(2n − 1)!!

April 14, 2020
Semifactorials

\[(2n - 1)!! = 1 \cdot 3 \cdot 5 \cdots (2n - 1) = \frac{(2n)!}{2^n n!},\]

called \(2n - 1\) **double factorial** (bad?) or **semifactorial**
(complete) matching on $2n$-element set:
(complete) matching on $2n$-element set:

Theorem. The number of matchings on $[2n]$ is $(2n - 1)!!$.

(complete) matching on 2n-element set:

\[\text{Theorem. } \text{The number of matchings on } [2n] \text{ is } (2n - 1)!!. \]

\[\text{Proof. } \text{Pick } i \in [2n] \text{ and match it in } 2n - 1 \text{ ways. Then pick some unmatched element } j \text{ and match it in } (2n - 3) \text{ ways, etc. } \square \]
Schröder’s third problem

Ernst Schröder, *Vier kombinatorische Probleme*, 1870

Problem 3 (complete binary partitions). How many ways to partition an n-set ($n > 1$) into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?
Schröder’s third problem

Ernst Schröder, *Vier kombinatorische Probleme*, 1870

Problem 3 (complete binary partitions). How many ways to partition an n-set ($n > 1$) into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?
Schröder’s third problem

Ernst Schröder, *Vier kombinatorische Probleme*, 1870

Problem 3 (complete binary partitions). How many ways to partition an n-set ($n > 1$) into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?

leaf labelled (unordered) binary tree
Bijection with matchings

Label by $n + 1$ the unlabelled vertex with two labelled children, with the least possible label of a child.
Bijection with matchings

Label by $n + 2$ the unlabelled vertex with two labelled children, with the least possible label of a child.

```
  8 6 3
/\ / \ /
1 4 2 9
  \  \ 
   5 7
```
Bijection with matchings

Continue until all nonroot vertices are labelled 1, 2, \ldots, 2n − 2.
Bijection with matchings

Continue until all nonroot vertices are labelled $1, 2, \ldots, 2n - 2$.

Now match the two children of any nonleaf vertex: $5, 7 - 2, 9 - 3, 10 - 1, 4 - 6, 8 - 11, 12$.
Bijection with matchings

Continue until all nonroot vertices are labelled $1, 2, \ldots, 2n - 2$.

Now match the two children of any nonleaf vertex: $5, 7 - 2, 9 - 3, 10 - 1, 4 - 6, 8 - 11, 12$.

Theorem. The number of leaf-labelled binary trees with n leaves is $(2n - 3)!!$.
Theorem.

\[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{2n} e^{-\frac{1}{2}x^2} \, dx = (2n - 1)!! \]

the \((2n)\)th moment of the standard normal distribution.
An S_{2n} action

M_n: set of all matchings on $[2n]$, so $\#M_n = (2n - 1)!!$

S_{2n} acts of M_n by permuting vertices. What is this action? I.e., what is the multiplicity of each irreducible character χ^λ, $\lambda \vdash 2n$?
The subgroup S_2^n

S_2^n: subgroup of S_{2n} generated by $(1, 2), (3, 4), \ldots, (2n - 1, 2n)$, so $S_2^n \equiv (\mathbb{Z}/2\mathbb{Z})^n$ and $\#S_2^n = 2^n$.
The subgroup S_2^n

S_2^n: subgroup of S_{2n} generated by $(1, 2), (3, 4), \ldots, (2n - 1, 2n)$, so $S_2^n \equiv (\mathbb{Z}/2\mathbb{Z})^n$ and $\#S_2^n = 2^n$.

$N(S_2^n)$: the normalizer of S_2^n, i.e., all $w \in S_{2n}$ such that

$v \in S_2^n \Rightarrow wvw^{-1} \in S_2^n$
The subgroup S_n^2

S_n^2: subgroup of S_{2n} generated by $(1, 2), (3, 4), \ldots, (2n - 1, 2n)$, so $S_n^2 \equiv (\mathbb{Z}/2\mathbb{Z})^n$ and $\#S_n^2 = 2^n$.

$N(S_n^2)$: the normalizer of S_n^2, i.e., all $w \in S_{2n}$ such that $v \in S_n^2 \Rightarrow wvw^{-1} \in S_n^2$

$N(S_n^2)$ consists of all $w \in S_{2n}$ that permute the elements in each row and permute the rows among themselves of the array ($n = 5$)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
Action on cosets

Aside. $N(S_2^n)$ is the wreath product $S_n \wr S_2$.
Aside. $N(\mathcal{S}_2^n)$ is the **wreath product** $\mathcal{S}_n \wr \mathcal{S}_2$.

$\# N(\mathcal{S}_2^n) = 2^n n!$, so $[\mathcal{S}_{2n} : N(\mathcal{S}_2^n)] = (2n - 1)!!$.
Action on cosets

Aside. $N(\mathfrak{S}_2^n)$ is the **wreath product** $\mathfrak{S}_n \wr \mathfrak{S}_2$.

$\#N(\mathfrak{S}_2^n) = 2^n n!$, so $[\mathfrak{S}_2^n : N(\mathfrak{S}_2^n)] = (2n - 1)!!$.

The action on \mathfrak{S}_2^n on the left cosets of $N(\mathfrak{S}_2^n)$ is isomorphic to the action of \mathfrak{S}_2^n on \mathcal{M}_n. Thus, as \mathfrak{S}_2^n-modules,

$$\mathcal{M}_n \cong \mathcal{M}_{N(\mathfrak{S}_2^n)}.$$
Let ch denote the Frobenius characteristic symmetric function of an \mathcal{S}_m action. By the theory of plethysm,

$$\text{ch} \mathcal{M}_n = (\text{ch} 1_{\mathcal{S}_n})[\text{ch} 1_{\mathcal{S}_2}] = h_n[h_2].$$
Plethysm

Let ch denote the Frobenius characteristic symmetric function of an \mathcal{S}_m action. By the theory of plethysm,

$$\text{ch} \mathcal{M}_n = (\text{ch} 1_{\mathcal{S}_n})[\text{ch} 1_{\mathcal{S}_2}] = h_n[h_2].$$

By definition of plethysm,

$$\sum_{n \geq 0} h_n[h_2] = \prod_{i \leq j} (1 - x_i x_j)^{-1}.$$
Plethysm

Let ch denote the Frobenius characteristic symmetric function of an \mathfrak{S}_m action. By the theory of plethysm,

$$\text{ch} M_n = (\text{ch} 1_{\mathfrak{S}_n})[\text{ch} 1_{\mathfrak{S}_2}] = h_n[h_2].$$

By definition of plethysm,

$$\sum_{n \geq 0} h_n[h_2] = \prod_{i \leq j} (1 - x_i x_j)^{-1}.$$

By e.g. a variant of RSK, $\prod_{i \leq j} (1 - x_i x_j)^{-1} = \sum \mu s_{2\mu}.$
Plethysm

Let ch denote the Frobenius characteristic symmetric function of an \mathfrak{S}_m action. By the theory of plethysm,

$$\text{ch } M_n = (\text{ch } 1_{\mathfrak{S}_n})(\text{ch } 1_{\mathfrak{S}_2}) = h_n[h_2].$$

By definition of plethysm,

$$\sum_{n\geq 0} h_n[h_2] = \prod_{i\leq j}(1 - x_i x_j)^{-1}.$$

By e.g. a variant of RSK, $\prod_{i\leq j}(1 - x_i x_j)^{-1} = \sum s_{2\mu}$.

Theorem. Let $\lambda \vdash 2n$. The multiplicity of χ^λ in the action of \mathfrak{S}_{2n} on M_n is 1 if $\lambda = 2\mu$, and 0 otherwise.
Zonal polynomials

\[H_n = N(\mathcal{G}_2^n) \text{ (hyperoctahedral group)} \]

Because \(M_n \) is multiplicity-free as an \(\mathcal{G}_{2n} \)-module, the pair \((\mathcal{G}_{2n}, H_n) \) is a Gelfand pair.
Zonal polynomials

\(H_n = N(\mathfrak{S}_2^n) \) (hyperoctahedral group)

Because \(M_n \) is multiplicity-free as an \(\mathfrak{S}_{2n} \)-module, the pair

\((\mathfrak{S}_{2n}, H_n)\) is a Gelfand pair.

Let \(\lambda \vdash n \) and \(\chi^{2\lambda} \) be the irreducible character of \(\mathfrak{S}_{2n} \) indexed by

2\(\lambda \). Let \(s \in \mathfrak{S}_{2n} \) of cycle type \(\rho \vdash 2n \).

\[
\omega^\lambda_\rho = \frac{1}{2^n n!} \sum_{w \in H} \chi^{2\lambda}(sw)
\]
Zonal polynomials

\(H_n = N(\mathfrak{S}_2^n) \) (hyperoctahedral group)

Because \(M_n \) is **multiplicity-free** as an \(\mathfrak{S}_{2n} \)-module, the pair \((\mathfrak{S}_{2n}, H_n)\) is a **Gelfand pair**.

Let \(\lambda \vdash n \) and \(\chi^{2\lambda} \) be the irreducible character of \(\mathfrak{S}_{2n} \) indexed by \(2\lambda \). Let \(s \in \mathfrak{S}_{2n} \) of cycle type \(\rho \vdash 2n \).

\[
\omega_{\lambda}^\rho = \frac{1}{2^nn!} \sum_{w \in H} \chi^{2\lambda}(sw)
\]

Define the **zonal polynomial**

\[
Z_\lambda = 2^nn! \sum_{\rho \vdash n} z_{2\rho}^{-1} \omega_{\rho}^\lambda p_\rho,
\]

a homogeneous symmetric function of degree \(n \).
Some properties of zonal polynomials

- \(\{Z_\lambda\}_{\lambda \vdash n} \) is a \(\mathbb{Q} \)-basis for \(\Lambda_\mathbb{Q} \) (symmetric functions over \(\mathbb{Q} \)).
Some properties of zonal polynomials

- \(\{Z_\lambda\}_{\lambda \vdash n} \) is a \(\mathbb{Q} \)-basis for \(\Lambda_\mathbb{Q} \) (symmetric functions over \(\mathbb{Q} \)).
- \(\langle Z_\lambda, Z_\lambda \rangle = \prod_{u \in 2\lambda} h(u) \)
Some properties of zonal polynomials

- \(\{Z_\lambda\}_{\lambda \vdash n} \) is a \(\mathbb{Q} \)-basis for \(\Lambda_\mathbb{Q} \) (symmetric functions over \(\mathbb{Q} \)).
- \(\langle Z_\lambda, Z_\lambda \rangle = \prod_{u \in 2\lambda} h(u) \)
- \(\sum_{\lambda} \langle Z_\lambda, Z_\lambda \rangle^{-1} Z_\lambda(x)Z_\lambda(y) = \prod_{i,j}(1 - x_i y_j)^{-1/2} \)
Some properties of zonal polynomials

- \(\{ Z_\lambda \}_{\lambda \vdash n} \) is a \(\mathbb{Q} \)-basis for \(\Lambda_\mathbb{Q} \) (symmetric functions over \(\mathbb{Q} \)).
- \(\langle Z_\lambda, Z_\lambda \rangle = \prod_{u \in 2\lambda} h(u) \)
- \(\sum_\lambda \langle Z_\lambda, Z_\lambda \rangle^{-1} Z_\lambda(x)Z_\lambda(y) = \prod_{i,j} (1 - x_i y_j)^{-1/2} \)
- The coefficient of \(x^\lambda \) in \(Z_\lambda \) is
 \[
 \prod_{u \in \lambda} (2a(u) + l(u) + 1).
 \]
Some properties of zonal polynomials

- \{Z_\lambda\}_{\lambda \vdash n} is a \mathbb{Q}\text{-basis for } \Lambda_{\mathbb{Q}} \text{ (symmetric functions over } \mathbb{Q}).
- \langle Z_\lambda, Z_\lambda \rangle = \prod_{u \in 2\lambda} h(u)
- \sum_\lambda \langle Z_\lambda, Z_\lambda \rangle^{-1} Z_\lambda(x)Z_\lambda(y) = \prod_{i,j}(1 - x_iy_j)^{-1/2}
- The coefficient of } x^\lambda \text{ in } Z_\lambda \text{ is }
 \prod_{u \in \lambda} (2a(u) + l(u) + 1).
- Z_\lambda = J_\alpha^{(2)}, \text{ where } J_\alpha^\lambda \text{ (} \alpha \in \mathbb{R} \text{) is a } \textbf{Jack symmetric function}\text{ (a limiting case of Macdonald polynomials)}
(2n − 1)!! is not the order of an “interesting” finite group. However, it is the dimension of a natural “orthogonal analogue” of the group algebra of \mathfrak{S}_n.
The Brauer algebra

$(2n - 1)!!$ is not the order of an “interesting” finite group. However, it is the dimension of a natural “orthogonal analogue” of the group algebra of \mathfrak{S}_n.

Let $\dim_{\mathbb{C}} V = k$. The general linear group $\text{GL}(V)$ acts diagonally on $V \otimes^n$. The linear transformations $V \otimes^n \rightarrow V \otimes^n$ commuting with this action are generated by the $n!$ permutations of tensor coordinates. For $k \geq n$ these linear transformations form the algebra $\mathbb{C}[\mathfrak{S}_n]$ (the group algebra of \mathfrak{S}_n).
(2n − 1)!! is not the order of an “interesting” finite group. However, it is the dimension of a natural “orthogonal analogue” of the group algebra of \mathfrak{S}_n.

Let $\dim_{\mathbb{C}} V = k$. The general linear group $\text{GL}(V)$ acts diagonally on $V^\otimes n$. The linear transformations $V^\otimes n \to V^\otimes n$ commuting with this action are generated by the $n!$ permutations of tensor coordinates. For $k \geq n$ these linear transformations form the algebra $\mathbb{C}[\mathfrak{S}_n]$ (the group algebra of \mathfrak{S}_n).

Let $\dim_{\mathbb{C}} V = k$. The orthogonal group $O(V)$ (i.e., $A(A^*)^t = I$) acts diagonally on $V^\otimes n$. For $k \geq n$, the linear transformations $V^\otimes n \to V^\otimes n$ commuting with this action form an algebra \mathfrak{B}_n of dimension $(2n − 1)!!$ (the **Brauer algebra**).
Brauer algebra multiplication

Let \(z \) be a parameter. Take \(\mathcal{M}_n \) as a basis for an algebra \(\mathcal{B}_n(z) \), where \(\mathcal{B}_n(1) = \mathcal{B}_n \) (not semisimple). For “generic” \(z \) (e.g., \(z \notin \mathbb{Z} \)), \(\mathcal{B}_n(z) \) is semisimple.
Let z be a parameter. Take \mathcal{M}_n as a basis for an algebra $\mathcal{B}_n(z)$, where $\mathcal{B}_n(1) = \mathcal{B}_n$ (not semisimple). For “generic” z (e.g., $z \notin \mathbb{Z}$), $\mathcal{B}_n(z)$ is semisimple.
Let z be a parameter. Take M_n as a basis for an algebra $B_n(z)$, where $B_n(1) = B_n$ (not semisimple). For “generic” z (e.g., $z \notin \mathbb{Z}$), $B_n(z)$ is semisimple.
Brauer algebra multiplication

Let z be a parameter. Take \mathcal{M}_n as a basis for an algebra $\mathcal{B}_n(z)$, where $\mathcal{B}_n(1) = \mathcal{B}_n$ (not semisimple). For “generic” z (e.g., $z \not\in \mathbb{Z}$), $\mathcal{B}_n(z)$ is semisimple.
Brauer algebra multiplication

Let \(z \) be a parameter. Take \(\mathcal{M}_n \) as a basis for an algebra \(\mathcal{B}_n(z) \), where \(\mathcal{B}_n(1) = \mathcal{B}_n \) (not semisimple). For “generic” \(z \) (e.g., \(z \notin \mathbb{Z} \)), \(\mathcal{B}_n(z) \) is semisimple.
An oscillating tableau T of shape λ and length n is a sequence

$$\emptyset = \lambda^0, \lambda^1, \ldots, \lambda^m = \lambda$$

of partitions (identified with their Young diagrams) such that λ^i is obtained from λ^{i-1} by adding a box or removing a box.
An oscillating tableau T of shape λ and length n is a sequence

$$\emptyset = \lambda^0, \lambda^1, \ldots, \lambda^m = \lambda$$

of partitions (identified with their Young diagrams) such that λ^i is obtained from λ^{i-1} by adding a box or removing a box.

Note. If we only add boxes, then we get a standard Young tableau.
Oscillating tableaux

An oscillating tableau \(T \) of shape \(\lambda \) and length \(n \) is a sequence

\[
\emptyset = \lambda^0, \lambda^1, \ldots, \lambda^m = \lambda
\]

of partitions (identified with their Young diagrams) such that \(\lambda^i \) is obtained from \(\lambda^{i-1} \) by adding a box or removing a box.

Note. If we only add boxes, then we get a standard Young tableau.

Example. Shape \(\lambda = (2, 1) \), length \(n = 7 \):

\[
\emptyset \quad \square \quad \square \quad \square \quad \square \quad \square \quad \square \quad \square
\]
An oscillating tableau T of shape λ and length n is a sequence

$$\emptyset = \lambda^0, \lambda^1, \ldots, \lambda^m = \lambda$$

of partitions (identified with their Young diagrams) such that λ^i is obtained from λ^{i-1} by adding a box or removing a box.

Note. If we only add boxes, then we get a standard Young tableau.

Example. Shape $\lambda = (2, 1)$, length $n = 7$:

$$\emptyset \quad \square \quad || \quad || | \quad || || \quad || || || \quad || || ||$$

$o^{\lambda,n}$: number of oscillating tableau of shape λ and length n
Theorem. Fix $n \geq 1$. Irreps of $\mathcal{B}_n(z)$ (z generic) are indexed by partitions $\lambda \vdash m$, where $m \leq n$, $n \equiv m \pmod{2}$. The dimension of the irrep indexed by such λ is $o^{\lambda,n}$.

Corollary. $\sum_\lambda (o^{\lambda,n})^2 = (2n - 1)!!$

Equivalently, number of oscillating tableaux of shape \emptyset and length $2n$ is $(2n - 1)!!$.
Dimension of \mathcal{B}_n irreps

Theorem. Fix $n \geq 1$. Irreps of $\mathcal{B}_n(z)$ (z generic) are indexed by partitions $\lambda \vdash m$, where $m \leq n$, $n \equiv m \pmod{2}$. The dimension of the irrep indexed by such λ is $o^{\lambda,n}$.

Corollary. $\sum_\lambda (o^{\lambda,n})^2 = (2n - 1)!!$

Equivalently, number of oscillating tableaux of shape \emptyset and length $2n$ is $(2n - 1)!!$.

First combinatorial proof (bijection with \mathcal{M}_n) by RS and S. Sundaram.
Sundaram’s bijection
Sundaram’s bijection
Crossings and nestings

crossing:

nesting:
k-crossings and k-nestings

\[M = \text{matching} \]
\[\text{cr}(M) = \max\{ k : \exists k \text{-crossing} \} \]
\[\text{ne}(M) = \max\{ k : \exists k \text{-nesting} \} . \]
Theorem (Bill Yongchuan Chen (陈永川), Eva Yuping Deng (邓玉平), Rosena Ruoxia Du (杜若霞), Catherine Huafei Yan (颜华菲), RS) Let $M \mapsto (\emptyset = T_0, T_1, \ldots, T_{2n} = \emptyset)$ in the bijection from matchings to oscillating tableau of shape \emptyset. Then $\text{cr}(M)$ is equal to the most number of rows of any T_i, and $\text{ne}(M)$ is equal to the most number of columns of any T_i.
Some consequences

Theorem (Bill Yongchuan Chen (陈永川), Eva Yuping Deng (邓玉平), Rosena Ruoxia Du (杜若霞), Catherine Huafei Yan (颜华菲), RS) Let \(M \mapsto (\emptyset = T_0, T_1, \ldots, T_{2n} = \emptyset) \) in the bijection from matchings to oscillating tableau of shape \(\emptyset \). Then \(\text{cr}(M) \) is equal to the most number of rows of any \(T_i \), and \(\text{ne}(M) \) is equal to the most number of columns of any \(T_i \).

Corollary. Let \(f_n(i, j) = \# \text{ matchings } M \text{ on } [2n] \text{ with } \text{cr}(M) = i \) and \(\text{ne}(M) = j \). Then \(f_n(i, j) = f_n(j, i) \).

Corollary. \# matchings \(M \) on \([2n]\) with \(\text{cr}(M) = k \) equals \# matchings \(M \) on \([2n]\) with \(\text{ne}(M) = k \).
An enumerative consequence

Theorem (Grabiner-Magyar, essentially) Let $f_k(n)$ be the number of matchings $M \in \mathcal{M}_n$ satisfying $\text{cr}(M) \leq k$. Define

$$F_k(x) = \sum_n f_k(n) \frac{x^{2n}}{(2n)!}.$$

Then

$$F_k(x) = \det [l_{i-j}(2x) - l_{i+j}(2x)]_{i,j=1}^k$$

where

$$l_m(2x) = \sum_{j \geq 0} \frac{x^{m+2j}}{j!(m+j)!}$$

(hyperbolic Bessel function of the first kind of order m).
A probabilistic consequence

Note. \(cr(M) \) is the matching analogue of the length of the longest increasing subsequence of \(w \in S_n \), and \(ne(M) \) is the analogue of the length of the longest decreasing subsequence.
A probabilistic consequence

Note. \(cr(M) \) is the matching analogue of the length of the longest increasing subsequence of \(w \in \mathcal{S}_n \), and \(ne(M) \) is the analogue of the length of the longest decreasing subsequence.

Painlevé II equation:

\[
u''(x) = 2u(x)^3 + xu(x).
\]

Tracy-Widom distribution:

\[
F(t) = \exp \left(- \int_t^\infty (x - t)u(x)^2 \, dx \right)
\]
A probabilistic consequence

Note. $cr(M)$ is the matching analogue of the length of the longest increasing subsequence of $w \in \mathcal{S}_n$, and $ne(M)$ is the analogue of the length of the longest decreasing subsequence.

Painlevé II equation:

\[u''(x) = 2u(x)^3 + xu(x). \]

Tracy-Widom distribution:

\[F(t) = \exp \left(- \int_t^\infty (x - t)u(x)^2 \, dx \right) \]

Theorem.

\[\lim_{n \to \infty} \text{Prob} \left(\frac{cr_n(M) - \sqrt{2n}}{(2n)^{1/6}} \leq \frac{t}{2} \right) = F(t)^{1/2} \exp \left(\frac{1}{2} \int_t^\infty u(s) \, ds \right) \]
The final slide
The final slide

Hope you enjoyed the lectures!

Thanks for listening!