Quantum steenrod operations \leftarrow part joint work with wilkins Recall

$$
\begin{array}{ll}
H^{*}\left(B \geqslant / \mathbb{H}_{p}\right) \\
H^{*} \mathbb{F}_{p}\left(\text { point; } \mathbb{F}_{p}\right)=\mathbb{F}_{p}[[t, \theta]] \leftarrow \\
\text { nensional in each degree } \geqslant 0 .
\end{array}\left[\begin{array}{ll}
|t|=2, & |\theta|=1 \\
p=2: & \theta^{2}=t \\
p>2: & \theta t=t \theta, \quad \theta^{2}=0
\end{array}\right.
$$

The ordinary Steenrod operation

$$
\begin{aligned}
& \text { St: } H^{k}\left(M ; \mathbb{F}_{p}\right) \longrightarrow\left(H^{\ngtr}\left(M ; \mathbb{F}_{p}\right)[(t, \theta 7])^{k p}\right. \\
& \text { St } \left.(x)=x^{p}+\text { (terms with a } t \text { or } \theta\right)
\end{aligned}
$$

alternatively,

$$
\begin{aligned}
& \text { Rely, } \\
& S t(x)= \pm t^{\left(\frac{p-1}{2}|x|\right.} x+\text { for } p=2, \quad t^{1 / 2}=\theta . \\
&
\end{aligned}
$$

From now on, let M be a closed monotone symplectic manifold. The quantum steenrod operation is originally due to Fukaya
graded $\bmod 2$,
QSt: $H^{k}\left(M ; \mathbb{F}_{p}\right) \longrightarrow\left(H^{*}\left(M ; \mathbb{F}_{p}\right)\lceil[t, G\rceil]\right)^{p k}$ was A
$\operatorname{QSt}(x)=\underbrace{x * \cdots \neq x}_{p \leftarrow p \text {-fold quantum }}+$ (terms with $\theta a t$)
contributing with grading $-2 c_{1}(A)$

Example $M=s^{2}, p=2$. product

$$
\begin{aligned}
& \overbrace{\text { St pant*point }}^{\text {St }} \\
& \operatorname{QSt}(1)=1, \operatorname{QSt}(\text { point })=t \text { point }+1 \\
& \stackrel{\circledR}{H^{2}\left(M_{i} \mathbb{F}_{p}\right)}
\end{aligned}
$$

Application to Hamiltonian dynamics
Suppose $H_{y}(M)$ is torsion-free. A Hamiltonian difteomorphism $\phi: M \rightarrow M$ is called a "nondegenerate pseudorotation" if

- the only periodic pants of $\$$ ore fixed points Ex.
- $\phi(x)=x \Rightarrow D \phi_{x}$ has no $\sqrt{1}$ as eigenvalues
- $|F i x \phi|=\operatorname{rank} H_{t}(M)$
x non degenerate as a penodic pant
The (Salamon-Zehnder) $c_{1}(M)=0$, then M can't admit psecudo-rotations.

Thy (Ginzburg-Gürel) $c_{1}(M)=-\left\lceil\omega_{M}\right]$, then M can't admit pseudo-rotations.

Theorem (Cineli-Ginzburg-Gïrel; Shelukhin) Suppose that for some $p, \quad \operatorname{QSt}([p o i n t])=[p o i n t]$? Then M car't admit a preudorotation.

Hence, we should focus on monifolds with lots of rational curves (rational curves through every point).

$$
\lambda \operatorname{QSt}((p \sin t))=t^{2}[p \sin t)
$$

Example (S.-Wilkins) The cubic surface (\mathbb{P}^{2} blown up at 6 points, with its monotone symplectic form) does not adruit a preudorotation. \& $p=2$ computation

Example
T^{4} blown up at a point has no preudorotations

Example
$\mathbb{C} P^{2}$ blown up at ≤ 3 points, with
$\left[\omega_{M}\right]=C_{1}(M)$, is tonic and hence has a pseudorotation

Formal structure (this description is inaccurate in many ways)

Gromov-Witten theory
$\bar{\mu}_{0, p+1}(M ; A)$
Deligne-
Mumford
evaluate
atp
at evaluate/
M^{P}

$$
M \times \bar{u}_{0, p+1}
$$

$$
H^{+}\left(\bar{\mu}_{0, p+1}(M ; A)\right)
$$

pullback π
〉"pushforwerd"

$$
H^{\not}(M)^{\otimes p}
$$

$$
H^{*}(M) \otimes H^{+}\left(\bar{\mu}_{0, p+1}\right)
$$

Symp-equivariont theory (permuting p marked points)
local $\mathbb{F}_{p}-\quad H_{\text {Symp }}^{*}\left(\bar{\mu}_{0, p+1}\left(M_{j} A\right) ; \pm 1\right)$ coefficients pullback \nexists "pushforucod"

This means that operations are parametrized by $H_{\neq}^{\text {Symp }}\left(\bar{m}_{o j p+1} j \pm 1\right)$, which is unfortunately unknown. But we lave the unique nonto metre orbit $O C \bar{m}_{o p p+1}$, with stabilizer \mathbb{E} / p, and correspondingly can specialize the p-th reacts of 1 operations to

$$
\begin{aligned}
& \left.H^{*}\left(M ; \mathbb{F}_{p}\right) \longrightarrow H^{\star}\left(M_{;} \mathbb{F}_{p}\right) \otimes H_{S_{y n}}^{*}\left(\theta_{p ;} \pm 1\right)\right) \\
& \text { dSt } y \cong H^{*}\left(M_{i} \mathbb{F}_{p}\right) \otimes H_{T \rho}^{*}(p a i n t)=H^{*}\left(M ; \mathbb{F}_{p}\right) \Pi[t, \theta \Pi] \text {. }
\end{aligned}
$$

By localization, H^{*} sump (θ) is "most of" $H_{S_{y n_{p}}}^{x}\left(\bar{m}_{\text {oppti}}\right)$.

Looking at the geometry, we see that there is a further natural operation,

$$
\begin{aligned}
Q \Sigma: H^{+}\left(M_{i} \mathbb{F}_{p}\right) \otimes H^{+}\left(M ; \mathbb{F}_{p}\right) & \longrightarrow H^{+}\left(M ; \mathbb{F}_{p}\right)[[t, G]] \\
(\alpha, x) & \longmapsto Q \Sigma_{\alpha}(x)
\end{aligned}
$$

$Q S_{\alpha} Q \sum_{\beta}$
Let's extend $Q S$ to on endomorphism of $H^{+}\left(M_{i} \mathbb{F}_{p}\right) \Gamma[t, 67]$

Theorem (s-Wilkins) For any α, Q \sum_{α} is covariantly constant with respect to the quantum connection.

For that to make sente, we define our cohomology over a ring

$$
\sum_{A \in H_{2}\left(M_{i} \mathbb{K}\right)} c_{A} q^{A}, \quad c_{A} \in \mathbb{F}_{p}
$$

Any $\beta \in H^{2}(M ; Z)$ gives an operation $\partial_{\beta}\left(q^{A}\right)=(\beta \subset A) q^{A}$

The quantum connection is

$$
\nabla_{\beta}=t \partial_{\beta}+\beta *
$$

\rightarrow classical steered
Cor Gromou-Witten theory determines QE up to the ideal formed by $q^{A}, A \neq 0, A \cdot \beta \equiv 0(p)$ for all $\beta . \longrightarrow \partial_{\beta} q^{A}=0 \forall \beta$

First case that eludes computation: double covers of (-1)-curves in $4 d \quad(p=2)$.

Homological algebra
Recall that quantum Sleenrod operation on $H^{k}\left(M_{i} \mathbb{F}_{p}\right)$ are parametizizd by $H_{*}^{s y n}\left(\bar{m}_{c, p+1} j(-1)^{k}\right)$. There is a classical analogue, Cohen's computation of the equivariont homology of configuratia space. Essentially the only intereshy class is

$$
H_{p-1}^{\operatorname{sym}_{p}}(\operatorname{Conf}(\mathbb{C}) ;-1) \cong \mathbb{E}_{p-1}
$$

Example $p=2, \quad H_{1}\left(\frac{\operatorname{Con} f_{2}(\mathbb{C})}{\delta y m_{2}} ; \mathbb{F}_{p}\right)$ contains the cycle
\therefore move pants
exchange
ex il they

Now, exchange position

$$
\begin{aligned}
& H_{p-1}^{\operatorname{Syn}}\left(\operatorname{Conf}_{p}(C) ;-1\right)
\end{aligned}
$$

The consequence is that
$Q \Xi=t^{\frac{p-1}{2}}$-colficient of GSA, acting on $H^{\text {odd }}\left(M, \mathbb{F}_{p}\right)$ (if $p>2$)
has an elementary meaning in homological algebra, as part of the operations carned by any (品)-algebra \mathbb{F}_{p}, such as the Hochschild cohomolegy of an algebra over Ip.

Example A algebra ab \mathbb{F}_{p};
if $D: A \rightarrow A$ is a derivation, then so is [D] $\in H H^{1}(A)$

$$
D^{p}=D \circ \cdots \circ D
$$

For $p=3$,
$\left[D^{P}\right] \in H H^{1}(A)$

$$
\begin{aligned}
& D^{3}(a b)=D^{2}(a D(b)+D(a) b) \\
&=D\left(D(a) D(b)+a D^{2}(b)\right. \\
&\left.+D(a) D(b)+D^{2}(a) b\right)
\end{aligned}
$$

$$
=a D^{3}(b)+D^{3}(a) b
$$

$+3 D^{2}(a) D(b)+3 D(a) D^{2}(b)$

For symplectic geometry, this means that if $F(M)$ is the Fukaya category over F_{p}, then
 operation

There is an explicit expression for the algebraic operations (Tourtchine)

Does not use the Calabi-Yau structure of the Fukaya category This particular operation is easy to conrtuect on (non-s'-equivoriat) symplectic cohomology or string topology
"Exercise" Look at superpotentials with Id critical locus.

Different homological algebra interpretation $A=A_{\infty}$-algebra $/ \mathbb{F}_{p}$

The outcome is expected to be $\phi=F u k(M)$

$$
H^{*}(M) \otimes H^{\psi}(M)[[t, \sigma\rceil\rceil \xrightarrow{Q \Sigma} H^{4}(M)[[t, \theta\rceil]
$$

The image of $1 \in H^{\circ}(M)$ under $O C_{S 1}$ describes the Calabi-Yau structure of the Fukaya category (Eauatra).
We can specialize to that class
to get

$$
\mathrm{HH}^{\star}(A) \longrightarrow \mathrm{HH}_{y}^{\delta}(A)[G]
$$

If we use the CY structure and a splitting of the Hodge-de Rham spectral sequence, we can get "algebraic steenrod operations" on $H H^{\not}(A, A) \cong H H_{+}(A, A)$.

What might this lock like concretely? On categoner $D^{b} \operatorname{Col}(x), \quad p>\operatorname{dim}(x)$, $H H^{\circ}(x) \cong H^{\circ}(x, O x) \ni f$ acts on the de Ream complex dy

$$
\eta \longmapsto f^{p} \eta
$$

(note $\left.d\left(f^{p} \eta\right)=f^{p} d \eta+p f^{p-1} d f \wedge \eta\right)$

If we have $\xi \in H^{0}(x, T A) \subseteq H H^{\prime}(x)$, that should act on the de Rham complex (enhanced with t^{\prime} and θ by operations of degree p. commeth with)de Rhen d $p=2 \quad \xi^{2}=$ square of our vector field as a dentation

$$
\eta \mapsto\left(L_{\xi}\left(\xi \eta+l_{\xi} \eta \eta\right) \theta\right.
$$

after applying

