

The second map has a slightly different form than in (12.25), and that has nontrivial impli-

cations. For instance, if one starts with an object L of W(M), we again get a class

(12.36) [L]∨SH ∈ SH n(M),

but that one no longer contains much interesting information: it is the image of the Poincaré

dual of L in Hn(M ;K) (which exists even if L is not compact, as long as it is properly

embedded) under the map H∗(M ;K) → SH∗(M). However, that does not mean that the

entire map (12.35) factors through H∗(M ;K).

Remark 12.9. One can start more generally with an object of W(M)perf , and use (12.35)

together with the Morita invariance of Hochschild homology to associate to this object a class

in SH n(M). There seems to be no reason for such classes to come from ordinary cohomology.

One of the interesting aspects of (12.34), (12.35) is that one can compose the two maps to

get a homomorphism

(12.37) HH ∗−n(W(M),W(M)) −→ HH ∗(W(M),W(M)).

This map has an interpretation purely in terms of additional structures on W(M), which we

will now explain. Interested readers should also consult [72], which in particular raises the

question of whether (12.34), (12.35), and (12.37) are isomorphisms (for the latter map, this

would be an “open Calabi-Yau” property of the wrapped Fukaya category, in the sense of

[201, 76]).
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p = 2
q = 4

Figure 1.

Diagonals

Let’s temporarily return to the basic algebraic framework. Take an A∞-algebra A over K (for

our application, we need the generalisation to A∞-categories, but that is straightforward).

Define the second order Hochschild cochain complex [117, Section 3] to be

(12.38) CC (2),∗(A,A) =
∏
p,q≥0

Hom(A⊗p+q,A⊗2)[p+ q].

The notation does not give a good intuitive picture. It is better to think of elements of

CC (2),∗(A,A) as operations with inputs and outputs arranged in a circle (Figure 1). The

differential ∂ on (12.38) is obtained by composing with the A∞-operations either on any

input point or on one of the two output points. For instance, suppose that we start with

σ =
∑
j σ

j
2 ⊗ σ

j
1 ∈ A⊗2. Then the first terms of the cocycle equation ∂σ = 0 are

(12.39)

∑
j(−1)|σ

j
1|µ1

A(σj2)⊗ σj1 + σj2 ⊗ µ1
A(σj1) = 0 p = q = 0,∑

j(−1)|a|(|σ
j
1|+1)µ2

A(σj2, a)⊗ σj1 =
∑
j(−1)(|a|+1)|σj1|σj2 ⊗ µ2

A(a, σj1) p = 0, q = 1,∑
j(−1)|σ

j
2|+|a|(|σ

j
2|+|σ

j
1|)µ2

A(a, σj2)⊗ σj1 = (−1)|a|σj2 ⊗ µ2
A(σj1, a) p = 1, q = 0,

. . .

The secondary Hochschild cohomology HH (2),∗(A,A) is the cohomology of (12.38). Note

that this carries an action of Z/2, induced from one on the underlying chain complex (which

exchanges p and q). Projection to the p = q = 0 term yields a map HH (2),∗(A,A) −→
H(A)⊗2. By (12.39), any class s =

∑
j s
j
2 ⊗ s

j
1 in the image of that map must satisfy

(12.40)

{ ∑
j(−1)|s

j
2|·|x|sj2x⊗ s

j
1 =

∑
j(−1)|s

j
2|·|x|sj2 ⊗ xs

j
1,∑

j xs
j
2 ⊗ s

j
1 = (−1)|s| |x|

∑
j s
j
2 ⊗ s

j
1x

for all x ∈ H∗(A). Finally, note that CC (2),∗(A,A) carries an action of Z/2 (exchanging

p and q) which is compatible with the differential, hence induces an action on secondary

Hochschild cohomology.

Remark 12.10. There is also an interpretation in more abstract categorical terms, along

the lines of (9.29). In order to explain that in concise terms, suppose temporarily that A

is a dg algebra. One can introduce “A-quadrimodules”, which are chain complexes with
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four mutually commuting actions of A (a corresponding notion of multi-A∞-module for A∞-

algebras was introduced by Ma’u [128]). In particular, D = A ⊗ A is a quadrimodule. We

denote by Dτ the same object but where the the ordering of the four A-actions is permuted

cyclically. Then [117, Section 4]

(12.41) HH (2),∗(A,A) ∼= H∗(hom(D,Dτ )),

where the right hand side takes place in a suitable derived category of quadrimodules.

Second order Hochschild cohomology comes with an analogue of the (classical) structure of

HH ∗(A, Q) as a module over HH ∗(A,A). Namely, for any A-bimodule Q, there is a canonical

map

(12.42) HH (2),∗(A,A)⊗HH ∗(A, Q) −→ HH ∗(A, Q).

An elementary piece of this goes as follows. Let s ∈ H(A)⊗2 be an element satisfying (12.39).

This induces a map

(12.43)
H(Q) −→ H(Q),

q 7−→
∑
j(−1)|s

j
1| |q|sj2qs

j
1,

which lands in the center Z(H(Q)) = {q ∈ H(Q) : xq = (−1)|q| |x|qx for all x ∈ H(A)}, and

it kills the commutator [H(A), H(Q)]. In fact, if s comes from an element of HH (2),∗(A,A),

the corresponding specialization of (12.42) and (12.43) fit into a commutative diagram

(12.44) HH ∗(A, Q) // HH ∗(A, Q)

��
H(Q)/[H(A), H(Q)]

OO

// Z(H(Q))

Definition 12.11. A diagonal on A of dimension n is an element of HH (2),n(A,A) which

is invariant under the Z/2-action.

Theorem 12.12. The wrapped Fukaya category W(M) has a canonical diagonal of degree n,

which gives rise to (12.37).

We will not explain this in detail. It involves additional moduli spaces of Riemann surfaces,

which are again punctured discs (as in the definition of the Fukaya category) but have two

outputs. The simplest such moduli space, where the Riemann surface is a single infinite

strip, gives rise to an element of HW ∗(L0, L1) ⊗ HW ∗(L1, L0) of degree n for each pair of

objects (L0, L1), which is the categorical counterpart of s ∈ H(A)⊗2.

Remark 12.13. Our notion of diagonal is a first order approximation to that of pre-Calabi

Yau structure in [117], which includes the A∞-structure, a cochain representative of a di-

agonal, and higher order terms (for the special case of a finite-dimensional A, an equivalent

notion of boundary A∞-algebra appears in [181]). It is plausible that wrapped Fukaya cat-

egories should have natural pre-Calabi Yau structures, but it seems that the required moduli

spaces have not been constructed it.
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Two versions of the definition

In order to give some background to the rather formal discussion so far, we should review

the definition of SH ∗(M). The starting point is the structure of M at infinity, which can be

described by an embedding

(12.45) N × [0,∞) ↪→M

where (N,αN ) is a manifold with a contact one-form, and where the pullback of θM by

(12.45) is erαN (r ∈ [0,∞) is the radial variable). In particular, the Hamiltonian vector

field associated to the function er is (0, Rα), where Rα is the Reeb vector field of (N,αN ).

By perturbing the embedding (12.45) slightly, one can always achieve that all closed Reeb

orbits (including multiples of the primitive ones) are transversally nondegenerate, and we

will assume from now on that this is the case.

Choose a function h ∈ C∞([0,∞),R) with the following properties:

(12.46)


h′(0) > 0 is small,

h′′(r) > 0,

limr→∞ h′(r) =∞.

Take a Morse function H on M , such that dH is small outside (12.45), and H(r, y) = h(er)

at infinity. The associated time-dependent Hamiltonian vector field X then satisfies

(12.47) X(r, y) = h′(er)(0, RN ).

By choosing h and H suitably, one can achieve that one-periodic orbits of X are either

constant x(t) = p, where p is a critical point of H, or else of the form

(12.48) x(t) = (r, y(ρ−1t))

where y : R→ N is a periodic Reeb orbit, ρ > 0 the period (but not necessarily the minimal

period), and r > 0 the unique number such that h′(er) = ρ.

As usual in Hamiltonian Floer theory (see e.g. [162] for an introduction), we formally set

up Morse theory on the free loop space LM with respect to the action functional

(12.49) AH(x) =

∫
S1

−x∗θM +Ht(x(t)) dt .

Critical points are (parametrized) 1-periodic orbits of X. One can arrange that the orbits

disjoint from (12.45) are nondegenerate. Those of the form (12.48) come in S1-families

(because of the parametrization) which are transversally nondegenerate. On each S1-family,

one can choose an auxiliary Morse function with two critical points. The resulting Morse-

Bott type Floer cochain complex is of the form

(12.50) CF ∗(H) =
⊕
p

K[−i(p)] ⊕
⊕
y

(K[−i(y)]⊕K[−i(y)− 1]).

where the first sum is over critical points of M , and the second one is over periodic Reeb

orbits on N (including multiple orbits). The degree i(·) is a Conley-Zehnder index. The

definition of the differential on (12.50) involves a mixture of pseudo-holomorphic cylinders
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and Morse trajectories, in the manner of [31]. SH ∗(M) is then defined as the cohomology

of (12.50) (this description, which partially fleshes out the one given in Lecture 6, is closely

related to the points of view adopted in [38, 36]).

There is also an equivalent, but technically a little simpler, approach. Choosing an increasing

sequence of numbers λk > 0 such that limk λk =∞, and such that N has no closed Reeb orbit

of period λk. Correspondingly, take Hamiltonians Hk such that Ht(r, y) = λke
r over the cone

(12.45). Note that these can now be time-dependent (on the rest of M), with t ∈ R/Z = S1.

This breaks the S1-symmetry, and one can therefore achieve that the one-periodic orbits are

nondegenerate. The resulting Floer cochain complexes CF ∗(Hk) are related by continuation

maps CF ∗(Hk)→ CF ∗(Hk+1), and one defines

(12.51) SH ∗(M) = lim−→k HF ∗(Hk).

In either version of the Floer-theoretic framework, operations on SH ∗(M) arise from Rie-

mann surfaces S with marked points Σ ⊂ S and additional marked tangent directions at each

of those points. There is an additional condition, namely that there should be a one-form

βS on S \ Σ such that:

• dβS is everywhere ≤ 0, and vanishes near Σ.

• The integral
∫
βS along a small loop around any point of Σ is nonzero.

The second condition divides Σ = Σin ∪Σout, depending on the sign of
∫
βS . The associated

operation will take as inputs elements of SH ∗(M) at every input point, and take values in

the tensor product of copies of SH ∗(M) associated to the output points. Instead of a single

Riemann surface, one can also use a family of such surfaces parametrized by a closed oriented

manifold. The spaces of framed little discs appear naturally as moduli spaces of genus 0

Riemann surfaces with a single output point. More details can be found in [175, 157, 184].
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Equivariant modules ***Warning***: contains an

error (marked as such)

Our next topic is the equivariant counterpart of the basic theory from Lectures 7 and 8.

Before we start with that, a few general remarks may be helpful. Given a discrete group

G acting on an algebra A, a G-equivariant A-module is the same as a module over the

semidirect product (also called skew group ring, or smash product) algebra A o G. This

makes it straightforward to set up the theory of equivariant modules, even though its eventual

complexity depends on that of the representation theory of G over the ground field K of A;

and the same remains true in the context of A∞-algebras. We will see a bit of this theory

in Lecture 14.

However, our primary interest lies in continuous symmetries, specifically actions of the al-

gebraic group Gm, and the ground field C (so Gm = C∗). A bit more generally, we will

allow any reductive algebraic group G over C, since that can be done without adding much

complexity (readers interested in an exposition specifically geared towards Gm might look at

[182, Section 2]). The theory of (rational) representations of reductive groups is fairly close

to the finite group case. However, the semidirect product trick no longer works, and in fact

the theory of equivariant A∞-modules is a little quirky.

Background from representation theory

Let G be a linear algebraic group over C (one possible textbook reference for the material

which follows is [81]). A linear representation of G is called rational if it is the direct

sum of finite-dimensional (algebraic) representations. For instance, the space of regular

functions C[G], with g ∈ G acting by f 7→ f(·g), is rational. Rational representations and

equivariant linear maps between them form an abelian category, which is in fact equivalent

to the category of comodules over C[G] (with the coproduct dual to the group structure of

G). From this viewpoint, C[G] is the cofree comodule, which means that

(13.1) Hom(W,C[G])G ∼= W∨

for any rational representation W (the map is given by composing with evaluation at the

identity, C[G] → C; and the G-action on the right hand side of (13.1) corresponds to the

action f 7→ f(g−1·) on the left hand side). We should also recall the notion of character of

a finite-dimensional representation,

(13.2) χW ∈ C[G]class .

131
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This is defined by χW (g) = Tr(g : W → W ), and takes values in the ring of class functions

(conjugation invariant regular functions, with the usual multiplication). Let Rfin(G) be the

abelian tensor category of finite-dimensional representations. Then, characters define a ring

homomorphism

(13.3) χ : K0(Rfin(G)) −→ C[G]class .

From this point onwards, we will assume that G is reductive. Then, each rational represen-

tation has a canonical decomposition

(13.4) W =
⊕
V

WV ,

where the direct sum is over representatives of each isomorphism class of (finite-dimensional)

irreducible representations, and WV is a direct sum of copies of V . More explicitly,

(13.5) WV
∼= (V ∨ ⊗W )G ⊗ V ∼= Hom(V,W )G ⊗ V,

where the map from right to left is the contraction φ ⊗ v 7→ φ(v). As an example, setting

W = C[G] and using (13.1) (with V replacing W ) gives us C[G]V ∼= V ∨, which yields a

well-known algebraic analogue of the Peter-Weyl theorem [81, Theorem 4.2.7]:

(13.6) C[G] ∼=
⊕
V

V ∨ ⊗ V.

Applying (13.4) to finite-dimensional representations shows that the category of such repre-

sentations is semisimple. In fact, (13.3) yields an isomorphism

(13.7) K0(Rfin(G))⊗Z C
∼=−→ C[G]class .

Example 13.1. For G = Gm = C∗, the irreducible representations V are one-dimensional

and labeled by integers. Hence, a rational representation is simply a vector space W with a

decomposition as a direct sum of graded pieces. If we identify C[G]class = C[G] ∼= C[t, t−1]

in the obvious way, then K0(Rfin(G)) = Z[t, t−1].

We will also encounter representations which are not rational, but only products

(13.8) W =
∏
i∈I

Wi,

where the Wi are rational. For any irreducible V , set WV =
∏
i∈IWi,V . One gets a diagram

of injective maps

(13.9)
⊕

V WV

inclusion ++

// W

��∏
V WV .

The inclusion WV ⊂ W can be characterized intrinsically, which means without reference

to the product (13.8), as the image of the (injective) contraction Hom(V,W )G ⊗ V → W .

Unfortunately, it seems that there is no similar characterization of the projections W →WV

which enter into the ↓ map in (13.9). One way to add the necessary information is to equip

(13.8) with the product of the discrete topologies on the Wi factors. Let’s call the result a
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pro-rational representation. Note that
⊕

V WV is then dense in W (and so is the smaller

subspace
⊕

V,iWi,V ). In particular, for any V there is a unique idempotent endomorphism

of W which is the identity on WV , kills the subspaces associated to other finite-dimensional

representations, and is continuous. This provides the desired description of the projections

to WV , at the cost of having to remember the topology.

Example 13.2. Let W,U be rational representations, say W =
⊕

iWi with Wi finite-

dimensional. That makes

(13.10) Hom(W,U) =
∏
i Hom(Wi, U) =

∏
iW
∨
i ⊗ U

into a pro-rational representation. The associated topology is that of pointwise convergence

of maps W → U .

Now suppose that C is a chain complex of pro-rational representations, with a differen-

tial which is equivariant and continuous. The differential preserves each CV ⊂ C, and by

continuity it also commutes with the projections C → CV . Then, (13.9) induces a diagram

(13.11)
⊕

V H
∗(CV )

inclusion ++

// H∗(C)

��∏
V H

∗(CV ).

In particular, specializing to the trivial representation, one finds that

(13.12) H∗(CG) −→ H∗(C)G

is split-injective.

Example 13.3. The ↓ in (13.11) is not necessarily injective. For instance, consider

(13.13) C =
{⊕

V

V
inclusion−−−−−−→

∏
V

V
}
.

This is a complex of pro-rational representations. In fact, the first term is rational, hence

carries the discrete topology, which means that the differential is obviously continuous. We

have H∗(CV ) = 0 for any V , but H∗(C) 6= 0. Unfortunately, I do not know an example

where (13.12) fails to be an isomorphism.

Group actions on A∞-categories

Throughout the rest of our discussion, A will be an A∞-category with a G-action. The action

is understood in a naive sense, meaning that each space homk
A(X,Y ) (X,Y ∈ Ob(A), k ∈ Z)

is a rational representation of G, in a way which is strictly compatible with A∞-operations.

We denote by AG the subcategory with the same objects, but where only invariant morphisms

are allowed. Among the standard results that carry over to the equivariant context without

problems, two are worth mentioning because they will be used later on: the theorem that

says that any A is quasi-isomorphic to a strictly unital one; and the Perturbation Lemma,

which says that any A is quasi-isomorphic to a minimal one (one with vanishing differential).
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Example 13.4. Let A be an A∞-algebra such that that µdA = 0 for all d 6= 2. Then, it carries

an obvious action of the multiplicative group Gm, namely the one that acts with weight d on

Ad. Of course, our assumption just says that A is a graded algebra in the classical sense. It

is therefore not surprising that in this case, the category of Gm-equivariant A∞-modules (to

be introduced soon) is essentially equivalent to the derived category of complexes of graded

modules in the classical sense; see [182, Section 2].

There is a “converse” statement, stating that the presence of a suitable (infinitesimal) sym-

metry enforces formality. Let A be a minimal A∞-algebra. Suppose that there is a Hochschild

cocycle φ ∈ CC 1(A,A) such that φ0 ∈ A1 vanishes, and such that φ1 ∈ Hom0(A,A) is the

Euler derivation, meaning tht it is d times the identity on Ak for all k ∈ Z. Then, A is

necessarily formal. One proof involves the spectral sequence associated to the length filtration

of HH ∗(A,A). Its starting page is

(13.14) Epq1 = HH p(A,A[q]),

where A is the graded algebra of which A is an A∞-deformation. Suppose that A is not

formal, and that m = [µAd ] ∈ HH d(A,A[2 − d]) is the first nontrivial deformation class

(d > 2). In that case, the first nonvanishing differential on (13.14) is the Gerstenhaber

bracked with m. If f ∈ HH 1(A,A) is the class of the derivation φ1, then by definition

(13.15) [m, f ] = (d− 2)m 6= 0.

But that would contradict the assumption that f survives to yield the leading order term of

a class in HH 1(A,A).

Example 13.5. Let M be a smooth projective variety, E the total space of its canonical

bundle KM , and i : M → E the zero-section. Suppose that X is an object of DbCoh(M).

There are canonical (up to quasi-isomorphism) proper differential graded algebras A and B

such that

(13.16)
H∗(A) = Hom∗DbCoh(M)(X,X),

H∗(B) = Hom∗DbCoh(E)(i∗X, i∗X).

One can arrange that A is a subalgebra of B (the induced map on cohomology is that given

by i∗). One can further arrange that B carries a Gm-action, corresponding to rotation of the

fibres of the anticanonical bundle, which is trivial on A and has weight 1 on a complemen-

tary subspace. If we identify that complementary subspace with B/A, the existence of this

symmetry implies that the only nontrivial A∞-operations on B are of the form

A⊗d −→ A,(13.17)

A⊗q ⊗ (B/A)⊗A⊗p −→ B/A.(13.18)

The products (13.18) define the structure of B/A as an A∞-bimodule over A, and then B

is the so-called trivial extension algebra formed from A and that bimodule. In the particular

case of the canonical bundle, we actually have

(13.19) B/A ' A∨[−dim(E)].

Therefore, B is entirely determined by A (see [166, 24, 179] for more details).
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We should point out that these considerations have geometric significance. Suppose for a

moment that E is a general Calabi-Yau variety, containing M as a hypersurface. The normal

bundle to M is then necessarily identified with KM . However, it is not necessarily true that

the formal neighbourhood is isomorphic to that of the zero-section inside the anticanonical

bundle (the first example would be where M is a fibre of an elliptic fibration E → C; then,

KM is trivial, but the j-invariant of the fibres usually varies, and that affects the structure of

the formal neighbourhood of M). Correspondingly, the isomorphism (13.19) of bimodules still

holds, but fails to describe B completely; the additional information contained in B reflects

the higher order infinitesimal geometry of the embedding M ⊂ E.

Remark 13.6. It is legitimate to ask why we restrict our discussion to actions of G in a

naive sense, rather than introducing a more “categorically appropriate” notion (as done in

[57] for classical categories; the cochain level version would obviously be more complicated).

The answer lies in our choice of intended applications. In simple algebraic situations (such

as Example 13.4), the strict action on G can be written down directly. In algebro-geometric

examples (such as Example 13.5) one can again get G to act strictly on the resulting A∞-

algebras, even though that requires a little more care. Finally, in situations arising from

symplectic topology, we will indeed encounter difficulties in constructing group actions: but

those difficulties are primarily geometric ones, in which the lack of an more sophisticated

algebraic formalism is only a secondary issue.

Twisted complexes

One can define, in a relatively straightforward way, the category of equivariant twisted

complexes Aeq-tw . This is again an A∞-category with a G-action, and contains A as a full

A∞-subcategory. Objects of Aeq-tw are of the form (C, δC) as in (7.12), but where the Wi are

finite-dimensional graded representations of G. The differential δC should be G-invariant,

and the filtration which is required to exist as part of the definition of a twisted complex must

be compatible with the G-action. Morphism spaces are the same as in the non-equivariant

case, and carry an obvious G-action.

***Warning***. The following Lemma is wrong. As an example, consider

DbCoh(CP 1), with the C∗-action induced from . All objects are direct sums

of their cohomology sheaves, and similarly for equivariant objects. However, the

structure sheaf of a (general) point is not a direct summand of an equivariant

sheaf. If one follows through the proof, it would tell one to write that structure

sheaf first as Cone(O(−1)→ O), and then make the arrow equivariant by passing

to Cone(O(−1)→ O⊕O⊗ V ), for a suitable character V . But that cone is isomor-

phic to O(+1), of which the structure sheaf of a point is not a direct summand.

The error lies in the construction of (13.23). This affects some of the arguments

in the following lecture – I will fix it at some point.

Lemma 13.7. (***Incorrect***) Every twisted complex is a homotopy retract of an equi-

variant twisted complex.
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Proof. As mentioned before, after applying a G-equivariant quasi-isomorphism, we

may assume that A is strictly unital. Our strategy of proof will be to show that if C0, C1 are

homotopy retracts of equivariant twisted complexes, and a ∈ hom0
Aeq-tw (C0, C1) is a closed

degree 0 morphism between them, then the mapping cone Cone(a) is again a homotopy

retract of an equivariant twisted complex (note that we do not assume that a is G-invariant;

otherwise, the statement would be trivial). This clearly implies the desired result.

To keep the notation simple, let’s first consider the special case where we start with two

objects X0, X1 of A itself. For any irreducible representation V , consider the equivariant

twisted complex (with zero differential) V ⊗ V ∨ ⊗ X1, with the given action of G on V ∨,

and the trivial action on V . This comes with morphisms

(13.20) X1

diagonal⊗eX1−−−−−−−−−→ V ⊗ V ∨ ⊗X1

contraction⊗eX1−−−−−−−−−−−→ X1

whose composition is dim(V ) times the identity. Because of the way in which we have defined

V ⊗ V ∨ ⊗X1, these maps are generally not G-invariant. Instead, composition with the first

map in (13.20) recovers the isomorphism

(13.21) homA(X0, X1)V ∼= homAtw (X0, V
∨ ⊗X1)G ⊗ V ∼= homA(X0, V ⊗ V ∨ ⊗X1)G.

Given a closed a ∈ hom0
A(X0, X1), write it as a = aV1 + · · ·+ aVr , where each aVi belongs to

the subspace associated to some irreducible representation Vi. Compose aVi with the first

map in (13.20) for the corresponding representation to get a G-invariant morphism

(13.22) X0

ã=ãV1
⊕···⊕ãVr−−−−−−−−−−→

⊕
i

Vi ⊗ V ∨i ⊗Xi.

If we compose this with the direct sum of the second maps in (13.20), the outcome is a times

dim(
⊕

i Vi). After dividing by that constant, one gets the following diagram in Atw :

(13.23) Cone(a)

identity

88
// Cone(ã) // Cone(a).

Since ã is invariant, Cone(ã) is an equivariant twisted complex, hence Cone(a) is a homotopy

retract (a strict retract, in fact) of an equivariant twisted complex.

The same argument applies if, instead of (X0, X1), one starts with equivariant twisted com-

plexes and a morphism between them. Finally, suppose that we have two twisted complexes

(C0, C1) which are homotopy retracts of equivariant twisted complexes (C̃0, C̃1). Then, the

cone of every morphism C0 → C1 is a homotopy retract of the cone of a morphism C̃0 → C̃1,

to which the previous statement applies. �

Modules

An equivariant A-module M associates to every object X in A a graded vector space M(X)

whose graded pieces are rational representations of G, together with A∞-module operations

which are G-equivariant.
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Example 13.8. If Y is an object of A, the Yoneda module Y yon(X) = homA(X,Y ) is

naturally equivariant.

Example 13.9. Given an arbitrary A-module M , one can define an equivariant module

Morbit as follows. The underlying vector space is

(13.24) Morbit(X) = C[G]⊗M(X),

with the G-action inherited from C[G]. This means that if we think of elements as functions

m : G→M(X), then the action is by (gm)(·) = m(·g). In the same terms, the A∞-module

structure is

(13.25) µ1;d
Morbit (m; ad, . . . , a1)(g) = µ1;d

M (m(g); g(ad), . . . , g(a1)).

Note that (13.25) is local in g ∈ G; or to express it more formally, Morbit(X) is a module

over the algebra of functions C[G] by pointwise multiplication, and this is compatible with its

A∞-module structure (later, we will think of this additional structure as making Morbit into

a family of modules over the affine algebraic variety G).

Example 13.10. Suppose that M is already equivariant, and W is a rational representation.

Then, one defines another equivariant module W ⊗M by setting (W ⊗M)(X) = W ⊗M(X)

with the tensor product action of G, and the A∞-module structure

(13.26) µ1;d
W⊗M (w ⊗m; ad, . . . , a1) = w ⊗ µ1;d

M (m; ad, . . . , a1).

In the special case W = C[G], the tensor product is isomorphic to Morbit . This is not entirely

trivial: even though these two modules associate the same space to any X, the G-actions are

different. The isomorphism is set up in such a way that the image of m ∈ Morbit(X) in

(C[G]⊗M)(X) is the function g 7→ g−1m(g).

We denote the dg category of equivariant A-module by Aeq-mod . This has the same mor-

phisms as in the non-equivariant case, except that now homAeq-mod (M,N) carries a natural

G-action. Restricting to invariant morphisms yields a subcategory Aeq-mod,G (Example 13.9

is part of the right adjoint to the forgetful functor Aeq-mod,G → Amod).

There is a hidden technical issue in this description. To simplify the notation in the following

discussion, let’s assume that A is just an A∞-algebra, so that modules consist of a single

graded vector space, equally denoted by M . The morphism spaces in Aeq-mod are not rational

representations of G. Instead,

(13.27) homk
Aeq-mod (M,N) = homk

Amod (M,N) =
∏
d≥0

Homk−d(M ⊗A⊗d, N)

can be made into a pro-rational representation (by writing M and A as the direct sum

of finite-dimensional representations, and Hom(·, N) correspondingly as a direct product).

More concretely, the associated topology is the topology of pointwise convergence (in the

discrete topology) of each expression φ1;d(m; ad, . . . , a1). In particular, the differential on

(13.27) is continuous, as is the composition of morphisms. Applying the previous general
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considerations, one has graded subspaces

(13.28)

homAeq-mod (M,N)V ∼= V ⊗Hom(V, homAeq-mod (M,N))G

∼= V ⊗ homAeq-mod,G(V ⊗M,N)

∼= V ⊗ homAeq-mod,G(M,V ∨ ⊗N),

associated to irreducible representations V , a diagram

(13.29)⊕
V V ⊗H∗(homAeq-mod,G(M,V ∨ ⊗N)) //

inclusion

77

H∗(homAeq-mod (M,N))

��∏
V V ⊗H∗(homAeq-mod,G(M,V ∨ ⊗N)),

and a split injection

(13.30) H∗(homAeq-mod,G(M,N)) ↪→ H∗(homAeq-mod (M,N))G.

It will be important for us that the splitting is natural (under composition of morphisms).

Of course, all of this also holds for general A∞-categories rather than algebras.

Lemma 13.11. Let A be a proper A∞-category, and M,N equivariant A-modules which are

proper. Then the ↓ map in (13.29) is an isomorphism, and so is (13.30).

Proof. Without loss of generality, we may assume that A and the modules are minimal,

hence consist of finite-dimensional graded vector spaces. In that case, homAeq-mod (M,N) is

a direct product of finite-dimensional representations of G, hence isomorphic to the direct

product of (13.28), and the result is obvious (readers wishing to avoid the initial use of

Perturbation Lemma techniques may want to rely on the spectral sequence associated to the

length filtration instead). �

Perfect modules

Take an equivariant A∞-module N . One can extend this to an equivariant module over

Aeq-tw , in a canonical way. On the vector space level, this looks as follows:

(13.31) C =
⊕
i∈I

Wi ⊗Xi =⇒ N(C) =
⊕
i∈I

N(Xi)⊗W∨i ,

and then δC enters into the definition of the A∞-module structure. In particular, N(C)

is a again a rational representation in each degree. Now let Cyon be the Yoneda module

associated to an equivariant twisted complex. There is an equivariant quas-isomorphism

(13.32) N(C) −→ homAeq-mod (Cyon , N),
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By taking the mapping cone of (13.32) and applying (13.11) to it, one sees that the in-

duced map on the subcomplexes associated to rational representations V are again quasi-

isomorphisms. Hence, we get a commutative diagram

(13.33)
⊕

V H
∗(N(C)V )

∼=
��

∼= // H∗(N(C))

∼=
��⊕

V H
∗(homAeq-mod (Cyon , N)V ) // H∗(homAeq-mod (Cyon , N))

which shows that the→ in (13.29) is an isomorphism if the first of the two modules involved

comes from a twisted complex. We want to extend this property to a slightly larger class:

Definition 13.12. Let M be an equivariant A-module. We say that M is equivariantly

perfect if, in H0(Aeq-mod)G, it is a retract of the Yoneda module associated to an equivariant

twisted complex. We write Aeq-perf ⊂ Aeq-mod for the full A∞-subcategory of equivariantly

perfect modules.

We have required the retractions to be G-invariant only on the cohomology level, but this is

in fact not an issue. To see that, take Cyon as before, and let

(13.34) [π] ∈ H0(homAeq-mod (Cyon , Cyon))G

an endomorphism which is idempotent and G-invariant (on cohomology). It follows from

(13.33) that one can choose a representative π which is strictly G-invariant. Now suppose

that M is the homotopy retract associated to [π]. This means that we have maps C → M

and M → C, which are G-invariant on the level of cohomology, and whose composition is

[π]. Using the split-injectivity of (13.30), one can apply a projection and obtain new maps

which have G-invariant cochain level representatives, and whose composition is still [π] on

the cohomology level. Applying (13.33) again, it follows that the cochain level product of

those new representatives differs from π by the coboundary of a G-invariant cochain. Hence,

M is in fact a homotopy retract of C in Aeq-mod,G, which means that Definition 13.12 is not

actually more general than the obvious stricter-looking alternative. This and our previous

considerations of twisted complexes imply:

Lemma 13.13. Suppose that M is equivariantly perfect. Then the → in (13.29) is an iso-

morphism. As a consequence, H∗(homAeq-mod (M,N)) is a rational representation of G. �

In particular, if we define Aeq-perf ,G ⊂ Aeq-mod,G to be the full subcategory of equivari-

antly perfect modules (and their G-invariant morphisms), then H∗(homAeq-perf ,G(M,N)) ∼=
H∗(homAeq-perf (M,N))G.

Let’s continue our earlier discussion in a slightly different direction. Our representative π

can be taken to be the Yoneda image of a cocycle p ∈ hom0
Aeq-tw (C,C)G. As in [176, Section

4b], one can extend p to an idempotent up to homotopy, which involves a series of higher

order cochain, all of them again strictly G-invariant. This in turn allows the construction of

an equivariant A∞-module M as in [176, Lemma 4.4], which in H0(Aeq-mod,G) is the retract

of Cyon associated to [π]. Hence:
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Lemma 13.14. H0(Aeq-perf ,G) is Karoubi complete (admits homotopy retracts for all idem-

potent endomorphisms). �

Proposition 13.15. Let M be an equivariant A-module. Suppose that if we forget the

equivariant structure, M is a perfect module. Then it is also an equivariantly perfect module.

Proof. Suppose that (forgetting the equivariant structure) M is a homotopy retract of

Cyon , the Yoneda module of a twisted complex C. By Lemma 13.7, we can assume without

loss of generality that C is an equivariant twisted complex. Take the morphisms

(13.35)
ρ ∈ hom0

Aeq-mod (Cyon ,M),

ι ∈ hom0
Aeq-mod (M,Cyon)

which express the fact that M is a retract. Under the ↓ map in (13.29), these turn into

(13.36)

(ρV ) ∈
∏
V

homAeq-mod,G(V ∨ ⊗ Cyon ,M)⊗ V ∨,

(ιV ) ∈
∏
V

homAeq-mod,G(M,V ∨ ⊗ Cyon)⊗ V.

By (13.33), only finitely many cohomology classes [ρV ] can be nonzero. Denote the associated

irreducible representations by (V1, . . . , Vr). Since [ρ] · [ι] = [eM ] on the cohomology level, it

follows that

(13.37)

r∑
i=1

[ρVi ] · [ιVi ] = [eM ].

Here, the product of [ρVi ] and [ιVi ] is given by composition of morphisms together with the

dual pairing of V and V ∨ (it is easy to see that no other ιV can contribute). Equivalently,

form C̃ =
⊕

i Vi⊗ V ∨i ⊗C, made into an equivariant twisted complex just as in the proof of

Lemma 13.7, with its associated Yoneda module C̃yon . We then have maps

(13.38)
ρ̃ = (ρV1

, . . . , ρVr ) ∈ homAeq-mod,G(C̃yon ,M),

ι̃ = (ιV1
, . . . , ιVr ) ∈ homAeq-mod,G(M, C̃yon)

whose composition is again [eM ] on cohomology. �

Equivariant Hochschild homology

Suppose, again for the sake of notational simplicity, that A is an A∞-algebra with a G-action.

We can apply the same idea as in (13.25) to A∞-bimodules, twisting the action by G on the

right hand side only. In particularly, by starting with the diagonal bimodule, one gets the

orbit bimodule

(13.39)

O = A⊗ C[G],

µs;1;r
O (a′s, . . . , a

′
1; o; ar, . . . , a1)(g)

= (−1)|a
′
1|+···+|a

′
s|+s−1µr+1+s

A (a′s, . . . , a
′
1, o(g), g(ar), . . . , g(a1)).
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This is a G-equivariant bimodule, with h ∈ G acting by

(13.40) o(g) −→ h(o(h−1gh)).

We define the equivariant Hochschild complex to be the invariant part of CC ∗(A, O) with

respect to the action induced by (13.40):

(13.41) CCG
∗ (A,A)

def
= CC ∗(A,O)G =

(
C[G]⊗

⊕
i≥1

A⊗i[i− 1]
)G

The expression in brackets is again a rational representation, hence if we define the equivari-

ant Hochschild homology HHG
∗ (A,A) as the cohomology of (13.41), then

(13.42) HHG
∗ (A,A) ∼= HH ∗(A, O)G.

As in Example 13.9, O carries an additional structure of module over C[G], and (13.40) is

compatible with the conjugation action of G on itself. Hence, (13.41) and its cohomology are

naturally modules over C[G]class . In more geometric terms, the spaces HH k(A, O) can be

thought of as quasi-coherent sheaves on G which are equivariant with respect to conjugation,

and (13.42) are the invariant sections.

Remark 13.16. If G is a finite group, one has O =
⊕

g∈G g
∗A, where g∗A is pullback of

the diagonal bimodule by g acting on the right. One then finds that, in agreement with our

original motivational remarks,

(13.43) HHG
∗ (A,A) ∼= HH ∗(AoG,AoG).

The right hand side has been studied extensively as an algebraic analogue of orbifold coho-

mology, see for instance [172, Section 4] or [59].

Given a equivariant A∞-functor F : A→ B, one gets an induced equivariant bimodule map

OA → F∗OB (where we have added the subscripts to distinguish between the two orbit

bimodules involved), given by a formula similar to (13.39). Hence, there is an induced map

between equivariant Hochschild complexes. Carrying over the discussion from Lecture 8, we

note the following properties:

• (Morita invariance) The map HHG
∗ (A,A) → HHG

∗ (Aeq-perf ,Aeq-perf ) induced by

the Yoneda embedding is an isomorphism.

• (Künneth formula) Suppose that G acts on A and B, and we form the tensor

product A ⊗ B in a way which is compatible with that action. Then there is a

quasi-isomorphism of chain complexes of modules over the function algebra C[G],

(13.44) CC ∗(A, OA)⊗C[G] CC ∗(B, OB) −→ CC ∗(A⊗B, OA⊗B)

which is compatible with the action of G by conjugation. In particular, from that

one gets an exterior product

(13.45) HHG
∗ (A,A)⊗HHG

∗ (B,B) −→ HHG
∗ (A⊗B,A⊗B).

• (Opposite property) Consider Aopp with the same action as A. Passing to the

opposite transforms the right pullback in (13.39) to the left pulback. Due to the



142 13. EQUIVARIANT MODULES ***WARNING***: CONTAINS AN ERROR (MARKED AS SUCH)

equivariance under conjugation, what one then gets is an isomorphism

(13.46) HHG
∗ (Aopp ,Aopp) ∼= HHG

∗ (A,A)

which is C[G]class -linear in a twisted way (one has to change the module structure

by the automorphism g 7→ g−1).

• (Normalisation) For A = C with the trivial action of G, it is straightforward to see

(using the reduced version of the equivariant Hochschild complex) that

(13.47) HHG
∗ (C,C) ∼= C[G]class .

Thanks to functoriality and Morita invariance, one can associate to any equivariantly perfect

module P a class

(13.48) [P ]GHH ∈ HHG
0 (A,A).

In the special case of A = C, this means that to any complex of rational representations

with finite-dimensional cohomology one can associate a class function, which unsurprisingly

recovers (13.3). For any proper equivariant module one has a dual class,

(13.49) [M ]∨,GHH ∈ Hom(HHG
0 (A,A),C[G]class),

and the analogue of (8.4), an “equivariant Cardy relation”, says that

(13.50) 〈[M ]∨,GHH , [P ]GHH〉 = χ(H∗(homAeq-mod (P,M))) ∈ C[G]class .

Supposing that A is proper, one can also restrict to considering only perfect modules, which

yields a pairing

(13.51) (·, ·)GHH : HHG
0 (A,A)⊗HHG

0 (A,A) −→ C[G]class .

Since it involves passing to the opposite of A, (13.51) is C[G]G-linear in the second variable,

but linear only in the twisted sense in the first variable. This is compatible with what

happens in (13.50) if one tensors M or P with finite-dimensional representations of G.

Example 13.17. Suppose that A is a directed A∞-category with objects (X1, . . . , Xm), car-

rying an action of G. Then

(13.52) K0(Aeq-tw ,G) ∼= K0(Aeq-perf ,G) ∼= K0(Rfin(G))m,

where the map from the right to the left carries (W1, . . . ,Wm) to the twisted complex
⊕

iWi⊗
Xi. It is easy to see that

(13.53) HHG
∗ (A,A) ∼= (C[G]class)m

(concentrated in degree 0). The map from (13.52) to (13.53) consists of m copies of (13.3).

Starting from this and (13.50), one can give an explicit formula for (13.51) in terms of the

characters of the morphism spaces in A.

Example 13.18. Let A be a linear graded algbra, carrying the action of G = Gm which has

weight j in degree j, as in Example 13.4. In that case,

(13.54) O = A⊗ C[G] = A[t, t−1] =
⊕
k∈Z

tkA.
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The A∞-bimodule structure has only two nontrivial terms,

(13.55)
µ1;1;0
O : A⊗O −→ O,

µ0;1;1
O : O ⊗A −→ O.

Both of them are given by the multiplication in A (up to signs due to general conventions).

However, the left action of A preserves each piece of (13.54), while the right action of Aj

maps the tk piece to the tk+j one.





LECTURE 14

Making objects equivariant ***Warning***: part of

this inherits errors from the previous lecture

Given a category with an action of a group G, one can ask when a given object Y can be

made equivariant (in an appropriate sense). One significant example is Polishchuk’s result

for derived categories of coherent sheaves (which was already mentioned in Lecture 1, as a

generalisation of Proposition 1.8):

Proposition 14.1 (Part of [153, Lemma 2.2]). Let M be a smooth complex projective variety

with an action of G, a connected reductive algebraic group such that π1(G) is torsion-free.

Let Y be an object of DbCoh(M) such that

(14.1) Hom∗DbCoh(M)(Y, Y ) =


0 ∗ = 1,

C ∗ = 0,

0 ∗ < 0.

Then Y is quasi-isomorphic to a bounded complex of G-equivariant coherent sheaves.

Proofs of such results seem to naturally break into two steps. The first step is to make Y

equivariant in a weak sense, which involves only cocycle identities that can be stated on the

cohomological level. The second step is to replace weak equivariance by a (more desirable)

stricter counterpart. For this second step, two alternative strategies have been pursued in

the literature:

• One strategy involves obstructions which are cohomology classes of G with coeffi-

cients in the negative degree endomorphisms of Y . While this obstruction theory

is very general, one then needs to impose suitable assumptions on G and Y which

ensure that the obstructions vanish. A form of this is implicit in [153], and the

fully developed idea would find a natural place in the theory of (higher) moduli

stacks of objects [198]; there is also a more elementary formulation in [182], which

the exposition here fllows. One unfortunate aspect of this approach is that, in

the case of algebraic groups, it ultimately encounters “convergence” issues, which

apparently force one to impose additional assumptions.

• The other strategy, carried out in [65], is to impose restrictions on G from the

start, which allow one to use a more elementary “averaging” process.

145
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We will explore both approaches, since each is instructive in its own way. Ultimately, the

more elementary approach seems to be more useful for our purpose. For expository reasons,

we start by looking at discrete group actions, and then return to algebraic groups.

Acknowledgments. I would like to thank Bertrand Toën for explaining to me which form the

obstruction theory should take.

Discrete groups

Let A be an A∞-category over a field K, carrying an action of a (discrete) group G. Here, the

notion of action is again understood in the naive sense, as an action on Ob(A) accompanied

by maps between the morphism spaces, which strictly satisfy the relations of G and are

compatible with the A∞-structure.

Definition 14.2. Suppose that A is strictly unital (the G-action then automatically preserves

the strict units). A strictly equivariant object of A is an object Y together with morphisms

(14.2) ρ1
Y (g) ∈ hom0

A(g(Y ), Y ), g ∈ G,

such that

(14.3)

µ1
A(ρ1

Y (g)) = 0,

µ2
A(ρ1

Y (g2), g2(ρ1
Y (g1))) = ρ1

Y (g2g1),

ρ1
Y (eG) = eY .

If Y is strictly fixed by G, then it becomes strictly equivariant by setting ρ1
Y (g) = eY for

each g ∈ G; or one can also twist the action by a character χ : G → K×, by setting

ρ1
Y (g) = χ(g)eY . Strictly equivariant objects are a little more general than this example,

but still not flexible enough for general use.

Definition 14.3. A weakly equivariant object of A is an object Y together with morphisms

(14.4)
ρ1
Y (g) ∈ hom0

A(g(Y ), Y ), g ∈ G,

ρ2
Y (g2, g1) ∈ hom−1

A (g2g1(Y ), Y ), g1, g2 ∈ G,

such that the following relations hold:

(14.5)
µ1
A(ρ1

Y (g)) = 0,

µ1
A(ρ2

Y (g2, g1)) + µ2
A(ρ1

Y (g2), g2(ρ1
Y (g1)))− ρ1

Y (g2g1) = 0,

and ρ1
Y (eG) is cohomologous to the identity of Y .

This definition is of a quite different nature than the previous one: even though we have

formulated it on the level of A, its content is entirely cohomological, saying that the classes

[ρ1
Y (g)] ∈ Hom0

H(A)(g(Y ), Y ) satisfy the condition

(14.6) [ρ1
Y (g2g1)] = [ρ1

Y (g2)] · g2([ρ1
Y (g1)]).
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Similarly, ifX,Y are two weakly equivariant objects, then Hom∗H(A)(X,Y ) carries an induced

action of G, given by

(14.7) [a] 7−→ [ρ1
Y (g)] · [g(a)] · [ρ1

X(g)]−1.

Even though it was not strictly necessary so far, the chain level formulation in (14.5) is still

useful, because it motivates an extension to higher homotopies:

Definition 14.4. A coherently equivariant object of A is an object Y together with

(14.8) ρrY (gr, . . . , g1) ∈ hom1−r
A (gr · · · g1(Y ), Y ), g1, . . . , gr ∈ G

such that the following generalization of (14.5) holds:

(14.9)

∑
µdA
(
ρrdY (gr, . . . , gr−rd+1), . . . ,

gr · · · gr1+r2+1(ρr2Y (gr1+r2 , . . . , gr1+1)), gr · · · gr1+1(ρr1Y (gr1 , . . . , g1))
)

+
∑
q

(−1)qρr−1
Y (gr, . . . , gq+1gq, . . . , g1) = 0.

Here, the first sum is over all partitions of r (d ≥ 1, r1 + · · ·+ rd = r). We also impose the

same condition on ρ1
Y (eG) as in Definition 14.3.

Proposition 14.5. Let Y ∈ Ob(A) be weakly equivariant, and make Hom∗H(A)(Y, Y ) into a

representation of G via (14.7). Suppose that the group cohomology with coefficients in that

representation satisfies

(14.10) Hr(G,Hom1−r
H(A)(Y, Y )) = 0 for r ≥ 2.

Then Y can be made coherently equivariant.

This is an obstruction theory exercise, which we will not reproduce (for some more details,

see [182, Section 8c]).

Example 14.6. Consider the situation where the G-action on A is trivial. Then, a coherently

equivariant structure for Y is the same as an A∞-functor

(14.11) R : K[G] −→ A

(the group ring K[G] is considered as an A∞-category with a single object, which maps to

Y under R). The standard obstruction theory for building A∞-functors involves Hochschild

cohomology [176, Section 1g]; but as already noticed in [64, Equation (5.7)], for group rings

Hochschild cohomology reduces to group cohomology.

The G-action on A induces one on Amod , so in principle all the flavours of equivariance

discussed above (strict, weak, coherent) could be carried over to modules. However, we will

reserve the simpler name “equivariant A∞-module” for the naive notion as in Lecture 13,

meaning that such a module consists of graded vector spaces M(X) together with linear

maps M(X)→M(g(X)), which strictly satisfy the group relations and are compatible with

the A∞-module structure. In that sense, we have:

Proposition 14.7. Suppose that Y is coherently equivariant. Then its Yoneda module is

quasi-isomorphic to an equivariant A∞-module.
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Proof. This is done by an explicit construction, based on the standard projective bar

resolution of G-modules. To motivate that construction, it is convenient to temporarily

assume that A is strictly unital, and to write down an “infinite twisted complex” of the form

(14.12) C =
⊕

gr · · · g1(Y )[r − 1]

where the sum is over r ≥ 1 and (g1, . . . , gr) ∈ Gr. Let’s denote the summands by

(14.13)
(gr, . . . , g1)

gr · · · g1(Y )[r − 1]
.

The differential δC combines multiplication on G and the morphisms (14.8). A piece of this

“twisted complex” is represented (without signs) in the following diagram:

(14.14)
(g3, g2g1)

g3g2g1(Y )[1]

g3(ρ1
Y (g2g1)) // g3

g3(Y )

(g3, g2, g1)

g3g2g1(Y )[2]

g3(ρ2
Y (g2,g1))

55

eg3g2g1(Y )

::

g3g2(ρ1
Y (g1)) //

eg3g2g1(Y ) ((

(g3, g2)

g3g2(Y )[1]

g3(ρ1
Y (g2))

;;

eg3g2(Y )

''
(g3g2, g1)

g3g2g1(Y )[1]

g3g2(ρ1
Y (g1)) // g3g2

g3g2(Y )

The necessary Maurer-Cartan equation is a consequence of (14.9), as illustrated by the top

part of (14.14). Moreover, again using (14.8), one defines a “morphism of twisted complexes”

C → Y .

The previous discussion is not entirely rigorous, since we have not specified the meaning of

“infinite twisted complex”. However, one can certainly associate to (C, δC) a Yoneda-type

left A-module N ; and at that point, one can in fact forget about the motivation and just

take the definition of N as a starting point (this also allows one to drop the strict unitality

assumptions). The underlying graded vector spaces are

(14.15) N(X) =
∏

homA(gr · · · g1(Y ), X)[1− r],

with the same indexing set as before, and with differential written in parallel with (14.9) as

(14.16)

(µ0;1
N (f))r(gr, . . . , g1) =

∑
(−1)|f |(r−rd)µdA

(
frd(gr, . . . , gr−rd+1), . . . ,

gr · · · gr1+r2+1(ρr2Y (gr1+r2 , . . . , gr1+1)), gr · · · gr1+1(ρr1Y (gr1 , . . . , g1))
)

+
∑
q

(−1)|f |+q−1fr−1(gr, . . . , gq+1gq, . . . , g1).

N is an equivariant module, with the action (g · f)r(gr, . . . , g1) = f(gr, . . . , g1g). There is

also a distinguished cocycle in N(Y ), which gives rise to a quasi-isomorphism from the left
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Yoneda module of Y to N (the quasi-isomorphism property is proved by a simple filtration

argument). By passing to Aopp , one obtains the corresponding statement for right modules,

which is the desired result. �

Example 14.8. Again, it is maybe instructive to think of the case when the action is trivial,

so that the coherently equivariant structure is given by (14.11). Then

(14.17) N = homC[G]mod (C[G],R∗A),

where we pull back the diagonal bimodule A via (14.11) to an (A,C[G])-bimodule, and then

take the space of A∞-module maps for the right action of C[G], leaving a left A-module.

Corollary 14.9. Suppose that Y is weakly equivariant, and that (14.10) holds. Then the

Yoneda module of Y is quasi-isomorphic to an equivariant A∞-module. �

This concludes our discussion of the obstruction theory approach. We now pass to the

alternative and more elementary strategy. As before, we temporarily impose the condition

that A should be strictly unital. More importantly, we require that:

(14.18) G is a finite group, and its order |G| is coprime to char(K).

We need to quickly reconsider the definition of equivariant twisted complex over A, to make

sure that it is properly adjusted to the finite group case. Such a complex C is of the form

(7.12) where the indexing set I carries an action of our group G, the associated objects satisfy

Xg(i) = g(Xi), and the vector spaces come with linear graded maps λi(g) : Wi → Wg(i),

whose combined action

(14.19)
⊕
i

λi(g)⊗ eg(Xi) : g(C) =
⊕
i

Wi ⊗ g(Xi) −→ C =
⊕
i

Wg(i) ⊗Xg(i)

yields maps of twisted complexes satisfying the same conditions as in Definition 14.2. We

will actually need only one particularly simple example: given any object Y of A, the direct

sum

(14.20) Y orbit =
⊕
g∈G

g(Y )

(with vanishing differential) is obviously an equivariant twisted complex. In particular, it is

a strictly equivariant object of the category Atw with respect to the induced G-action.

Lemma 14.10. Suppose that (14.18) holds, and let Y be weakly equivariant. Then Y is

a homotopy retract of Y orbit , in such a way that the associated (cohomology level) maps

Y → Y orbit and Y orbit → Y are G-invariant with respect to (14.7).

Proof. Consider first the morphisms

(14.21)

⊕
g∈G

g(ρ1
Y (g−1)) : Y −→ Y orbit ,

⊕
g∈G

ρ1
Y (g) : Y orbit −→ Y.
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Their composition

(14.22)
∑
g

µ2
A(ρ1

Y (g), g(ρ1
Y (g−1)) =

∑
g

µ1
A(ρ2

Y (g, g−1)) + |G|ρ1
Y (e)

is cohomologous to |G| times the identity (readers will recognize this idea from Lemma 13.7).

By assumption (14.18), we can divide by |G|. Invariance of the maps (14.21) under (14.7)

can be checked by hand. �

Proposition 14.11. In the same situation as Lemma 14.10, the Yoneda module associated

to Y is quasi-isomorphic to an equivariant A∞-module.

Proof. Take the morphisms in (14.21), compose them in reverse order and divide by

|G|, so as to get a cohomology level endomorphism of Y orbit which is idempotent and G-

invariant.

As mentioned in Lecture 7, the category Amod is closed under homotopy retracts. Similarly,

given an equivariant module and a G-invariant idempotent endomorphism, one can find a

G-invariant module which is its homotopy retract (under our assumptions on G and K).

Indeed, we have already discussed this (for the more difficult case of algebraic groups) in

Lemma 13.14. Applying this fact to the Yoneda module Morbit of Y orbit and the given

idempotent yields the desired result. �

Clearly, (14.18) implies that all the cohomology groups in (14.10) vanish. Hence Proposition

14.11 is a special case of Corollary 14.9 (but the proof given above is more direct). Note also

that in both approaches, we could have started with a weakly equivariant module instead of

a weakly equivariant object of A itself.

Algebraic groups

We now return to the main subject of the discussion, which means actions of reductive

groups G as in Lecture 13. This differs from the discrete group case in two aspects: first, the

homological algebra of rational representations of G is built via comodules over the coalgebra

of functions C[G], hence uses injective resolutions dual to the projective ones appearing in

the discrete case. Secondly, actions of G on A∞-categories are trivial on objects by definition,

which means that it makes more sense to argue throughout on the level of modules.

Recall from Example 13.9 that to any A-module M one can associate its orbit module Morbit .

This is parallel to (14.20) in that it assembles all the pullbacks g∗M . To formulate this more

rigorously: if we take any point g ∈ G and the corresponding evaluation homomorphism

C[G]→ C, then the fibre at that point is

(14.23) C⊗C[G] M
orbit ∼= g∗M.

For any r ≥ 1, we will also use the pullback of Morbit under the total multiplication map

Gr → G, (gr, . . . , g1) 7→ gr · · · g1, which we denote by

(14.24) Morbit,(r) = C[G]⊗r ⊗C[G] M
orbit .
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Explicitly:

(14.25)

Morbit,(r)(X) = C[G]⊗r ⊗M(X),

µ1;d
Morbit,(r)(m; ad, . . . , a1)(gr, . . . , g1) = µ1;d

M (m(gr, . . . , g1); gr · · · g1(ad),

. . . , gr · · · g1(a1)).

Definition 14.12. A strictly equivariant A-module is an A∞-module M together with a

homomorphism

(14.26) ρ1
M ∈ hom0

Amod (M,Morbit)

which pointwise over G satisfies conditions analogous to those in Definition 14.2:

(14.27)

µ1
Amod (ρ1

M (g)) = 0,

µ2
Amod (g∗1ρ

1
M (g2), ρ1

M (g1)) = ρ1
M (g2g1),

ρ1
M (eG) = eM .

“Pointwise over G” means after evaluation using (14.23) (one can also formulate this def-

inition without reference to points, see [182, Equation 7.20]). Since we are considering

pullbacks of modules rather than pushforward, the action of G is on the target object of

(14.26) rather than the source as in (14.2). As a final point of comparison, no condition

of strict unitality on A is required, since we are actually working in Amod which is always

strictly unital.

Definition 14.13. A weakly equivariant A-module is an A∞-module M together with ele-

ments

(14.28)
ρ1
M ∈ hom0

Amod (M,Morbit),

ρ2
M ∈ hom−1

Amod (M,Morbit,(2))

which pointwise over G2 = G×G satisfies conditions analogous to those in Definition 14.3:

(14.29)

µ1
Amod (ρ1

M (g)) = 0,

µ1
Amod (ρ2

M (g2, g1)) + µ2
Amod (g∗1ρ

1
M (g2), ρ1

M (g1))− ρ1
M (g2g1) = 0,

[ρ1
M (eG)] = [eM ] ∈ H0(homAmod (M,M)).

If M and N are weakly equivariant, H∗(homAmod (M,N)) carries a G-action, defined as in

(14.7).

Lemma 14.14 (Compare [182, Lemma 7.9]). If M and N are weakly equivariant, and M is

perfect, then H∗(homAmod (M,N)) is a rational G-module.

Proof. Consider the C[G]-linear chain maps

(14.30) homAmod (M,N ⊗ C[G]) −→ homAmod (M,Norbit)←− homAmod (M,N ⊗ C[G])
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pointwise given by

(14.31)
homAmod (M,N)

µ2(ρ1
N (g),·)−−−−−−−→ homAmod (M, g∗N),

homAmod (M, g∗N)
µ2(·,ρ1

M (g))←−−−−−−− homAmod (g∗M, g∗N) ∼= homAmod (M,N).

Both are quasi-isomorphisms. If M is perfect, the inclusion

(14.32) homAmod (M,N)⊗ C[G] −→ homAmod (M,N ⊗ C[G])

is also a quasi-isomorphism. Take the cohomology level map induced by (14.30) and restrict

it to

(14.33) H∗(homAmod (M,N)) −→ H∗(homAmod (M,N))⊗ C[G].

This gives H∗(homAmod (M,N)) the structure of a C[G]-comodule, which is the same as a

rational representation. One checks easily that the associatedG-action reproduces (14.7). �

Definition 14.15. A coherently equivariant A-module is an A∞-module M together with

elements

(14.34) ρrM ∈ hom1−r
Amod (M,Morbit,(r))

for all r ≥ 1, which pointwise over Gr satisfies conditions analogous to those in Definition

14.4; namely, the last part of (14.29) together with the following strengthening of the first

two parts:

(14.35)

µ1
Amod (ρrM (gr, . . . , g1)) +

∑
i

µ2
Amod (g∗1 · · · g∗i ρr−iM (gr, . . . , gi+1), ρiM (gi, . . . , g1))

+
∑
q

(−1)qρr−1
M (gr, . . . , gq+1gq, . . . , g1) = 0.

The simpler form of (14.35) compared to (14.9) is due to the fact that Amod is a dg category.

Proposition 14.16 ([182, Lemma 8.3]). Take a perfect A∞-module M . If M can be made

weakly equivariant, then it can also be made coherently equivariant. �

Even though this may not be analogous from the formulation, the result and proof are

entirely analogous to Proposition 14.5. One encounters obstructions to equivariance lying

in the cohomology of the algebraic group G, as in (14.10), but these vanish in our context

because G is reductive and H∗(homA(M,M)) is a rational representation (by Lemma 13.13);

see [89] for the required group cohomology background. In principle, the same idea could be

applied to other linear algebraic groups, where the obstructions may be nonzero in general,

but we have not tried to carry that out (and instead have included reductiveness in the basic

setup of the theory of equivariant modules, in Lecture 13).

Proposition 14.17 ([182, Lemma 8.2]). Let M be a coherently equivariant G-module such

that for any X ∈ Ob(A), the graded vector space M(X) is bounded below. Then M is

quasi-isomorphic to an equivariant A∞-module.
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This is the analogue of Proposition 14.7, and is based on the same construction starting with

the right module analogue of (14.15), which is

(14.36) N(X) =

∞∏
r=1

C[G]⊗r ⊗M(X)[1− r]

and where G acts on the leftmost of the C[G] factors. The technical wrinkle is that, because

of the infinite product, (14.36) may not be a rational representation of G in general. The

boundedness condition we have imposed ensures rationality, since it means that only finitely

many r contribute to the direct product in each degree.

One can weaken the boundedness condition to a cohomological one, see [182, Corollary 8.4].

However, it remains a clear weakness of the obstruction theory approach (which one might

interpret as a “convergence issue”). We will therefore now switch to the alternative and

more direct strategy, in which this problem does not appear.

Lemma 14.18. Let M be a perfect A∞-module which is weakly equivariant. Then M is a

homotopy retract of an equivariant module Ñ , in such a way that the associated (cohomology

level) maps M → Ñ and Ñ →M are G-invariant. Moreover, Ñ is equivariantly perfect.

This is roughly analogous to Lemma 14.10 (which applied to finite groups). However, the

proof does not follow the same path, but instead uses the same idea as in Proposition 13.15.

Proof. First, let’s start with an arbitrary perfect M . Lemma 13.7 shows that M is a

homotopy retract of an equivariant module N , where the latter is also perfect (since it comes

from an equivariant twisted complex). Denote the associated maps by

(14.37)
[ρ] ∈ H0(homAmod (N,M)),

[ι] ∈ H0(homAmod (M,N)).

At this point, add the assumption that M is weakly equivariant. From Lemma 14.14 we

know that both cohomology groups in (14.37) are rational representations of G. Hence, only

finitely many of the components

(14.38)
[ρ]V ∈ H0(homAmod (N,M))V ∼= H0(homAmod (V ⊗ V ∨ ⊗N,M))G,

[ι]V ∨ ∈ H0(homAmod (M,N))V ∨ ∼= H0(homAmod (M,V ⊗ V ∨ ⊗N))G

can be nonzero. Here, we have formed the equivariant module V ⊗ V ∨ ⊗ N by using the

trivial action on V and the given action on V ∨ (as in Lemma 13.7).

Write V1, . . . , Vr for the representations for which [ρ]V or [ι]V ∨ are nonzero. Take Ñ =⊕
i Vi ⊗ V ∨i ⊗ N . Then, as in (13.38) but remaining on the cohomology level throughout,

one constructs elements

(14.39)
[ρ̃] ∈ H0(homAmod (Ñ ,M)),

[ι̃] ∈ H0(homAmod (M, Ñ))

which are G-invariant and provide the desired retraction. �
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By arguing as in the proof of Proposition 14.11, one then concludes the following:

Corollary 14.19. Let M be a perfect A∞-module which is weakly equivariant. Then M is

quasi-isomorphic to an equivariant A∞-module, which is again perfect. �

Rigidity and equivariance

We now return to the first bullet point from the discussion at the start, which is how to

obtain weak equivariance for a given object. The basic idea is to first establish equivariance

on an infinitesimal level, and then to integrate that. This obviously works only for connected

groups, and for fields like C which permit exponentiation (indeed, we have already carried

out an elementary example of such an argument, in Proposition 1.8).

Let A be an A∞-category with an action of G. Any A∞-module M then comes with a

canonical Killing class

(14.40) Ki(M) ∈ g∨ ⊗H1(homAmod (M,M)),

where g is the Lie algebra. The natural cocycle representative of that class is

(14.41) ki(M)1;d(m; ad, . . . , a1) = −
∑
j,k

γ∨j ⊗ µ
1;d
M (m; ad, . . . , γj(ak), . . . , a1),

where (γj), (γ∨j ) are dual bases of g and g∨, and γj(ak) is the infinitesimal action on A.

Given two modules M and N , the composition with their deformation classes on either side

yields the same map

(14.42) Ki(N)· = ·Ki(M) : H∗(HomAmod (M,N)) −→ g∨ ⊗H∗(HomAmod (M,N)).

In terms introduced in Lecture 9, this reflects the more fundamental fact that (14.40) is the

leading order term of a class in g∨ ⊗HH 1(Amod ,Amod). One consequence of (14.42) is that

(14.40) is invariant under quasi-isomorphism.

If M is equivariant, ki(M) is the coboundary of

(14.43) m 7→ (−1)|m|
∑
j

γ∨j ⊗ γj(m).

Hence, we see that (14.40) is indeed an obstruction to finding an equivariant module quasi-

isomorphic to M . In fact, even if M is only weakly equivariant, differentiation of ρ1
M (g) at

g = eG still yields a cochain bounding ki(M).

Proposition 14.20 ([182, Lemma 7.12]). Let A be an A∞-category over C, with an action

of G = Gm. Suppose also that the morphism spaces H∗(homA(X,Y )) are finite-dimensional

in each degree. Let M be a perfect module such that (14.40) vanishes, and such that

(14.44) H0(homAmod (M,M)) ∼= C.

Then M can be made weakly equivariant.

The strategy of proof goes as follows. The weak version of properness we have imposed on

A, together with the fact that M is perfect, implies that H0(homAmod (M,Morbit)) is finitely
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generated as a module over the algebra of functions C[G]. Vanishing of the infinitesimal

obstruction implies vanishing of the Atiyah class for this module, which is therefore locally

free (a standard fact about coherent sheaves admitting algebraic connections). Because of

(14.44), the module has rank one, hence is trivial. A suitable choice of nowhere vanishing

section then yields the element [ρ1
M ] providing the weak equivariance structure. We will

not reproduce the details, in part because some of the relevant terminology will only be

introduced later on (Lecture 20).

Corollary 14.21. If A and M are as in Proposition 14.20, there is an equivariant A∞-

module which is quasi-isomorphic to M . �

This is the result we will actually use in applications. It is obtained by combining Corollary

14.19 with Proposition 14.20.

Remark 14.22. In principle, there is no reason to restrict oneself to the multiplicative group,

but in a more general context one encounters an additional obstruction, which already appears

in Proposition 14.1. Suppose that G is a connected reductive group. Suppose also that the

group Aut(M) = H0(homAmod (M,M))× is again reductive. Then M becomes equivariant

not for the original G, but for a larger group G̃ which fits into a short exact sequence

(14.45) 1→ Aut(M) −→ G̃ −→ G→ 1.

The obstruction consists in the fact that (14.45) may not allow an algebraic splitting. If we

assume that H0(homAmod (M,M)) = C, then Aut(M) = C∗ and the extension is central. But

even then there are cases where no splitting exists, such as

(14.46) 1→ C∗ −→ GL2(C) −→ PSL2(C)→ 1,

which appears when one thinks of the action of PSL2(C) on the projective line. The assump-

tion on π1(G) in Proposition 14.1 is exactly what allows one to rule out such difficulties.
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Spherical objects and simple singularities

***Warning***: same error propagates

We return to the fundamental idea of Lecture 1, namely that the equivariant Mukai pairing

can be used to derive restrictions on suitable classes of objects. However, instead of applying

this idea to exceptional objects as before, we now consider spherical ones [185]. In the

context of Fukaya categories, such objects arise from Lagrangian spheres, and what we are

looking for are restrictions on the homology classes of such spheres.

In order to apply this method, one must ensure two things: that a complete algebraic

description of the Fukaya category is available; and that this description allows for a circle

action of a suitable kind. While the origin of these actions is mysterious from the present

viewpoint, one can readily check that they are present in a number of examples. Specifically,

we will consider the Milnor fibres of simple (ADE type) singularities (a general background

reference for the topology of isolated hypersurface singularities is [16]). The type A case has

been studied extensively, and results similar to the ones here were obtained in [182]. Thanks

to a certain amount of streamlining in the basic machinery, the D and E cases can now be

treated in the same way (this is still by no means the most general achievable result; in fact,

these kinds of questions can be useful as a yardstick of progress).

Acknowledgments. Remark 15.16, concerning more general plumbings of spheres, was ex-

plained to me by Mohammed Abouzaid.

Algebraic setup

Let A be an A∞-category over C which is proper and weakly cyclic of dimension n > 0. We

recall (from Example 7.8) that the latter property means that there is a bimodule quasi-

isomorphism

(15.1) A∨ ∼= A[n].

Because of the relation (7.31) between A∨ and the Serre functor, this implies that

(15.2) H∗(homAperf (P,Q)) ∼= Hn−∗(homAperf (Q,P ))∨

157
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for any perfect modules P,Q. Next, we also assume that A is simply-connected in the

following sense:

(15.3)

One can associate to any object X a real number σX , such that the only part of

H∗(homA(X,Y )) of degree ≤ σY − σX + 1 consists of multiples of the identity

endomorphisms.

Lemma 15.1. HH 0(A,A) is freely generated generated by the classes [eX ] of the identity

endomorphisms of the objects of A.

Proof. Replace A by a quasi-equivalent A∞-category which is minimal, and consider

an expression in the reduced Hochschild complex (Remark 8.5)

(15.4) a⊗ ad ⊗ · · · ⊗ a1 ∈ CC red
∗ (A,A).

This consists of a closed chain of morphisms a1 ∈ homA(X0, X1), . . . , ad ∈ homA(Xd−1, Xd),

a ∈ homA(Xd, X0). The degree of (15.4) in the Hochschild complex is

(15.5) |a|+
∑
k |ak| − d = (|a|+ σX0

− σXd) +
∑
k(|ak|+ σXk − σXk−1

)− d ≥ 0,

and equality can only hold if d = 0 and a is homologous to a multiple of the identity

endomorphism. On the other hand, each identity endomorphism eX is a Hochschild cocycle.

�

Lemma 15.2. The pairing (8.10) on HH 0(A,A) satisfies

(15.6) (x1, x0)HH = (−1)n(x0, x1)HH .

Proof. By the previous Lemma, it is sufficient to show this when x0 and x1 are identity

endomorphisms of objects X0 and X1. But those Hochschild homology classes are also the

classes [X0]HH and [X1]HH of those objects, in the general sense of (8.2). Then, the desired

statement reduces to (15.2) by a special case of the Cardy relation (Lemma 8.1):

(15.7)

(x1, x0)HH = χ(H∗(homA(X1, X0))) = χ(Hn−∗(homA(X0, X1))) = (−1)n(x0, x1)HH .

�

A perfect module S ∈ Ob(Aperf ) is called spherical if its endomorphism ring is (nonzero and)

as small as it can be given (15.2):

(15.8) H∗(homAperf (S, S)) ∼=

{
C ∗ = 0 or n,

0 otherwise.

Proposition 15.3. Suppose that n is even. Then the class [S]HH of any spherical object

is nonzero. Moreover, if S1, . . . , Sk are spherical objects such that H∗(homAperf (Si, Sj)) = 0

for all i 6= j, then the classes [Si]HH are linearly independent over R.

Proof. These are both straightforward consequences of the same Cardy relation we

used before, which says that (S, S)HH = 2 and (Si, Sj)HH = 0. �
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We will be interested in the corresponding question when n is odd. This is a priori much

more difficult, and in fact we will be able to make progress on it only in the presence of

suitable additional symmetries.

Dilating circle actions

From now on, we suppose that A carries an action of G = Gm = C∗. The diagonal bimodule

and its dual are then naturally equivariant.

Definition 15.4. We say that the G-action is dilating of weight d > 0 if there is an equi-

variant quasi-isomorphism

(15.9) A∨ ⊗ Vd ∼= A[n],

where Vd is the one-dimensional representation of G with weight d.

The sign of d is not terribly important, since one can reverse it by passing to the inverse group

action, but it will be crucial that d be nonzero. (15.9) implies that for any two equivariantly

perfect modules, we have an isomorphism of G-representations

(15.10) H∗(homAperf (P,Q)) ∼= Hn−∗(homAperf (Q,P ))∨ ⊗ Vd.

Recall (from Lecture 13) that we have equivariant Hochschild homology HHG
0 (A,A), which

is a module over C[G] = C[t, t−1], as well as the pairing (13.51), which takes on the form

(15.11) (·, ·)GHH : HHG
0 (A,A)⊗HHG

0 (A,A) −→ C[t, t−1].

From (15.10) and the equivariant version of the Cardy relation (13.50), we obtain the fol-

lowing:

Lemma 15.5. If S is spherical and equivariant, the G-action on H∗(homA(S, S)) is trivial

in degree 0 and has weight d in degree n. Hence,

(15.12) ([S]GHH , [S]GHH)GHH = 1 + (−1)ntd.

�

Along the same lines, we also have equivariant analogues of Lemma 15.1 and 15.2:

Lemma 15.6. The equivariant Hochschild homology HHG
0 (A,A) is the free module over

C[G] ∼= C[t, t−1] generated by the identity endomorphisms [eX ].

�

Lemma 15.7. The pairing (15.11) satisfies

(15.13) (y, x)GHH = (−1)ntd
(

(x, y)GHH

)
t 7→t−1

.

�

The three Lemmas above directly imply the desired analogue of Proposition 15.3:
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Proposition 15.8. Suppose that A is simply-connected in the sense of (15.3), has a dilating

action of G with weight d > 0. We assume that n ≥ 3 is odd. Then the class [S]HH
of any spherical object is nonzero. Moreover, if S1, . . . , Sk are spherical objects such that

H∗(homAperf (Si, Sj)) = 0 for all i 6= j, then the classes [Si]HH are linearly independent over

R.

Proof. As discussed in Lecture 14, the assumption that S is spherical and n > 1

means that one can always lift S to an equivariant module (which is then also equivariantly

perfect). Write st = [S]GHH for the associated equivariant Hochschild homology class. There

is a canonical forgetful map

(15.14) HHG
0 (A,A)⊗C[t,t−1] C −→ HH 0(A,A),

where the tensor product is with the simple module corresponding to the point t = 1. Under

that map, st goes to the ordinary Hochschild homology class s = [S]HH .

By Lemmas 15.1 and 15.6, HHG
0 (A,A) is a free C[t, t−1]-module, and (15.14) is an isomor-

phism. If s = 0, we therefore could write st = (1− t)qt, which would imply

(15.15) (st, st)
G
HH = (1−t)(1−t−1)(qt, qt)

G
HH = (1−t)2(−t−1)(qt, qt)

G
HH ∈ (1−t)2C[t, t−1].

But that contradicts Lemma 15.5, which shows that

(15.16) (st, st)
G
HH = 1− td = (1− t)(1 + t+ · · ·+ td−1).

To prove the second part, one argues along the same lines (by contradiction). If the classes

in ordinary Hochschild homology are linearly dependent, we get a nontrivial relation in

equivariant Hochschild homology of the form

(15.17) a1s1,t + · · ·+ aksk,t = (1− t)qt
where si,t = [Sk]GHH and ai ∈ R. But then

(15.18) (1− t)(1− t−1)(qt, qt)
G
HH = (a2

1 + · · ·+ a2
k)(1− td),

which is again a contradiction. �

Simple singularities

Let M be the Milnor fibre of a simple (ADE) type singularity, of complex dimension n.

Concretely, these are the hypersurfaces

(15.19) M = {p(x1, . . . , xn−1, y, z) = 1} ⊂ Cn+1,
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where

(15.20) p = x2
1 + · · ·+ x2

n−1 +



y2 + zm+1 in type (Am), m ≥ 1,

yz2 + zm−1 in type (Dm), m ≥ 4,

y3 + z4 in type (E6),

y3 + yz3 in type (E7),

y3 + z5 in type (E8).

We equip them with the restriction of the constant (exact) symplectic form on Cn+1, and

with the complex volume form ηM = resM (dx1 ∧ · · · ∧ dxn−1 ∧ dy ∧ dz/(p− 1)).

Lemma 15.9. Let Γ be the Dynkin diagram of type (ADE) corresponding to our singular-

ity. Then M contains a collection of Lagrangian spheres Sv, indexed by the vertices of the

diagram, which are in general position and satisfy

(15.21) Sv ∩ Sw =

{
one point if v, w are connected by an edge,

∅ otherwise.

Moreover, the classes [Sv] form a basis for Hn(M ;Z).

This is a classical result. For n = 1, one can use A’Campo’s real Morsification method

[11] to realize the required Sv as a distinguished basis of vanishing cycles. The higher-

dimensional statement then follows from this and general stabilization results in singularity

theory. Another consequence of the general theory (for weighted homogeneous singularities),

spelled out in [169, Lemma 4.15], is:

Lemma 15.10. Let φ be the composition of the Dehn twists along the spheres Sv (in a particu-

lar order, which we will not explain), considered as a graded symplectic automorphism of M .

Then, some positive power φb is isotopic to a shift inside the group of such automorphisms.

More precisely,

(15.22) φb ' [2a],

where

(15.23)
a

b
= 1− n− 1

2
−



1
2 + 1

m+1 in type (Am),
m−2
m−1 in type (Dm),
7
12 in type (E6),
5
9 in type (E7),
8
15 in type (E8).

Let A ⊂ Fuk(M) be the full subcategory with objects Sv. With the exception of one

case (n = 1 and type (A1), which we have in fact considered before in Proposition 10.9),

the fraction (15.23) is nonzero, which by [176, Corollary 5.8] says that the Sv are split-

generators for the Fukaya category. We have not encountered this notion before: it means

that the restriction

(15.24) Fuk(M)perf −→ Aperf
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is an equivalence. In particular, Fuk(M) then quasi-isomorphically embeds into Aperf .

At least on the cohomological level, A admits a simple description, which is a direct conse-

quence of (15.21) and general facts about Floer cohomology (similar to Lemma 11.5). First,

choose (arbitrarily) an orientation of the edges in the Dynkin diagram, and denote the result

by Γ→. Associate to this a linear category A→ over C whose objects Xv correspond to

vertices, and whose morphisms consist of the identity endomorphisms as well as morphisms

associated to edges of Γ→. Compositions in A→ are zero except insofar as the identity en-

domorphisms are involved. Then, form the trivial extension with respect to the dual of the

diagonal bimodule (this is the same process as in Example 13.5):

(15.25) A = A→ ⊕ (A→)∨[−n].

Concretely, the objects of A are still the Xv, and

(15.26) Hom∗A(Xv, Xw) = Hom∗A→(Xv, Xw)⊕Hom∗A→(Xw, Xv)
∨[−n].

The nontrivial compositions come from the algebra structure of A→ and from the bimodule

structure of (A→)∨. Then, the desired description is that, if the grading of the Sv is chosen

appropriately,

(15.27) H(A) ∼= A.

Lemma 15.11. Assume that n ≥ 3. Then A is simply-connected in the sense of (15.3).

Proof. Assign to the vertices numbers σv ∈ 1
2Z, such that if there is an oriented edge

from v to w, then σw = σv − n/2 (this is always possible since Γ is a tree). Then by

construction, Hom∗A(Xv, Xw) is concentrated in degrees n/2 + σw − σv > 1 + σw − σv for

v 6= w, while the non-identity part of Hom∗A(Xv, Xv) is concentrated in degree n. �

Lemma 15.12. Assume that n ≥ 3. Then A is intrinsically formal, and therefore A itself is

quasi-isomorphic to A.

Proof. This is the same kind of degree argument as in the previous Lemma. One shows

that the bigraded Hochschild cohomology satisfies

(15.28) HH p(A,A[q]) = 0 for pn/2 + q > n.

After specializing to p+q = 2, one sees that under our assumption that n ≥ 3, HH d(A,A[2−
d]) = 0 for all d ≥ 3. This allows one to apply Proposition 9.6 (alternatively, one can

directly argue that any strictly unital A∞-structure must be formal, which corresponds to

the vanishing of the reduced Hochschild cochain complex in the relevant degrees). �

Remark 15.13. Suppose that n = 2. Then intrinsic formality still applies in the (Am) case,

by a computation in [185]. It is not known whether the same holds in types (Dm) and (Em).

In contrast, for n = 1 intrinsic formality definitely fails, and in fact A is not formal (except

in the trivial (A1) case) [121].

At this point, we may just as well assume that A is equal (and not just quasi-isomorphic)

to the algebraically constructed model A. In particular, it then carries an action of the
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multiplicative group (acting trivially in degree 0, and with weight 1 in degree n), which is

dilating with weight 1. Our previous algebraic results then yield the following:

Proposition 15.14. Suppose that n ≥ 3 is odd. Let S ⊂ M be a Lagrangian sphere. Then

the class [S] ∈ Hn(M) is nonzero. Moreover, if S1, . . . , Sk are pairwise disjoint such spheres,

then their homology classes are linearly independent.

Again, the corresponding statement for even n is elementary (because then, S · S = ±2 for

any Lagrangian homology sphere, and (15.21) together with standard facts about Dynkin

diagrams implies that the intersection pairing on Hn(M) is definite).

Proof. Take the open-closed string map (12.25) and compose it with the standard map

SH ∗(M)→ H−∗(M ;C). The outcome is a map

(15.29) HH 0(Fuk(M),Fuk(M)) −→ Hn(M ;C),

which takes the identity endomorphism of any object L to the ordinary homology class [L]

(times the rank of the flat vector bundle ξL; however, we will only use trivial flat line bundles).

Because of the split-generation property of the Sv, and the Morita invariance of Hochschild

homology, we have HH 0(Fuk(M),Fuk(M)) ∼= HH 0(A,A). This, together with Lemma

15.1, also implies that (15.29) is an isomorphism. Under the quasi-isomorphic embedding

Fuk(M) ↪→ Aperf , S turns into a spherical object, which by Proposition 15.8 has a nonzero

class in Hochschild homology. It follows that the class of S in HH 0(Fuk(M),Fuk(M)) is

nontrivial, and therefore so is its ordinary homology class.

For a collection of pairwise disjoint spheres, the same argument shows that [L1], . . . , [Lk] are

linearly independent over R. But the “over R” restriction is irrelevant, since the homology

classes lie in Hn(M ;R) ⊂ Hn(M ;C) anyway. �

Remark 15.15. Because the proof takes place on the level of the Fukaya category, one could

replace “sphere” by “rational homology sphere which is Spin”. Similarly, disjointness can

be weakened to the vanishing of HF ∗(Si, Sj) for all i 6= j (which is certainly the case if the

Lagrangian spheres are pairwise disjoinable by isotopies). This has some amusing conse-

quences: for instance, for n = 3, M can’t contain a Lagrangian submanifolds which is a lens

space (other than a sphere). This is because one could equip that lens space with different

flat line bundles, and then apply the previous argument to the resulting objects of the Fukaya

category, which contradicts the fact that they all represent the same homology class.

Remark 15.16. Suppose that we are given a finite tree Γ. Take cotangent bundles of spheres

(one sphere Sv for each vertex) and plumb them together (along the edges). The result is a

Weinstein manifold M , which is unique if the dimension is 2n > 2. For a Dynkin diagram,

this reproduces the ADE type Milnor fibres. Suppose from now on that n is odd and ≥ 3.

Following [10], Abouzaid suggested the following strategy for generalizing our results to this

case:

• Consider the non-compact Lagrangian submanifolds Lv which are cotangent fi-

bres of the various sphere components. Show that the wrapped Floer cohomology
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HW ∗(Lv0
, Lv1

) is concentrated in degrees ≤ 0, with the degree zero part consisting

only of multiples the identity endomorphisms. This uses the same Maslov index

computations as in [10].

• Show that every closed Lagrangian submanifold is split-generated by the Lv;

• Then, a purely algebraic argument will imply that Fuk(M) is actually generated by

the spheres Sv.

Then, the part of the argument concerning equivariance would go through as before (in fact,

one could replace equivariant Hochschild homology by equivariant K-theory, since it would

follow that the Grothendieck group K0(Fuk(M)) is the free abelian group generated by the

vertices of Γ).
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Suspension of Lefschetz fibrations ***Warning***:

same error propagates

For ADE type Milnor fibres (15.19), we obtained the existence of C∗-actions on the Fukaya

category by an ad hoc computation of that category (essentially, as a consequence of for-

mality, as in Example 13.4). Here, we want to explain a construction [179] which always

gives rise to such actions. The construction itself is geometric, and closely related to local

mirror symmetry, as discussed at the beginning of Lecture 11. Unfortunately, the additional

symmetries themselves again appear only after a re-interpretation in purely algebraic terms.

Still, given the greater level of generality, this is still a first step towards building some

geometric intuition.

Acknowledgments. The idea of using Lefschetz fibrations where the Fukaya category of

the fibre has a C∗-action, which leads to Corollary 16.10, was suggested to the author by

Mohammed Abouzaid.

Algebraic suspension

This discussion follows [179], with only slight changes in notation. Let B be a A∞-category

over a field K, with a finite ordered set of objects (X1, . . . , Xk). We assume that each object

is nonzero, meaning that homB(Xi, Xi) is never acyclic. We will also assume, for technical

simplicity, that B is strictly unital, and that each space homB(Xi, Xj) is finite-dimensional

(a stricter version of properness).

We want to associate to B two directed (Example 7.11) A∞-categories, called A and C. The

first one is the directed subcategory A ⊂ B, which is defined by setting

(16.1) homA(Xi, Xj) =


homB(Xi, Xj) i < j,

K · eXi i = j,

0 i > j;

The A∞-operations on A are restrictions of those on B. Of course, in general A remembers

only small part of the structure of B, namely the A∞-operations where the inputs are in

increasing order.

165
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The second construction is similar, but has an intermediate step. Introduce the A∞-category

Cl2(B) which has twice the number of objects, denoted by

(16.2) (X−1 , . . . , X
−
k , X

+
1 , . . . , X

+
k ).

Both X±i are thought of as copies of Xi, but the − copy is shifted down by one, so that we

have

(16.3)

homCl2(B)(X
−
i , X

−
j ) = homB(Xi, Xj),

homCl2(B)(X
+
i , X

+
j ) = homB(Xi, Xj),

homCl2(B)(X
−
i , X

+
j ) = homB(Xi, Xj)[−1],

homCl2(B)(X
+
i , X

−
j ) = homB(Xi, Xj)[1].

In particular, Cl2(B) is quasi-equivalent to B (the corresponding construction for algebras

would be tensoring with the two-dimensional Clifford algebra, whence the notation). Then

C ⊂ Cl2(B) is the directed subcategory, where the ordering of the objects is as in (16.2).

One can schematically write

(16.4) C =

(
A 0

B[−1] A

)
⊂ Cl2(B) =

(
B B[1]

B[−1] B

)
.

C retains a larger (but still finite, by directedness) piece of the A∞-structure of B than A.

More precisely, C depends on A together with the structure of B as an A-bimodule.

Finally, we define another (non-directed)A∞-category Bσ, with objects (Xσ
1 , . . . , X

σ
k ). Namely,

this is the full subcategory of Ctw consisting of the twisted complexes

(16.5) Xσ
i = Cone

(
eXi : X−i [−1]→ X+

i

)
=

(
X−i ⊕X

+
i , δXσi =

(
0 0

eXi 0

))
.

In addition to the data that enters into the construction of C, which means A and the A-

bimodule B, this also the eXi as elements of B. Of course, the quasi-isomorphism type of

a mapping cone only depends on the cohomology class of the morphism involved, and also

remains unchanged if one multiplies the morphism by a nonzero constant. Hence, if we make

the following additional simplifying assumption:

(16.6) for i = 1, . . . , k, H0(homB(Xi, Xi)) = K[eXi ];

then A and the quasi-isomorphism class of the A-bimodule B determine Bσ up to quasi-

isomorphism.

We call Bσ the suspension of B. If we consider it (or rather, the direct sum of its morphism

spaces) as an A∞-algebra, it looks like (16.4) but with additional contributions to µ1
Bσ coming

from the differentials in (16.5). In the schematic notation from (16.4), those contributions

are simply

(16.7)

(
a− 0

b a+

)
7−→

(
0 0

a+ − a− 0

)
.

Note that for i < j, the diagonal embedding

(16.8) homA(Xi, Xj) ↪→ homBσ (Xσ
i , X

σ
j )
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is a quasi-isomorphism, and compatible with A∞-composition maps. Hence, the directed

subcategory Aσ ⊂ Bσ is quasi-isomorphic to A.

Lemma 16.1. Use the quasi-isomorphism A → Aσ to pull back the Aσ-bimodule Bσ/Aσ to

A. The outcome is isomorphic to (B/A)[−1]. Moreover, if we apply the same pullback to

Bσ itself, the outcome is quasi-isomorphic to A⊕ (B/A)[−1]. �

Lemma 16.2. Assume that (16.6) holds, and that the A-bimodule B is quasi-isomorphic to

A⊕ (B/A)[−1]. Then, Bσ is quasi-isomorphic (as an A∞-category) to the trivial extension

constructed from A and the bimodule (B/A)[−1].

Proof. Since Bσ depends only on A and the structure of B as an A-bimodule, we may

assume without loss of generality that B is itself the trivial extension formed from A and

B/A. In that case, a quasi-isomorphic subcategory of Bσ can be defined by allowing only

morphisms, in the notation from (16.4), of the form

(16.9)

(
a 0

b a

)
with a ∈ A, b ∈ B/A,

and the desired result is then obvious. �

Corollary 16.3. Suppose that H−1(homB(Xi, Xi)) = 0 for all i. Then the double suspen-

sion Bσσ is quasi-isomorphic to the trivial extension formed from A and (B/A)[−2].

This is a direct consequence of the previous two Lemmas. The assumption on H−1 implies

that (16.6) holds for Bσ. In fact, one can remove that assumption entirely at the cost of a

slightly more involved argument, for which we refer to [179]. From now on, we again restrict

the discussion to K = C.

Corollary 16.4. Suppose that we have a quasi-isomorphism of A-bimodules B/A ∼= A∨[−n].

Suppose also that H−1(homB(Xi, Xi)) = 0 for all i. Then Bσσ is weakly cyclic of dimension

n+ 2. Moreover, it carries a C∗-action which is dilating of weight 1 (Definition 15.4).

By the previous Corollary, Bσ is quasi-isomorphic to the trivial extension formed from A

and A∨[−n− 2]. Equip it with the C∗-action which acts trivially on A and with weight 1 on

A∨[−n− 2]. The required isomorphism (15.9) is then obvious.

Geometric suspension

The construction introduced above has a geometric meaning in terms of Lefschetz fibrations.

In general, one starts with an exact Lefschetz fibration [176, Section 15]

(16.10) π : E −→ D,

whose base D is a disc, and whose fibre is M . Choose a distinguished basis of vanishing

cycles, which are Lagrangian spheres (S1, . . . , Sk) in M . Denote by B the associated full

subcategory of Fuk(M). One then constructs a new Lefschetz fibration

(16.11) πσ : Eσ −→ D,
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whose fibre Mσ is the double cover of E branched along M . The total space of Eσ itself is

essentially the product D×E (“essentially” means up to deformation and rounding corners).

There is a distinguished basis of vanishing cycles (Sσ1 , . . . , S
σ
k ) in Mσ which corresponds to

our original choice in M . Denote by Bσ ⊂ Fuk(Mσ) the associated full subcategory. Then

– as already implicit in our notation – one has:

Proposition 16.5 ([179, Theorem 6.4]). Bσ is quasi-isomorphic to the previously defined

algebraic suspension of B.

As a consequence, if we suspend twice, then the part of the Fukaya category of Mσσ split-

generated by vanishing cycles carries a C∗-action which is dilating of weight 1. It is maybe

instructive to see where instances of this process occur in more familiar geometric contexts.

Singularity theory

Let M be the Milnor fibre of an isolated hypersurface singularity p(y) = 0. This naturally

appears as a fibre of a Lefschetz fibration π, obtained by perturbing (Morsifying) p. Then,

Mσ is the Milnor fibre of x2 + p(y) = 0, and πσ is the corresponding Morsification. Adding

such quadratic terms is a well-known operation in singularity theory, where it behaves in a

4-periodic way with respect to the classical topological invariants.

Under suitable assumptions, one can show that the vanishing cycles split-generate the Fukaya

category (a generalization of Lemma 15.10). The precise statement is as follows:

Lemma 16.6. Let p(y1, . . . , yn+1) be a a polynomial with an isolated singularity at 0 ∈
p−1(0), and which is weighted homogeneous in the sense that there are rational numbers

w1, . . . , wn+1 > 0 such that

(16.12) p(eiw1ty1, . . . , e
iwn+1tyn+1) = eitp(y1, . . . , yn+1).

Set

(16.13) w = w1 + · · ·+ wn+1 − 1.

Then, an appropriate composition of Dehn twists along the vanishing cycles is the shift by

an integer multiple of w. Hence, if w 6= 0, the vanishing cycles split-generate the Fukaya

category of the Milnor fibre. �

Lemma 16.6 is the only place we use weighted homogeneity (it is an interesting question for

what classes of other singularities such a split-generation result holds). Of course, adding

quadratic terms preserves the class of weighted homogeneous singularities, but increases w

by 1/2. Hence, applying Proposition 16.5 and Corollary 16.4, we find that:

Corollary 16.7. Suppose that p(y) is weighted homogeneous. Let M be the Milnor fibre of

x2
1 + x2

2 + p(y). Then Fuk(M) has a C∗-action which is dilating with weight 1. �

Remark 16.8. The ADE singularities in Lecture 15 are all at least twice suspended when

the (complex) dimension of the fibre is 3 or higher. Hence, Corollary 16.7 strictly generalizes
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our previous construction of group actions for ADE Milnor fibres (for type (Am), complex

dimension 2 is enough, which matches well with the more ad hoc approach considered in

Remark 15.13).

Application

As before, let π : E → D be an exact Lefschetz fibration with fibre M (of dimension

2n − 2), and with zero first Chern class. Let (S1, . . . , Sk) be a basis of vanishing cycles.

Let B ⊂ Fuk(M) the associated full A∞-subcategory, and A the associated directed A∞-

subcategory. The main construction in [176, Section 18] yields a cohomologically full and

faithful embedding

(16.14) Fuk(E) ↪→ Aperf .

Proposition 16.9. Suppose that B carries a dilating action of G = C∗, of weight 1. Take

a Lagrangian submanifold S ⊂ E with H1(S) = 0 and which is Spin. Use the embedding

(16.14) as well as the results from Lecture 14 to associate to it an equivariantly perfect module

P over A. Then, the G-action on Hn(homAperf (P, P )) has weight 1.

Proof. After possibly rescaling the symplectic form, one can construct an exact sym-

plectic embedding of E into Mσ. Moreover, the image of the resulting cohomologically full

and faithful embedding

(16.15) Fuk(E) ↪→ Fuk(Mσ)

is split-generated by (Sσ1 , S
σ
k ). This follows from [176, Lemma 18.15]. Inspection of the

construction shows that the resulting full and faithful embedding sits in a commutative (up

to quasi-isomorphism of A∞-functors) diagram

(16.16) Fuk(E)
� � //
� q

##

Aperf

(Bσ)perf .

OO

Here, the → is (16.14), and the ↑ is induced by projection Bσ → A to the left upper corner

of the matrix (16.4).

Let’s temporarily forget about group actions, and just start with a bimodule quasi-isomorphism

B ∼= B∨[1− n]. This induces a quasi-isomorphism B/A ∼= A∨[1− n]. Now look at the short

exact sequence of Bσ-bimodules schematically denoted by

(16.17) 0→
(

A 0

B[−1] A

)
−→

(
B B[1]

B[−1] B

)
−→

(
B/A B[1]

0 B/A

)
→ 0.
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The middle term carries a differential similar to (16.7), more precisely

(16.18)

(
b−− b+−
b−+ b++

)
7−→

(
b+− 0

b++ − b−− b−+

)
,

which is clearly acyclic. The left term in (16.17) is the diagonal bimodule over Bσ, while the

right term is quasi-isomorphic to (Bσ)∨[1−n]. Hence, the boundary map of the short exact

sequence yields a quasi-isomorphism

(16.19) (Bσ)∨[−n] ∼= Bσ.

Now we return to the original context, where there is a G-action on B that is dilating

with weight 1. This induces an action on Bσ, such that the previously mention projection

Bσ → A is equivariant. Moreover, by inspection of the construction of (16.19), one sees that

the induced action is also dilating with weight 1. This implies the desired result. �

Corollary 16.10. In the situation of Proposition 16.9, suppose that S ⊂ E is a Lagrangian

sphere. Suppose that n ≥ 3 is odd. Then [S] ∈ Hn(E,M ;Z), where M is thought of as the

fibre over a point of ∂D, is a primitive class (and in particular, nonzero).

Proof. The strategy is the same as in Proposition 15.8, but using K-theory instead of

Hochschild homology, since that turns out to be simpler in this case. In fact, the directedness

of A implies that

K0(Aperf ) ∼= Zk,(16.20)

KG
0 (Aeq−perf ) ∼= Z[t, t−1]k.(16.21)

If one combines (16.20) with the map K0(Fuk(E)) → K0(Atw ) induced by (16.14), the

resulting homomorphism takes each closed Lagrangian submanifold S ⊂ E to the collection

of intersection numbers (L ·∆1, . . . , L ·∆k), where ∆i is the Lefschetz thimble corresponding

to Si. In particular, it fits into a diagram

(16.22) K0(Fuk(E))

��

// Zk

Hn(E) // Hn(E,M).

∼=

OO

Take the equivariant Mukai pairing (·, ·)G on KG
0 (Aeq−perf ). Suppose that we have a La-

grangian sphere L ⊂ E, and let P be the associated object in Aeq−perf as in Proposition

16.9. By that Proposition, we know that the equivariant K-theory class [P ]G satisfies

(16.23) ([P ]G, [P ]G)G = 1− t.

As in Proposition 15.8, this implies that the reduction to t = 1 (which means the ordinary

K-theory class [P ]) is nontrivial. In fact, it implies that [P ] is primitive: if we assume that

[P ] ≡ 0 mod p for some prime p, then [P ]G = (1− t)y + pz, which implies

(16.24) ([P ]G, [P ]G)G = (1−t)(1−t−1)(y, y)G+p(1−t−1)(y, z)G+p(1−t)(z, y)G+p2(z, z)G.
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This contradicts (16.23), as one can see for instance by taking the derivative at t = 1:

(16.25)
∂t([P ]G, [P ]G)G

∣∣∣
t=1

= p(y, z)G − p(z, y)G + p2∂t(z, z)
G ≡ 0 mod p,

∂t(1− t)|t=1 ≡ −1 mod p.

�

The same argument can be applied to yield independence results for the homology classes

of disjoint Lagrangian submanifolds (again, in analogy with Proposition 15.8).

Example 16.11. As a concrete instance where Corollary 16.10 applies, one can look at the

Milnor fibre of any isolated hypersurface singularity of the form

(16.26) xk1 + x2
2 + x2

3 + p(x4, . . . , xn+1) = 0,

since that is the total space of a Lefschetz fibration whose fibre is the Milnor fibre of x2
2 +x2

3 +

p(x4, . . . , xn+1) = 0. In contrast with Corollary 16.7, we do not need weighted homogeneity,

since Proposition 16.9 does not require the G-action to exist on the entire Fukaya category.

This of course includes the ADE singularities from Lecture 15.

Local mirror symmetry

Suppose that W ∈ C[y±1 , . . . , y
±1
n−1] is a generic Laurent polynomial, as in (11.1), but where

the interior of the polytope P is assumed to contain the origin 0 ∈ Rn−1. This can itself

be thought of as a Lefschetz fibration, and double suspension leads to the manifold M from

(11.2). Therefore, it follows that a certain full subcategory B ⊂ Fuk(M) carries a dilating

action with weight 1. Here, we have adjusted the notation to agree with that in Lecture 11;

in particular, M already represents the outcome of double suspension.

The mirror construction leads first of all to a smooth toric Calabi-Yau variety N . One can

certainly find a complex volume form ηN and an action of C∗ (part of the torus action)

which acts with weight 1 on that form. That would induce an action on the derived category

of compactly supported coherent sheaves (or rather, the underlying A∞-category) which is

dilating with weight 1. There are two issues with this naive interpretation:

• One can’t choose that action so that it preserves the divisor F−1(1). Hence, the

action does not restrict to one on the actual mirror M∨ from (11.4).

• The volume form ηM∨ appearing in mirror symmetry comes from a meromorphic

volume form on N having a pole along F−1(1), and is not toric.

More careful inspection of the situation shows the following. First of all, one expects the

image of the embedding

(16.27) H∗(B) ↪→ H∗(Fuk(M))
mirror−−−−→ DbCohcpt(M

∨)

to consist of complexes of sheaves supported on the fibre F−1(0) of F : N → C. Therefore,

what is needed is a circle action in a formal neighbourhood of that fibre, which does not
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necessarily have to extend over the rest of M∨. Secondly, while our algebraic suspension

construction provides a weak cyclic structure on B (forgetting equivariance for the moment),

it is by no means clear that this coincides with the natural (geometrically defined) structure

on the Fukaya category. This means that, while the corresponding circle action on the mirror

is expected to act with weight 1 on some complex volume form, that volume form does not

necessarily have to be the one involved in the original mirror equivalence.

These observations help clarify the situation, but they also indicate that our algebraic ap-

proach to the construction of circle actions on Fukaya categories is somewhat less than

natural.



Part 4

Infinitesimal symmetries
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Basic structures

By an “infinitesimal automorphism” of an A∞-category A, we will mean a Hochschild coho-

mology class

(17.1) [β] ∈ HH 1(A,A).

Such a class determines an infinitesimal deformation of each object X, which is an element

(17.2) [β0
X ] ∈ H1(homA(X,X)).

Objects for which [β0
X ] vanishes can be considered as “stationary” under the infinitesimal

automorphism. We call them (with a bit of structure added) infinitesimally equivariant

objects, and explore their general properties. This follows the strategy adopted in Lecture

13 for A∞-categories with actions of a reductive algebraic group, even though the technical

aspects are somewhat different, and closer to the behaviour of non-reductive groups. For in-

stance, while we can talk about infinitesimally equivariant objects, the notion of an invariant

morphism between such objects is not well-behaved.

In principle, one can take A = Fuk(M) to be a Fukaya category, with any choice of (17.1),

and apply the general algebraic theory to it. However, we are interested in the case where

M is a Weinstein manifold with vanishing first Chern class, and in Hochschild cohomology

classes of geometric origin, which means ones in the image of the open-closed string map

(17.3) SH ∗(M) −→ HH ∗(Fuk(M),Fuk(M))

from Lecture 12. The resulting special case of the general theory has been developed in

[184], which we follow closely both in this lecture and the next one.

Infinitesimal equivariance

Take an A∞-category A over some field K, and a class as in (17.1), represented by a

Hochschild cocycle β. The components of β are

(17.4)

β0
X ∈ hom1

A(X,X) for any object X,

β1
X0,X1

: homA(X0, X1) −→ homA(X0, X1) for any objects X0, X1,

· · ·

It is a consequence of the Hochschild cocycle condition ∂β = 0 that µ1
A(β0

X) = 0. Next, if

β0
X0

and β0
X1

both vanish, then β1
X0,X1

anti-commutes with µ1
A. We want to work under a

weaker version of the vanishing assumption:

175
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Definition 17.1. An infinitesimally equivariant object of A is a pair (X,αX) with X ∈
Ob(A) and αX ∈ hom0

A(X,X), satisfying

(17.5) µ1
A(αX) = β0

X .

For brevity, we will often omit αX from the notation and speak of “the infinitesimally

equivariant object X”, but it is then always understood that a choice of αX has been made.

Obviously, the obstruction for an object to carry such a structure is [β0
X ] ∈ H1(homA(X,X)).

We consider two infinitesimally equivariant structures on X to be isomorphic if the associated

αX differ by an element in the image of µ1
A : hom−1

A (X,X) → hom0
A(X,X). Hence, the

essential freedom of choice is an affine space over H0(homA(X,X)).

Suppose that X0, X1 are both infinitesimally equivariant. Then, the map

(17.6)
φ1 = φ1

X0,X1
: homA(X0, X1) −→ homA(X0, X1),

φ1(a) = β1
X0,X1

(a) + (−1)|a|µ2
A(αX1

, a)− µ2
A(a, αX0

)

satisfies

(17.7) µ1
Aφ

1 + φ1µ1
A = 0,

hence is a chain map with respect to the differential a 7→ (−1)|a|µ1
A(a). We denote by

Φ = ΦX0,X1 the induced map on H∗(homA(X0, X1)). These maps are derivations, which

means that they satisfy the Leibniz rule with respect to composition of morphisms between

infinitesimally equivariant objects. In particular, they kill identity endomorphisms:

(17.8) ΦX,X([eX ]) = 0.

The derivation property again follows from the definition and the equation ∂β = 0, this time

by an argument which involves the next term β2.

Remark 17.2. One can explain (17.6) in a slightly more conceptual way, as follows. Let

Ã be the A∞-category whose objects are pairs (X,αX) consisting of an X ∈ Ob(A) and

an arbitrary αX ∈ hom0
A(X,X). The morphism spaces and A∞-compositions are defined

exactly as in A, which means ignoring the αX . Hence, Ã is obviously quasi-equivalent to A

(all we have done is add many different copies of the same object). There is a canonical

(17.9)

α̃ ∈ CC 0(Ã, Ã),

α̃0
X = αX ,

α̃d = 0 for d > 0.

Our given β extends in an obvious way to a Hochschild cocycle β̃ on Ã. Define

(17.10) φ̃ = β̃ − ∂α̃ ∈ CC 1(Ã, Ã).

Finally, let Ainf ⊂ Ã be the full subcategory of those objects for which the leading term φ̃0

vanishes. By construction, these are the same as infinitesimally equivariant objects of A. In

addition to its A∞-structure, Ainf carries a Hochschild cocycle φ, obtained by restricting φ̃.

Since φ0 vanishes by definition, φ1 consists of chain maps, which in fact reproduce (17.6).

One obtains the derivation property for these maps using φ2.
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Suppose now that A is proper, and that char(K) = 0. The “decategorification” of Φ takes

the form of a Mukai-type pairing between infinitesimally equivariant objects,

(17.11) (X0, X1)inf = Str
(
euΦX0,X1

)
∈ K[[u]].

The reduction to u = 0 reproduces the ordinary Mukai pairing, which means the Euler

characteristic of H∗(homA(X0, X1)). To reformulate (17.11) in even more basic terms, let’s

assume temporarily that K = C. Consider the generalized eigenspace of ΦX0,X1
associated

to λ ∈ C, and let χλ ∈ Z be its Euler characteristics. Then

(17.12) (X0, X1)inf =
∑
λ

χλe
uλ,

where only finitely many terms of the sum are nonzero. If we introduce another formal

variable t = eu, then this becomes

(17.13) (X0, X1)inf =
∑
λ

χλt
λ,

which is similar to the expression for equivariant Mukai pairings in the presence of a circle

action (except that here, all powers tλ are allowed, and not just integer ones).

Instead of just having a pairing (17.11) on objects, one would like to realize it as a bilinear

map on a suitable homology theory associated to (A, [β]), in analogy with (8.10) and its

equivariant version from Lecture 13. Before discussing that issue, we would like to introduce

yet another reformulation, which is natural but turns out to be potentially misleading.

A dead end

We return to the general situation (of an arbitrary coefficient field K). As discussed in Lecture

9, Hochschild cohomology describes the first order deformation theory of A∞-categories.

More precisely (see Remark 9.5), HH 2(A,A) classifies first order curved deformations of A

up to isomorphism. One can carry over that discussion to HH k(A,A) for any k, by arranging

for the deformation parameter to have degree 2 − k, including the case k = 1 which is of

interest here.

Hence, let ε be a formal variable of degree 1, and take Kε = K[ε]/ε2 (which of course is a

one-dimensional exterior algebra). Given a cocycle β ∈ CC 1(A,A), one defines a curved

deformation Aε of A over Kε by setting

(17.14)

Ob(Aε) = Ob(A),

homAε(X0, X1) = homA(X0, X1)⊗Kε,

µ0
Aε

= εβ0,

µdAε = µdA + εβd for d > 0.

In fact, the A∞-equations (with curvature) for Aε are precisely the equations for β to be

a Hochschild cocycle. It is therefore tempting to re-interpret the previous notions in this

context. Suppose for simplicity that A is strictly unital.
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Lemma 17.3. Infinitesimally equivariant objects of A correspond bijectively to curved strictly

unital A∞-functors Kε → Aε.

Here, Kε is considered as a special case of an A∞-category (with one object), and everything

is supposed to be Kε-linear. The statement is straightforward, once one has decoded the

terminology invoved. Generally, a curved A∞-functor X : Kε → Aε consists of an object

X ∈ Ob(Aε) together with elements

(17.15)
X0 ∈ hom1

Aε
(X,X) of order O(ε),

Xd(1, . . . , 1) ∈ hom1−d
Aε

(X,X) for d > 0,

satisfying the A∞-functor equations (with curvature). However, in the strictly unital case,

X1(1) = eX is the identity, and Fd(1, . . . , 1) = 0 for all d > 1, hence all that remains is F0;

and if one writes that as F0 = −εαX , the A∞-functor equations reduce to (17.5). Going a

little further, the A∞-category fun(Kε,Aε) of such A∞-functors can be identified with the

first order deformation Ainf
ε of Ainf associated to the Hochschild cocycle φ (see Remark

17.2). In particular, if X0 and X1 are two infinitesimally equivariant objects, with their

associated functors F0 and F1, one has a long exact sequence

(17.16)

· · · → H∗−1(homA(X0, X1)) −→ H ∗(homfun(Kε,Aε)(X0,X1)) −→ H∗(homA(X0, X1))→ · · ·

whose boundary map is ΦX0,X1
.

Remark 17.4. One can replace the strict unitality assumption by a suitable version of co-

homological unitality. A version of Lemma 17.3 then still holds, but the correspondence is

a bijection only on the level of quasi-isomorphism classes, and the proof is a little more

involved.

The point of view of the curved deformation Aε can be useful when thinking of defining,

say, infinitesimal equivariance for A∞-modules. In another apparently natural direction, one

could consider the Hochschild homology of Aε, defined in the usual way but over Cε. This

sits in a long exact sequence

(17.17) · · · → HH ∗(A,A) −→ HH ∗(Aε,Aε) −→ HH ∗(A,A)→ · · ·

whose boundary map is the Lie action of [β] ∈ HH 1(A,A) on Hochschild homology. We have

not mentioned this structure before, but its origin is fairly intuitive: just like actual auto-

morphisms of A act on Hochschild homology, there is a corresponding infinitesimal action,

which means that HH ∗(A,A) is a representation of the graded Lie algebra HH ∗+1(A,A).

Via Lemma 17.3 and the functoriality of Hochschild homology, every infinitesimally equi-

variant object gives rise to a class in HH 0(Aε,Aε). Somewhat disappointingly, these classes

are not sufficiently sensitive to the choice of αX to be of real interest (see the following

Example). Therefore, it seems that HH ∗(Aε,Aε) is not after all the correct homology theory

for our purpose.
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Example 17.5. Consider the curved A∞-functor (in fact A∞-homomorphism, since both

categories involved have a single object)

(17.18)

G : Kε −→ Kε,

G0 = cε,

G1(1) = 1, Gd = 0 for d > 1.

Here, c ∈ K is some constant. This corresponds to making the unique object of the target

category Kε infinitesimally equivariant (with respect to β = 0), but in a way which is twisted

by the choice of c. There is an associated endomorphism G∗ of HH ∗(Kε,Kε) ∼= Kε. In terms

of (17.17), this is compatible with the identity endomorphisms of HH ∗(K,K) ∼= K. However,

because of that fact and the grading, it follows that G∗ must be the identity, hence does not

depend on c.

Infinitesimally equivariant Hochschild homology

Let’s again impose the assumption that char(K) = 0. In that case, one can associate to

β its infinitesimal orbit bimodule Oinf as in (9.34). This is a bimodule over A, which

additionally is linear over K[[u]]. In analogy with (13.41), we define the infinitesimally

equivariant Hochschild homology to be

(17.19) HH inf
∗ (A,A) = H∗(ĈC ∗(A,O

inf )),

where one starts with the Hochschild chain complex with coefficients in Oinf and then takes

its u-adic completion. The u-adic filtration gives rise to a spectral sequence which starts

with HH ∗(A,A)[[u]], and whose first differential is given by [β] (this time in terms of the

structure of Hochschild homology as a module over the Hochschild cohomology algebra; in

particular, commutativity of that algebra ensures that this differential squares to zero). The

edge homomorphism of that spectral sequence is the u = 0 reduction map

(17.20) HH inf
∗ (A,A) −→ HH ∗(A,A).

Again because of the functoriality of Hochschild homology, any infinitesimally equivariant

object has a class

(17.21) [X]inf
HH ∈ HH inf

0 (A,A),

whose image under (17.20) is the ordinary Hochschild homology class.

Example 17.6. Take A = K and β = 0, and make the unique object X infinitesimally

equivariant by choosing some constant αX = c. The associated class is [X]HH inf = ecu ∈
K[[u]]. Unlike the corresponding situation in Example 17.5, this definitely depends on c.

Conjecture 17.7. Take a proper A∞-category A defined over a field K of characteristic 0,

together with a class (17.1). Then, there is a canonical pairing

(17.22) (·, ·)inf
HH : HH inf

0 (A,A)⊗HH inf
0 (A,A) −→ K[[u]]

satisfying

(17.23) (−ux0, x1)inf
HH = u(x0, x1)inf

HH = (x0, ux1)inf
HH ,
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L

Figure 1.

and whose reduction to u = 0 recovers (8.10). The appropriate version of the Cardy rela-

tion would say that, if X0 and X1 are infinitesimally equivariant objects, then the image of

[X0]inf
HH ⊗ [X1]inf

HH under (17.22) recovers (17.11).

This formulation of the Conjecture is probably not the definitive one, as one can already see

by comparing it with the discussion in Lecture 8, where the natural pairing is between classes

associated to perfect modules and “dual classes” associated to proper modules. Presumably,

the same should apply to the infinitesimally equivariant case.

Application to Fukaya categories

Let M be as in Lecture 12. If we realize symplectic cohomology as the Floer cohomology

HF ∗(H) of a suitable Hamiltonian H, the chain level homomorphism underlying the open-

closed string map (17.3) has components

ψ1;0
L : CF ∗(H) −→ CF ∗(L,L),(17.24)

ψ1;1
L0,L1

: CF ∗(H)⊗ CF ∗(L0, L1) −→ CF ∗(L0, L1)[−1],(17.25)

· · ·(17.26)

Like all operations involving Lagrangian and Hamiltonian Floer cohomology, one can think

of these are being defined in terms of compact Riemann surfaces with marked boundary and

interior points, and where each interior point comes with an additional preferred tangent

direction (this is a direct relationship: moduli spaces of maps from those Riemann surfaces

to M define the operations). Concretely, there is a single Riemann surface S underlying

ψ1;0 (Figure 1). For ψ1;1, we have a family of Riemann surfaces Sr parametrized by a closed

interval, r ∈ [0, 1], and which degenerates at the endpoints of that interval (Figure 2). Note

the conventions for the tangent directions: in the case of S, the tangent direction at the

interior marked point goes towards the boundary marked point. The same holds for the

relevant component of Sr in the degenerate cases r = 0, 1. Finally, as we go from r = 0 to

r = 1, the tangent vector rotates by π.

From now on, fix some B ∈ SH 1(M) and a cocycle representative b ∈ CF 1(H).

Definition 17.8. An infinitesimally equivariant Lagrangian submanifold is an object L of

Fuk(M) together with αL ∈ CF 0(L,L), satisfying µ1
Fuk(M)(αL) = ψ1;0

L (b).
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S1Sr, for some 0 < r < 1

L0

S0

L1

Figure 2.

This is actually a special case of Definition 17.1. Suppose for simplicity that L is connected,

and that it carries a flat K-line bundle (not a higher rank flat vector bundle). In view of the

isomorphism HF ∗(L,L) ∼= H∗(L;K), the obstruction to equivariance resides in H1(L;K);

and if that vanishes, then the effective freedom of choice is H0(L;K) ∼= K.

As before, given two infinitesimally equivariant objects, one gets an endomorphism

(17.27)
φ = φL0,L1 : CF ∗(L0, L1) −→ CF ∗(L0, L1),

φ(a) = ψ1;1
L0,L1

(b, a) + (−1)|a|µ2
Fuk(M)(αL1

, a)− µ2
Fuk(M)(a, αL0

),

and an induced endomorphism ΦL0,L1
of HF ∗(L0, L1). We can then define, exactly as

in (17.11) or (17.13), the equivalent expressions (u-intersection numbers or t-intersection

numbers)

(17.28)

L0 ·u L1 = Str
(
euΦL0,L1

)
,

L0 ·t L1 =
∑
λ

χλt
λ,

where in the second equation (for K = C only) χλ is the Euler characteristic of the generalized

λ-eigenspace of ΦL0,L1
. Because of the grading conventions used, reduction to u = 0 (respec-

tively t = 1) yields the ordinary intersection number L0 · L1 up to a dimension-dependent

sign (−1)n(n+1)/2. Note that by definition

(17.29)
∑
λ

|χλ| ≤ rank(HF ∗(L0, L1))

Hence, our improved intersection numbers give a lower bound for the number of essential

intersection points (intersection points which can’t be removed by a Hamiltonian isotopy).
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This bound is stronger than that given by the ordinary intersection number L0 · L1, and

weaker than the total rank of Floer cohomology. It is quite well-behaved, as shown for

instance by the following result:

Proposition 17.9 ([184, Theorem 5.6]). Suppose that dim(M) = 2n > 2. Let S be a

Lagrangian sphere (which is then automatically an object of the Fukaya category, unique up

to a shift, and also automatically infinitesimally equivariant), and τS the associated Dehn

twist (as a graded symplectic automorphism, which acts on the Fukaya category). If L1 is

infinitesimally equivariant, then there is a preferred way of making τS(L1) infinitesimally

equivariant. Moreover, given that and another infinitesimally equivariant L0, we have the

t-Picard Lefschetz formula

(17.30) L0 ·t τS(L1) = L0 ·t L1 − (L0 ·t S)(S ·t L1).

This is essentially a consequence of the compatibility of the maps Φ with the long exact

sequence [173]

(17.31) · · · → HF ∗(S,L1)⊗HF ∗(L0, S) −→ HF ∗(L0, L1) −→ HF ∗(L0, τS(L1))→ · · ·

It is interesting to consider the action of τ2
S on t-intersection numbers when M is of dimension

2n with n even (which is when its action on standard homology is trivial). ΦS,S is a derivation

of the algebra HF ∗(S, S) ∼= H∗(S;C). Hence, it is zero in degree 0, but can in principle be

any constant λ in degree n, and then

(17.32) S ·t S = 1 + tλ.

Applying (17.30) yields

(17.33) L0 ·t τ2
S(L1) = L0 ·t L1 + (S ·t S − 2)(L0 ·t S)(S ·t L1).

In the case where λ 6= 0 in (17.32), this shows that t-intersection numbers behave fundamen-

tally differently from the ordinary topological ones (in particular, in dimensions 2n = 4, 12

where τ2
S is smoothly isotopic to the identity, they detect genuinely symplectic phenomena).

The remaining case λ = 0 is obviously somewhat less interesting.

Finally, one would like to have a geometric analogue of HH inf
∗ (A,A), involving symplectic

homology rather than Hochschild homology.

Conjecture 17.10. Suppose that char(K) = 0. Then there is a graded K[[u]]-module

SH inf
∗ (M) depending on M and B, with the following properties. First of all, there is a spec-

tral sequence SH ∗(M)[[u]]⇒ SH inf
∗ (M), where the first nontrivial boundary operator is the

action of B. Secondly, each infinitesimally equivariant L defines a class [L]inf
SH ∈ SH inf

−n(M).

Finally, there is a pairing

(17.34) (·, ·)inf
SH : SH inf

∗ ⊗ SH inf
∗ −→ K[[u]]

of degree 2n, which satisfies the analogue of (17.23), and which sends [L0]inf
SH ⊗ [L1]inf

SH to

L0 ·u L1.

The edge homomorphism of our spectral sequence would yield a map SH inf
∗ (M)→ SH ∗(M)→

H∗(M ;K). With this in mind, Conjecture 17.10 can be considered as a first step towards
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Desideratum 3.3 (expanding formally around t = 1, which is our u = 0). Note that this

is certainly not the final answer (in the same sense as holomorphic equivariant cohomology

is not equivariant cohomology; see Lecture 2). In any case, even Conjecture 17.10 remains

unproved at the moment. However, the first order approximation, using K[u]/u2 instead of

K[[u]], can be constructed using a slight variation of the argument in [180] (for any coefficient

field K, in fact), and has the desired properties.





LECTURE 18

Dilations

The formalism from the previous lecture starts with an a priori arbitrary class B ∈ SH 1(M).

However, its ultimate behaviour depends strongly on the choice of B. For instance, ifB comes

from ordinary cohomology via the map H∗(M) → SH ∗(M), the improved self-intersection

numbers L ·t L are trivial. By this, we mean that they do not depend on t at all, and reduce

to the ordinary self-intersection numbers L · L.

One condition which is useful in this context is the dilation property introduced in [184]. If

B is a dilation, then L ·tL is nontrivial for certain L, such as spheres and complex projective

spaces. On the other hand, the existence of a dilation is quite a strong constraint, which will

only be satisfied by a small class of Liouville manifolds.

A topological version

Take an oriented manifold M2n and a class B ∈ H1(M ;Z), which is represented by an

infinite cyclic covering M̃ →M . Denote the generator of the covering group by T : M̃ → M̃ .

Consider n-dimensional closed oriented submanifolds manifolds L ⊂M . Let’s say that such

an L is infinitesimally B-equivariant if it comes with a lift L̃ to M̃ . We can then define

improved intersection numbers by

(18.1) L0 ·t L1 =
∑
k∈Z

tk T k(L̃0) · L̃1.

This may not be terribly interesting from our viewpoint, since clearly L ·t L = L · L, but it

still has its uses, see e.g. [78, 30]. There is also a Poincaré dual formulation, which goes as

follows. Let Σ be an oriented closed hypersurface in M , representing the Poincaré dual of

B. Given a submanifold L ⊂ M which intersects Σ transversally, choose a locally constant

function αL : L \ Σ → Z which jumps once when crossing Σ (in positive normal direction).

Suppose that L0, L1 are two such submanifolds, which intersect transversally, and such that

L0 ∩ L1 is disjoint from Σ. One then defines L0 ·t L1 by counting each intersection point

with its usual sign and a power tαL1
(x)−αL0

(x).

Suppose now that M is a Liouville manifold with vanishing first Chern class, with B as

before. The composition

(18.2) H∗(M ;K) −→ SH ∗(M)
[ψ0
L]−−−→ HF ∗(L,L)

∼=−→ H∗(L;K)

185
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is the ordinary restriction map. Hence, if L is a Lagrangian submanifold, the condition

that L can be made infinitesimally equivariant with respect to the image of B in SH 1(M)

is equivalent to B|L = 0. In fact, a cochain level realization of (18.2) shows that, given a

suitable choice of representing hypersurface Σ, one can make L infinitesimally equivariant by

choosing an αL as before. Up to chain homotopy, the resulting map (17.27) can be described

as follows. The first term ψ1;1
L0,L1

(b, a) counts Floer trajectories crossing Σ, which means

(18.3)



u : R× [0, 1] −→M,

u(s, 0) ∈ L0, u(s, 1) ∈ L1,

lims→−∞ u(s, ·) = x1,

lims→+∞ u(s, ·) = x0,

∂su+ Jt(u)∂tu = 0,

together with a choice of t0 such that u(0, t0) ∈ Σ.

However (assuming suitable transversality) there are no isolated points of this moduli space,

since each Floer trajectory intersects Σ in a one-manifold. Hence, the only thing that counts

are the two other terms in (17.27), which turn out to count constant holomorphic triangles,

and contribute

(18.4) x 7−→ αL1
(x)− αL0

(x).

The associated intersection numbers (17.28) then reproduce the purely topological construc-

tion given above. This is relevant for us mainly as a warning note: one does not want to use

classes in SH 1(M) which come from ordinary cohomology.

Definition and first consequences

A class B ∈ SH 1(M) is called a dilation if its image under the BV operator is the unit for

the ring structure of SH ∗(M):

(18.5) ∆B = 1.

In particular, such a class can’t come from H1(M), since its image is annihilated by ∆. The

key observation is:

Lemma 18.1 ([184, Section 4]). Suppose that B is a dilation. Let L be an object of

Fuk(M) which is infinitesimally equivariant with respect to B. Then, the action of ΦL,L
on HFn(L,L) ∼= Hn(L;K) is +1.

We will not give the proof, which in fact shows the following more general fact. If one

starts with any class B ∈ SH 1(M) and builds the corresponding theory of infinitesimally

equivariant submanifolds, the action of ΦL,L on HFn(L,L) equals the product with the

image of ∆B under SH 0(L,L)→ HF 0(L,L). In our case, that image is the identity element

[eL] ∈ HF 0(L,L), whence the specific form of the result.
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Poincaré duality in Floer cohomology says that product HF ∗(L1, L0) ⊗ HFn−∗(L0, L1) →
HFn(L0, L0) is nondegenerate. If we use the resulting isomorphism

(18.6) HF ∗(L1, L0) ∼= HFn−∗(L0, L1)∨,

the derivation property of the maps ΦL0,L1 together with Lemma 18.1 shows that

(18.7) ΦL1,L0 = Id − Φ∨L0,L1
,

which implies that

(18.8) L1 ·t L0 = (−1)n t (L0 ·t−1 L1).

In the special case of a K-homology sphere S, Lemma 18.1 determines ΦS,S completely: it

acts by 0 in degree 0, and by 1 in degree n. Hence,

(18.9) S ·t S = 1 + (−1)nt,

which is welcome in view of (17.33).

Cotangent bundles

For M = T ∗L with L a closed oriented Spin manifold, we have the isomorphism (6.7).

Under that isomorphism, the class 1 ∈ SH 0(M) corresponds to the homology class of the

constant loops L ⊂ LL, and the meaning of the BV operator was discussed in Example

12.5. This means that the question of when M has a dilation can be answered in purely

algebro-topological terms.

Example 18.2. If L is a K(π, 1), then M = T ∗L doesn’t admit a dilation. By Viterbo

functoriality (6.9), this implies that if some Liouville manifold does admit a dilation, it can’t

contain L as an exact Lagrangian submanifold. This certainy applies to Lagrangian tori.

For instance, the manifold from Example 11.2 cannot possibly admit a dilation (the same

applies to many other examples of local mirror symmetry).

Example 18.3. Take L = S2, and suppose that char(K) 6= 2 (we point out that in principle,

the notion of dilation makes sense for an arbitrary coefficient field). Then, the evaluation

map LS2S2 → S2 induces an isomorphism H2(LS2;K)→ H2(S2;K). Take a one-parameter

family of loops which fill S2, which means such that the associated map S1 × S1 → S2 has

degree 1. Then, the class in H1(LS2;K) of that family is a dilation.

On the other hand, take char(K) = 2. Then

(18.10) H1(LS2;K) ∼= K, H2(LS2;K) ∼= K2.

This is particularly easy to see from the point of view of Morse theory for the geodesic

functional. Let RP 3 be the space of great circles, which is a critical manifold of Morse index

1. Any point on it defines the generator of H1(LS2;K). The first generator for H2(LS2;K)

is a loop in RP 3, and the second generator consists of the constant loops [S2]. With those

conventions for (18.10), the BV operator is the diagonal map (1, 1) : K→ K2. Hence, there

is no dilation for this choice of coefficient field (see [135] for more complete computations).



188 18. DILATIONS

A simpler version of the argument above shows that T ∗Sn, n > 2, admits a dilation for any

choice of coefficients K.

It would be interesting to have an example of a simply-connected formal manifold whose

cotangent bundle does not admit a dilation (in characteristic zero).

Complements of smooth ample divisors

Let M̄ be a smooth complex projective variety of dimension n. Suppose that there is a

smooth ample divisor D such that

(18.11) KM̄
∼= OM̄ (−mD) for some m ∈ Z.

We will consider

(18.12) M = M̄ \D,

which is an affine variety with a natural (up to multiplication with a constant) trivializa-

tion of KM . We will be interested in one of the simplest Gromov-Witten invariants of M̄ .

Namely, let M̄0,2(M̄ ; 1) be the space of genus zero stable maps with two marked points which

have intersection number 1 with D. After a generic small perturbation of the almost com-

plex structure, this space will be a smooth oriented manifold, which comes with evaluation

maps ev1, ev2 : M̄0,2(M̄ ; 1) → M̄ . We write the resulting Gromov-Witten invariant as an

endomorphism of cohomology,

(18.13)
Γ̄ : H∗(M̄ ;K) −→ H∗+2−2m(M̄ ;K),

Γ̄(x) = ev2,∗(ev∗1x).

We then further combine Γ̄ with the inclusion maps i∗ : H∗(D;K) → H∗+2(M̄ : K) and

restriction maps H∗(M̄ ;K)→ H∗(M ;K) to get

(18.14) Γ : H∗(D;K) −→ H∗+4−2m(M ;K).

Let’s now turn to symplectic topology. The contact manifold describing the structure of

M at infinity is the circle bundle p : N → D associated to the normal bundle of D. The

cohomology of N sits in a short exact sequence

(18.15) 0→ H∗(D;K)/im(κ)
p∗−→ H∗(N ;K)

p∗−→ ker(κ)[−1]→ 0,

where κ : H∗(D;K) → H∗+2(D;K) is the cup product with the Chern class of the normal

bundle. One can choose the contact one-form so that the Reeb flow on N is fibrewise rotation,

hence 2π-periodic. Let’s think of the symplectic cohomology of M as the direct limit of Floer

cohomologies HF ∗(Hk), as in (12.51), where the flow of Hk on the conical end of M equals

(2k + 1)π times the Reeb flow. The first approximation HF ∗(H0) ∼= H∗(M ;K) is ordinary

cohomology. The next one includes the primitive Reeb orbits, hence sits in a long exact

sequence

(18.16) · · · → H∗+2m−3(N ;K)
d−→ H∗(M ;K) −→ HF ∗(H1)→ · · ·
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The degree shift in the cohomology of N is a consequence of (18.11) and a Conley-Zehnder

index computation. Our aim is to give a description of d in terms of the Gromov-Witten in-

variant (18.13), and then a conjectural partial description of the BV operator ∆ on HF ∗(H1)

in the same terms.

Lemma 18.4 (Diogo). Assume that m > 0. Then, the map d in (18.16) is the composition

(18.17) H∗(N ;K)
p∗−→ H∗−1(D;K)

Γ−→ H∗+3−2m(M ;K).

This is proved in [58] (it seems likely that the method used there would apply to all values

of m). An earlier related conjecture, formulated in terms of contact homology rather than

symplectic homology, can be found in [101].

Lemma 18.5. The BV operator ∆ on HF ∗(H1) fits into a commutative diagram whose rows

are given by (18.16)

(18.18) · · · // H∗+2m−3(N ;K)

p∗p∗

��

d // H∗(M ;K)

0

��

// HF ∗(H1)

∆

��

// · · ·

· · · // H∗+2m−4(N ;K)
d // H∗−1(M ;K) // HF ∗−1(H1) // · · ·

�

This is straightforward from a Morse-Bott formulation of Floer cohomology. However, it

does not determine the part of ∆ which is responsible for the possible existence of dilations.

To get a better description, note (again roughly following [101]) that we can use Γ to define

a secondary operation

(18.19) H∗(N ;K) ⊃ ker(p∗p∗)
p∗−→ ker(p∗) = im(κ)

κ←− H∗−3(D̄;K)/ker(κ)

= H∗−3(D̄;K)/im(p∗)
Γ−→ H∗+1−2m(M ;K)/im(d).

Conjecture 18.6. The following diagram commutes:

(18.20) ker(p∗p∗) ∩ ker(d)

��

// HF∗+2−2m(H1)
im(H∗(M ;K)→HF∗(H1))

∆

��
H ∗+1−2m(M ;K)/im(d) // HF ∗−1−2m(H1).

Here, the top → partially inverts one of the maps in (18.16); the bottom → is also taken

from that sequence, in a more straigthtforward way; ∆ descends to the quotient because of

(18.18); and the left ↓ is (18.19) restricted to ker(d).

Example 18.7. Take M̄ = CPn, and D = CPn−1 a hyperplane. In this case m = n + 1,

M ∼= Cn, and N ∼= S2n−1. Because there is one line through every pair of points on M̄ , the

endomorphism (18.14) maps H2n(D;K) nontrivially to H0(M ;K). As a consequence of that

and Lemma 18.4, d : H2n+1(N ;K) → H0(M ;K) is nonzero. This means that the identity

in H0(M ;K) maps trivially to symplectic cohomology, hence that SH ∗(Cn) = 0, as already
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stated in Example 6.8 (the argument we’re giving here is by no means the simplest proof of

that fact).

Example 18.8. Take M̄ = CP 1×CP 1, and D the diagonal. In this case m = 2, M ∼= T ∗S2,

and N ∼= RP 3. The relevant Gromov-Witten map is

(18.21)

Γ : H∗(D;K) −→ H∗(M ;K),

Γ(1) = 2,

Γ([point ]) = 0.

The first expression Γ(1) counts the number of lines in M̄ going through a fixed point of M ,

which is 2 because of the two rulings. For Γ([point ]) one fixes a point on D and adds up the

homology classes of the two curves in the rulings going through that point. The sum is the

homology class of the diagonal, which vanishes when restricted to M .

From (18.21) we see that d : H3(N ;K)→ H2(M ;K) vanishes. Suppose now that char(K) 6=
2, so that p∗p∗ : H3(N ;K)→ H2(N ;K) vanishes and Γ(1) is nonzero. Then, the secondary

operation (18.19) yields

(18.22) H3(N ;K)
p∗

∼=
// H2(D;K) H0(D;K)

κ

∼=
oo Γ

∼=
// H0(M ;K).

From Conjecture 18.6, one would then conclude that M has a dilation (we already established

that as a fact in Example 18.3, by entirely different methods).

Example 18.9. Let M̄ be a cubic threefold in CP 4, and D a hyperplane section. This is

another case with m = 2, and we take K = Q for simplicity. M̄ is known to contain a

two-parameter family of lines (this goes back to Fano; see [14] for an exposition). However,

(18.23) p∗p∗ : H3(N ;Q) −→ H2(N ;Q)

is injective. Hence, Lemma 18.5 shows that no element in HF ∗(H1) can satisfy ∆B = 1 in

that group; of course, it is still possible that a dilation might appear at the next step in the

direct limit leading to SH ∗(M).

Fibration methods

So far, we have only seen one positive example of a dilation, namely T ∗Sn for n ≥ 2. By

the Künneth formula [139], it follows that products T ∗Sn × F , where F is any Liouville

manifold with vanishing first Chern class, also admit dilations. One can generalize this idea

as follows

Theorem 18.10 ([184, Proposition 7.3]). Take an exact symplectic Lefschetz fibration π :

M → C, where the fibre F is a Liouville manifold of dimension 2n ≥ 4, and c1(F ) = 0 (it

then follows that M has the same structure). If F admits a dilation, then so does M .

Sketch of proof. One defines a “vertical” or “fibrewise” version of symplectic coho-

mology SH ∗vert(M), which is somewhat easier to compute. Concretely, it sits in a long exact
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sequence

(18.24) · · · → H∗(M, {re(π)� 0};K) −→ SH ∗vert(M) −→ SH ∗(F )→ · · ·

The cohomology group on the left has one generator for each critical point of π, and that

generator sits in degree n + 1 ≥ 3. Hence, the map SH ∗vert(M) → SH ∗vert(F ) is an isomor-

phism in degrees ∗ = 0, 1. That map is a homomorphism of BV algebras. On the other

hand, there is another homomorphism of BV algebras

(18.25) SH ∗vert(M) −→ SH ∗(M).

One transfers the given dilation of F through those two maps. �

Corollary 18.11. The Milnor fibre of the (Am) singularity,

(18.26) M = {x2
1 + · · ·+ x2

n + xm+1
n+1 = 1} ⊂ Cn+1,

admits a dilation provided that n ≥ 3 (and if n = 3, the coefficient field K has to be of

characteristic 6= 2).

This is a direct consequence of Theorem 18.10, since the projection xn+1 : M → C is a

Lefschetz fibration with fibre T ∗Sn−1. By an iterated version of the same argument, one

shows:

Corollary 18.12. The Milnor fibre of any isolated hypersurface singularity p(x, y) = 0,

where p(x, y) = x2
1 + · · ·+ x2

n+1 + q(y1, . . . , ym+1) for n+ 1 ≥ 3, admits a dilation (if n = 3,

one has the same restriction on char(K) as before). �

In the language of Lecture 16, these singularities are at least triply suspended. It is useful

to compare this result with the ones obtained there by purely algebraic means. Corollary

16.7 ensured the existence of C∗-actions on the Milnor fibres of doubly suspended weighted

homogeneous singularities (weighted homogeneity was necessary in order to ensure that

the our algebraic description of the Milnor fibre was complete, something that is not an

issue when using geometric methods). That C∗-action was dilating, but with respect to

an isomorphism (15.9) which was chosen artificially. In contrast, the dilation condition

(18.5) refers to the geometrically given operator ∆, or in other words to the canonical cyclic

structure of the Fukaya category (this stricter condition explains the need to suspend three

times rather than twice). The final difference is that dilations only provide infinitesimal

symmetries, whereas the algebraic construction provided ones that integrate to circle actions.

We should mention that, in spite of this fairly clear intuitive picture, the relationship between

the two approaches has not been studied rigorously.
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Quasi-dilations

The dilation property has a straightforward interpretation in terms of mirror symmetry,

which is the first point to be explained in this lecture. However, that interpretation also

shows that in most cases where mirror symmetry applies, one can’t hope to find an actual

dilation. However, there is a slightly more general property (the quasi-dilation property)

which leads to similar practical consequences for improved intersection numbers, and which

does apply to many of the basic examples of local mirror symmetry.

Acknowledgments. The present lecture contains one result (Corollary 19.6) which is unpub-

lished joint work of the author and Jake Solomon.

Mirror symmetry motivation

Let M∨ be a smooth affine algebraic variety of dimension n, which comes with a complex

volume form ηM∨ . In Lecture 12, we discussed the Hochschild cohomology (12.20) and its

BV operator ∆ (12.21) (in the case M∨ = C∗, but the same formulae hold in general). In

particular, given a vector field B ∈ H0(M∨, TM∨) = HH 1(M∨,M∨), we have

(19.1) ∆Z = 1 ⇔ d(iZηM∨)

ηM∨
= 1 ⇔ d(iZηM∨) = ηM∨ ⇔ LZηM∨ = ηM∨ .

Hence, the dilation condition is the mirror dual to having a vector field which expands ηM∨

(this explains the terminology).

A little more generally, we can look for vector fields Z which expand some other volume

form, say fηM∨ for an invertible function f . The generalization of (19.1), read backwards,

is

(19.2) LZ(fηM∨) = fηM∨ ⇔ d(ifZηM∨) = fηM∨ ⇔ ∆(fZ) = f.

In terms of the Lie bracket (12.11) on HH ∗+1(M∨,M∨) which is part of the BV algebra

structure, this can be written as

(19.3) ∆Z = 1− f−1[f, Z].

Example 19.1. Let’s return to the original example of M∨ = C∗. There can be no solutions

to (19.1), because ηM∨ = dw/w is not exact even as a C∞ differential form (the same will

hold in all cases where the SYZ form of mirror symmetry [190] applies, since by definition

ηM∨ integrates nontrivially over any closed special Lagrangian submanifold).

193
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In contrast, there are many solutions of (19.2):

(19.4)

{
f(w) = wk for some nonzero integer k,

Z = ( 1
kw + cw1−k)∂w where c ∈ C is an arbitrary constant.

The choice c = 0 may seem most natural, since then the vector field can be integrated to

an action of G = C∗. However, that action has no stationary points, hence there are no

G-equivariant torsion sheaves.

Definition

Let M be as in Lecture 18. A pair (B, h) ∈ SH 1(M)×SH 0(M) is called a quasi-dilation if h

is invertible with respect to the commutative ring structure on SH 0(M), and the analogue

of (19.2) holds:

(19.5) ∆(hB) = h.

Obviously, for h = 1 this reduces to the notion of dilation.

Lemma 19.2. Suppose that (B, h) is a dilation. Let L be an object of Fuk(M) which is

infinitesimally equivariant with respect to B. Then, the action of ΦL,L on HFn(L,L) ∼=
Hn(L;K) is +1.

This generalizes Lemma 18.1. The first part of proof is the same: the action of ΦL,L on

HFn(L,L) is multiplication with the image of

(19.6) ∆B = 1− h−1[h,B] ∈ SH 0(M)

under the cohomology level map induced by (17.24), which one can also think of as a com-

position

(19.7) SH ∗(M) −→ HH ∗(Fuk(M),Fuk(M)) −→ HF ∗(L,L).

The first part of (19.7) is the open-closed string map (12.24), which is compatible with

both product and Lie bracket. The second part is the projection map, which exists for any

A∞-category A and has the form:

(19.8)
HH ∗(A,A) −→ H∗(homA(X,X)),

[β] 7−→ [β0].

Because L is infinitesimally B-equivariant, the image of B under (19.7) must vanish. The

image of h is an invertible element of L, hence (if one assumes L to be connected, which one

can do without loss of generality) a multiple of the identity. Lemma 19.2 is a consequence

of this and the following elementary algebraic fact:

Lemma 19.3. Fix an object X of A. Take two classes in HH ∗(A,A) whose images in

H∗(homA(X,X))/K · [eX ] vanish. Then, the Gerstenhaber bracket of those two classes maps

to zero in H∗(homA(X,X)).
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Proof. Without loss of generality, we may assume that A is minimal and strictly unital,

and use the reduced version of the Hochschild cochain complex. Given any two Hochschild

cocycles (β2, β1), we have

(19.9) [β2, β1]0 = β1
2(β0

1)− (−1)(|β2|−1)(|β1|−1)β0
1(β0

2) ∈ homA(X,X).

By assumption, β0
1 and β2

0 are multiples of the identity endomorphism; and β1
2(eX) =

β1
1(eX) = 0, because they are reduced Hochschild cochains. (Of course, there is a ver-

sion of the argument which works throughout with cohomologically unital categories and

the full Hochschild complex, but the formulae become more complicated in that case.) �

As a consequence, the refined intersection numbers associated to quasi-dilations will have

the same properties as for dilations, in particular (18.8) and (18.9).

Example 19.4. Let’s consider the mirror to Example 19.1, meaning M = T ∗S1 with coeffi-

cient field K = C. A description its symplectic cohomology which is compatible with mirror

symmetry was already given in (12.15), and this implies that M admits a quasi-dilation.

For concreteness, let’s consider only the case corresponding to k = 1 in (19.4). Then, the

invertible class h lies in SH ∗(M)(1), which means that it corresponds to a simple Reeb orbit

winding once around the circle. For the simplest choice of quasi-dilation, the class B lies in

H1(M ;C) ∼= SH 1(M)(0), and in particular satisfies ∆B = 0, while hB ∈ SH 1(M)(1).

Take the object of Fuk(M) corresponding to the zero-section L ⊂M equipped with a flat line

bundle with arbitrary holonomy a. As an instance of our previous general discussion (18.2),

the map

(19.10) H1(M ;C) ∼= H1(SH 1(M)(0))→ HF 1(L,L) ∼= H1(L;K)

is nontrivial, hence L is never infinitesimally equivariant.

More generally, we can add any element c ∈ SH 1(M)(−1) ∼= C to B, and that corresponds to

using a general value of c in (19.4). The map SH 1(M)(−1) → HF 1(L,L) is multiplication

by a−1; this is the same computation as in (12.33). The consequence is that if we choose a

nonzero c, there will be a unique value of a for which L becomes infinitesimally equivariant.

Examples

The most basic example is the Milnor fibre of the (Am) type singularity of complex dimension

n = 2. As in Corollary 18.11 we consider this as the total space of a Lefschetz fibration

π : M → C, but where now the fibre is a conic F = C∗ = T ∗S1. We will use the “fibrewise”

version of symplectic cohomology SH ∗vert(M) as in (18.24), together with a suitably adapted

open-closed string formalism. Namely, let ∆ ⊂M be the Lefschetz thimble associated to an

embedded path γ : [0,∞)→ C, where γ(0) is a critical value, and re(γ(t))→∞ as t→∞.

Let V ⊂ F be the associated vanishing cycle, which is just the zero-section S1 ⊂ T ∗S1

(equipped with the Spin structure that bounds a Spin structure on the disc ∆). One can
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construct a diagram of open-closed string maps of the form

(19.11) · · · // H∗(M, {re(π)� 0};K)

��

// SH ∗vert(M) //

��

SH ∗(F ) //

��

· · ·

· · · // H∗c (∆;K) // H∗(∆;K) // H∗(V ;K) // · · ·

The top row is (18.24), and the bottom row is the standard topological diagram involving

∆ and its “boundary at infinity” V . The left hand ↓ is the standard restriction map on

cohomology, while the right hand ↓ is [ψ0
V ] : SH ∗(V )→ HF ∗(V, V ) ∼= H∗(V ;K).

Now take a basis of vanishing paths γi, with associated ∆i and Vi (of course, all the Vi are

the same up to isotopy). Combining the relevant diagrams (19.11) yields

(19.12)

· · · // H∗(M, {re(π)� 0};K)

∼=
��

// SH ∗vert(M) //

��

SH ∗(F ) //

��

· · ·

· · · //⊕
iH
∗
c (∆i;K) //⊕

iH
∗(∆i;K) //⊕

iH
∗(Vi;K) // · · ·

where the left hand ↓ is now an isomorphism. Diagram-chasing shows:

Lemma 19.5. A class B ∈ SH 1(F ) can be lifted to SH 1
vert(M) if and only if its image in

H1(V ;K) ∼= HF 1(V, V ) vanishes. �

Now, take B to be a quasi-dilation which makes V infinitesimally equivariant. This exists by

our previous discussion, and in fact there are infinitely many possible choices (corresponding

to different k in (19.4); the constant c on the other hand is uniquely determined by our

condition). Since the map SH 0
vert(M)→ SH 0(F ) is an isomorphism of rings, it follows that

the lift of B to SH 1
vert(M) is again a quasi-dilation.

Corollary 19.6 (Seidel-Solomon). The (Am) type Milnor fibre (18.26) in dimension n = 2

admits a quasi-dilation. �

By the same principle as Corollary 18.12, this implies:

Corollary 19.7. The Milnor fibre of any isolated hypersurface singularity p(x, y) = 0,

where p(x, y) = x2
1 + x2

2 + q(y1, . . . , ym+1), admits a quasi-dilation. �

As already pointed out in [184, Section 7], there is a generalization of (18.24) to Lefschetz

fibrations with base C∗. This becomes particularly simple if we assume that the monodromy

around 0 is trivial, in which case the long exact sequence takes on the form

(19.13) · · · → H∗(M, |π| � 1};K) −→ SH ∗vert(M) −→ SH ∗(F )⊗H∗(S1;K)→ · · ·

The left-hand group is again generated by Lefschetz thimbles for vanishing paths running

towards 0, and one can generalize (19.11) accordingly. Then, the same argument as before

yields:
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Corollary 19.8. The manifold (11.7), and its generalizations from Example 11.4, admit

quasi-dilations. �
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