ERRATUM TO SECTION 8G OF FUKAYA CATEGORIES AND PICARD-LEFSCHETZ THEORY

The formula for the curvature at the top of p. 106 should read

$$
\begin{equation*}
R_{K}=\left(\partial_{t} K\left(\partial_{s}\right)-\partial_{s} K\left(\partial_{t}\right)+\left\{K\left(\partial_{s}\right), K\left(\partial_{t}\right)\right\}\right) d s \wedge d t \tag{1}
\end{equation*}
$$

where the sign of the last term depends on the Poisson bracket being defined as

$$
\begin{equation*}
\left\{H_{1}, H_{2}\right\}=-\omega_{M}\left(X_{1}, X_{2}\right) \tag{2}
\end{equation*}
$$

consistently with the convention for the Hamiltonian vector field of a function, $\omega_{M}(\cdot, X)=d H$.
To explain (1), it suffices to think of a connection on the trivial G-bundle over \mathbb{R}^{2}, written as

$$
\begin{equation*}
\nabla=d-A=d-A\left(\partial_{s}\right) d s-A\left(\partial_{t}\right) d t \tag{3}
\end{equation*}
$$

for $A \in \Omega^{1}\left(\mathbb{R}^{2}, \mathfrak{g}\right)$. The curvature is then

$$
\begin{equation*}
F_{A}=-d A+\frac{1}{2}[A, A]=\left(\partial_{t} A\left(\partial_{s}\right)-\partial_{s} A\left(\partial_{t}\right)+\left[A\left(\partial_{s}\right), A\left(\partial_{t}\right)\right]\right) d s \wedge d t \tag{4}
\end{equation*}
$$

