Erratum to: Fukaya categories and Picard-Lefschetz theory, Lemma 2.1

Lemma 2.1 as stated is obviously incorrect. Take an A_{∞} -algebra \mathcal{A} which is acyclic (has vanishing cohomology in all degrees). Then, \mathcal{A} is tautologically cohomologically unital. However, one can easily find examples in which the multiplication cannot be transformed into a strictly unital one by a formal diffeomorphism (for instance, one can take any nontrivial acyclic chain complex which has no nonzero cocycles in degree 0, and set the multiplications $\mu_{\mathcal{A}}^d$, $d \geq 2$, to be equal to zero).

The issue happens at the start of the proof. Keeping to the case of A_{∞} -algebras for simplicity, if \mathcal{A} is acyclic, one cannot in general represent the multiplication by a chain map $\mu_{\mathcal{A}}^2 : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ such that $(-1)^{|a|} \mu_{\mathcal{A}}^2(e, a) = a = \mu_{\mathcal{A}}^2(a, e)$ (in the example above, one necessarily needs to set e = 0, and then the condition becomes impossible to satisfy unless $\mathcal{A} = 0$). The correct version of the statement, which sidesteps this issue, is:

Lemma 2.1. Let \mathcal{A} be a cohomologically unital A_{∞} -category, such that for all objects X, the complex $hom_{\mathcal{A}}(X, X)$ is either zero or has nontrivial cohomology. Then there is a formal diffeomorphism Φ with $\Phi^1 = Id$, such that the modified A_{∞} -structure $\Phi_*\mathcal{A}$ is strictly unital.

Acknowledgments. This issue was pointed out to the author by Fabian Haiden.