ERRATUM TO " π_1 OF SYMPLECTIC AUTOMORPHISM GROUPS AND INVERTIBLES IN QUANTUM HOMOLOGY RINGS"

PAUL SEIDEL

ABSTRACT. We note an error in [2]. This Erratum will not be published.

The paper defines $Ham(M, \omega)$ to be the group of Hamiltonian automorphisms, equipped with the C^{∞} -topology, and G as "the group of smooth based loops in $Ham(M, \omega)$ ". This is a misleading formulation, since what the paper really means is that elements of G are Hamiltonian loops. If one understands it in that way, then the proof of [2, Lemma 2.1] as given is incorrect.

However, the distinction between "smooth loops in the symplectic automorphism group which remain inside $Ham(M, \omega)$ " and "Hamiltonian loops" is ultimately irrelevant, because of the following:

Lemma. Let $(\phi_t)_{0 \le t \le 1}$ be a smooth isotopy of symplectic automorphisms of M, such that each ϕ_t is Hamiltonian. Then, the isotopy itself is a Hamiltonian isotopy.

Proof. Let $a_t \in H^1(M; \mathbb{R})$ be the infinitesimal flux of the isotopy. This depends smoothly on t. If a_t is nonzero at some point $t \in (0, 1)$, one can find arbitrarily small ϵ such that

(1)
$$\int_{t-\epsilon}^{t+\epsilon} a_t \, dt \neq 0.$$

By assumption, $\phi_{t-\epsilon}$ and $\phi_{t+\epsilon}$ are both Hamiltonian. By connecting them to the identity, one forms a loop in the symplectic automorphism group whose flux is (1). But this flux can be made arbitrarily small, contradicting [1]. Hence, a_t is necessarily identically zero.

After appealing to that, the proof of [2, Lemma 2.1] goes through as stated in the paper.

References

- K. Ono. Floer-Novikov cohomology and the flux conjecture. Geom. Funct. Anal., 16:981–1020, 2006.
- [2] P. Seidel. π₁ of symplectic automorphism groups and invertibles in quantum homology rings. Geom. Funct. Anal., 7:1046–1095, 1997.