A Survey of Unimodality and Log-Concavity

Richard P. Stanley
U. Miami & M.I.T.

4 October 2021
Definition. (1) A sequence a_0, \ldots, a_n of real numbers is \textit{unimodal} if $a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n$ for some j.
Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if
\[a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n \]
for some j.

(2) **log-concave** if
\[a_i^2 \geq a_{i-1} a_{i+1}, \quad 1 \leq i \leq n-1. \]
Basic definitions

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n$ for some j.

(2) **log-concave** if $a_i^2 \geq a_{i-1}a_{i+1}$, $1 \leq i \leq n-1$.

(3) **strongly log-concave** if $\left(\frac{a_i}{\binom{n}{i}} \right)^2 \geq \frac{a_{i-1}}{\binom{n}{i-1}} \frac{a_{i+1}}{\binom{n}{i+1}}$.

Basic definitions

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if

\[a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n \]

for some j.

(2) **log-concave** if

\[a_i^2 \geq a_{i-1}a_{i+1}, \quad 1 \leq i \leq n-1. \]

(3) **strongly log-concave** if

\[
\left(\frac{a_i}{\binom{n}{i}} \right)^2 \geq \frac{a_{i-1}}{\binom{n}{i-1}} \frac{a_{i+1}}{\binom{n}{i+1}}
\]

(4) **no internal zeros** if $a_i = 0 \Rightarrow$ either $a_1 = \cdots = a_{i-1} = 0$ or $a_{i+1} = \cdots = a_n = 0$.

Basic definitions

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n$ for some j.

(2) **log-concave** if $a_i^2 \geq a_{i-1}a_{i+1}$, $1 \leq i \leq n-1$.

(3) **strongly log-concave** if $\left(\frac{a_i}{\binom{n}{i}}\right)^2 \geq \frac{a_{i-1}}{\binom{n}{i-1}} \frac{a_{i+1}}{\binom{n}{i+1}}$.

(4) **no internal zeros** if $a_i = 0 \Rightarrow$ either $a_1 = \cdots = a_{i-1} = 0$ or $a_{i+1} = \cdots = a_n = 0$.

Note. Log-concave, NIZ, $a_i \geq 0 \Rightarrow$ unimodal.
Basic definitions

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n$ for some j.

(2) **log-concave** if $a_i^2 \geq a_{i-1}a_{i+1}$, $1 \leq i \leq n-1$.

(3) **strongly log-concave** if $\left(\frac{a_i}{\binom{n}{i}} \right)^2 \geq \frac{a_{i-1}}{\binom{n}{i-1}} \frac{a_{i+1}}{\binom{n}{i+1}}$.

(4) **no internal zeros** if $a_i = 0 \Rightarrow$ either $a_1 = \cdots = a_{i-1} = 0$ or $a_{i+1} = \cdots = a_n = 0$.

Note. Log-concave, NIZ, $a_i \geq 0 \Rightarrow$ unimodal.

Example. $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$ (strongly log-concave)
I. REAL ZEROS
Newton’s theorem

Theorem (I. Newton). Let

\[\gamma_1, \ldots, \gamma_n \in \mathbb{R} \]

and

\[P(x) = \prod (x + \gamma_i) = \sum a_i \binom{n}{i} x^i = \sum b_i x^i. \]

Then \(a_0, a_1, \ldots, a_n \) is log-concave. Same as \(b_0, \ldots, b_n \) strongly log-concave.
Newton’s theorem

Theorem (I. Newton). Let

\[\gamma_1, \ldots, \gamma_n \in \mathbb{R} \]

and

\[P(x) = \prod(x + \gamma_i) = \sum a_i \binom{n}{i} x^i = \sum b_i x^i. \]

Then \(a_0, a_1, \ldots, a_n \) is log-concave. Same as \(b_0, \ldots, b_n \) strongly log-concave.

Proof. \(P^{(n-i-1)}(x) \) has real zeros

\[\Rightarrow Q(x) := x^{i+1} P^{(n-i-1)}(1/x) \text{ has real zeros} \]

\[\Rightarrow Q^{(i-1)}(x) \text{ has real zeros.} \]

But \(Q^{(i-1)}(x) = \frac{n!}{2} \left(a_{i-1} + 2a_i x + a_{i+1} x^2 \right) \]

\[\Rightarrow a_i^2 \geq a_{i-1}a_{i+1}. \]
Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of $\det(I + xA)$ is real.
Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of $\det(I + xA)$ is real.

Example. G: finite graph with vertex set V and μ_{uv} edges between vertices u and v

L: Laplacian matrix of G. Rows and columns indexed by V, with

$$L_{uv} = \begin{cases} \deg(v), & \text{if } u = v \\ -\mu_{uv}, & \text{if } u \neq v. \end{cases}$$
The Matrix-Tree theorem

Matrix-Tree Theorem (slightly expanded). \(\det(I + xL) = \sum a_i x^i \), where \(a_i \) is the number of rooted spanning forests of \(G \) with \(i \) edges. Thus \(\sum a_i x^i \) has only real zeros, so \(a_0, a_1, \ldots, a_{\#V} \) is strongly log-concave.
What about **unrooted** spanning forests?

b_i: number of (unrooted) spanning forests of G with i edges.

More generally, let X be a finite subset of a vector space of dimension n, and let b_i be the number of i-element linearly independent subsets of X.
What about unrooted spanning forests?

\(b_i \): number of (unrooted) spanning forests of \(G \) with \(i \) edges.

More generally, let \(X \) be a finite subset of a vector space of dimension \(n \), and let \(b_i \) be the number of \(i \)-element linearly independent subsets of \(X \).

Theorem (Lenz, 2013, based on Huh, 2012) \(b_0, b_1, \ldots, b_n \) is log-concave (with no external zeros).

Proof of Huh based on Hodge-Riemann relations for the cohomology of certain varieties. Later generalized by Adiprasito, Huh, and Katz to any finite matroid (an abstract generalization of a finite subset of a vector space).
What about unrooted spanning forests?

b_i: number of (unrooted) spanning forests of G with i edges.

More generally, let X be a finite subset of a vector space of dimension n, and let b_i be the number of i-element linearly independent subsets of X.

Theorem (Lenz, 2013, based on Huh, 2012) b_0, b_1, \ldots, b_n is log-concave (with no external zeros).

Proof of Huh based on **Hodge-Riemann relations** for the cohomology of certain varieties. Later generalized by Adiprasito, Huh, and Katz to any finite matroid (an abstract generalization of a finite subset of a vector space).

What about strongly log-concave? To be discussed.
Definition. An $m \times n$ real matrix is **totally nonnegative** if all minors (determinants of square submatrices) are nonnegative.
Definition. An \(m \times n \) real matrix is **totally nonnegative** if all minors (determinants of square submatrices) are nonnegative.

Theorem. Let \(A \) be an \(n \times n \) totally nonnegative matrix. Then all eigenvalues of \(A \) are real and nonnegative. Hence the characteristic polynomial \(\det(xI - A) \) has only real zeros.
An application

Let P be a finite poset (partially ordered set) with no induced $3+1$ or $2+2$, i.e., there do not exist elements $s < t < u, v$ with no other relations among them, nor elements $s < t, u < v$ with no other relations among them. Let c_i be the number of i-element chains of P.

\[
\begin{align*}
\text{bad} & \\
c_0 &= 1 \\
c_1 &= 5 \\
c_2 &= 5 \\
c_3 &= 1
\end{align*}
\]

Theorem. $\sum c_i x^i$ has only real zeros.
Theorem. \(\sum c_i x^i \) has only real zeros.

Proof. Let \(A \) be the matrix with rows and columns indexed by \(P \), with

\[
A_{st} = \begin{cases}
0, & \text{if } s \leq t \\
1, & \text{otherwise.}
\end{cases}
\]

Then \(A \) is totally nonnegative, and \(\det(I + xA) = \sum c_i x^i \). \(\square \)
Two further remarks

- Can be shown that the $(2+2)$-avoiding hypothesis is unnecessary (using symmetric functions).
Two further remarks

- Can be shown that the $(2 + 2)$-avoiding hypothesis is unnecessary (using symmetric functions).

- Multivariate generalizations of real-rooted polynomials: **stable polynomials** (P. Brandén) and **Lorentzian polynomials** (P. Brandén and J. Huh). Sample application:

 Theorem. If l_k is the number of k-element independent sets of a matroid, then the sequence l_0, l_1, \ldots is strongly log-concave. Conjectured by **Mason** in 1972. Also proved in a similar way by **Anari-Liu-Gharan-Vinzant**. (We mentioned earlier the proof by Lenz of log-concavity.)
II. ANALYTIC METHODS
Let $p(n, k)$ be the number of partitions of n into k parts. E.g., $p(7, 3) = 4$:

$$5 + 1 + 1, \quad 4 + 2 + 1, \quad 3 + 3 + 1, \quad 3 + 2 + 2.$$

$$\sum_{n\geq 0} p(n, k)x^n = \frac{x^k}{(1-x)(1-x^2) \cdots (1-x^k)}$$

$$\Rightarrow p(n, k) = \frac{1}{2\pi i} \oint \frac{s^{k-n-1} ds}{(1-s)(1-s^2) \cdots (1-s^k)}.$$
Theorem of Szekeres

Theorem (G. Szekeres, 1954) For $n > N_0$, the sequence

$$p(n,1), p(n,2), \ldots, p(n,n)$$

is unimodal, with maximum at

$$k = c\sqrt{n}L + c^2\left(\frac{3}{2} + \frac{3}{2}L - \frac{1}{4}L^2\right) - \frac{1}{2}$$

$$+ O\left(\frac{\log^4 n}{\sqrt{n}}\right)$$

where

$$c = \sqrt{6}/\pi, \quad L = \log c\sqrt{n}.$$
III. ALEXANDROV-FENCHEL INEQUALITIES
Let K, L be convex bodies (nonempty compact convex sets) in \mathbb{R}^n, and let $x, y \geq 0$. Define the **Minkowski sum**

$$xK + yL = \{x\alpha + y\beta : \alpha \in K, \beta \in L\}.$$

Then there exist $V_i(K, L) \geq 0$, the *(Minkowski) mixed volumes* of K and L, satisfying

$$\text{Vol}(xK + yL) = \sum_{i=0}^{n} \binom{n}{i} V_i(K, L)x^{n-i}y^i.$$

Note $V_0 = \text{Vol}(K)$, $V_n = \text{Vol}(L)$.
Let K, L be convex bodies (nonempty compact convex sets) in \mathbb{R}^n, and let $x, y \geq 0$. Define the **Minkowski sum**

$$xK + yL = \{x\alpha + y\beta : \alpha \in K, \beta \in L\}.$$

Then there exist $V_i(K, L) \geq 0$, the **(Minkowski) mixed volumes** of K and L, satisfying

$$\text{Vol}(xK + yL) = \sum_{i=0}^{n} \binom{n}{i} V_i(K, L) x^{n-i} y^i.$$

Note $V_0 = \text{Vol}(K)$, $V_n = \text{Vol}(L)$.

Theorem *(Alexandrov-Fenchel, 1936–38)* $V_i^2 \geq V_{i-1} V_{i+1}$
Corollary. Let P be an n-element poset. Fix $x \in P$. Let N_i denote the number of order-preserving bijections (linear extensions)

$$f : P \to \{1, 2, \ldots, n\}$$

such that $f(x) = i$. Then

$$N_i^2 \geq N_{i-1}N_{i+1}.$$

Proof. Find $K, L \subset \mathbb{R}^{n-1}$ such that $V_i(K, L) = N_{i+1}$. □
An example

\[(N_1, \ldots, N_5) = (0, 1, 2, 2, 2)\]
Generalizations

There are algebraic and algebraic-geometric generalizations of the Alexandrov-Fenchel inequalities with many applications.
IV. REPRESENTATIONS OF $\text{SL}(2, \mathbb{C})$ AND $\mathfrak{sl}(2, \mathbb{C})$
Representations of $\text{SL}(2, \mathbb{C})$

Let

$$G = \text{SL}(2, \mathbb{C}) = \{2 \times 2 \text{ complex matrices with determinant 1}\}.$$

Let $A \in G$, with eigenvalues θ, θ^{-1}. For all $n \geq 0$, there is a unique irreducible (polynomial) representation

$$\varphi_n : G \to \text{GL}(V_{n+1})$$

of dimension $n + 1$, and $\varphi_n(A)$ has eigenvalues

$$\theta^{-n}, \theta^{-n+2}, \theta^{-n+4}, \ldots, \theta^n.$$

Every (continuous) representation is a direct sum of irreducibles.
Unimodal weight multiplicities

If $\varphi : G \to \text{GL}(V)$ is any (finite-dimensional) representation, then

$$\text{tr} \varphi(A) = \sum_{i \in \mathbb{Z}} a_i \theta^i, \quad a_i = a_{-i}$$

$$= a_0 + a_1(\theta + \theta^{-1}) + \sum_{i \geq 2}(a_i - a_{i-2})(\theta^{-i} + \theta^{-i+2} + \ldots + \theta^i)$$

$$\Rightarrow a_i \geq a_{i-2}$$

$$\Rightarrow \{a_{2i}\}, \{a_{2i+1}\} \text{ are unimodal}$$

(and symmetric)

(Completely analogous construction for the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$.)
q-binomial coefficient

For $k, n \geq 0$ define

\[
\binom{n + k}{k} = \frac{(1 - q^{n+k})(1 - q^{n+k-1}) \cdots (1 - q^{n+1})}{(1 - q^k)(1 - q^{k-1}) \cdots (1 - q)},
\]

a polynomial in q with nonnegative integer coefficients.
The kth symmetric power

Example. $S^k(\varphi_n)$, eigenvalues

$$(\theta^{-n})^{t_0} (\theta^{-n+2})^{t_1} \cdots (\theta^n)^{t_n},$$

$$t_0 + t_1 + \cdots + t_n = k, \quad t_i \geq 0$$

$$\Rightarrow \text{tr} \: \varphi (A) =$$

$$\sum_{t_0 + \cdots + t_n = k} \theta^{t_0(-n)+t_1(-n+2)+\cdots+t_n n}$$

$$= \theta^{-nk} \left[\begin{array}{c} n + k \\ k \end{array} \right] \theta^2$$

$$= \theta^{-nk} \sum_{i \geq 0} P_i(n, k) \theta^{2i},$$

where $P_i(n, k)$ is the number of partitions of i with $\leq k$ parts, largest part $\leq n$.
Sylvester’s theorem

\[\Rightarrow P_0(n, k), \ldots, P_{nk}(n, k) \]

is unimodal (Sylvester, 1878).

\[\sum_{i} P_i(3, 2) q^i = 1 + q + 2q^2 + 2q^3 + 2q^4 + q^5 + q^6 \]

\[= \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \frac{(1 - q^5)(1 - q^4)}{(1 - q^2)(1 - q)} \]
Principal $\mathfrak{sl}(2, \mathbb{C})$

Example. Let \mathfrak{g} be a finite-dimensional complex semisimple Lie algebra. Then there exists a **principal** $\mathfrak{sl}(2, \mathbb{C}) \subset \mathfrak{g}$. A representation $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$ restricts to

$$\varphi : \mathfrak{sl}(2, \mathbb{C}) \to \mathfrak{gl}(V).$$

Example. $\mathfrak{g} = \mathfrak{so}(2n + 1, \mathbb{C})$, $\varphi = \text{spin representation}$:

$$\Rightarrow (1 + q)(1 + q^2)\cdots(1 + q^n)$$

has unimodal coefficients (**Dynkin** 1950, **Hughes** 1977). (No combinatorial proof known.)
Higher dimensional partitions

Recall: $P_i(n, k)$: number of partitions of i with $\leq k$ parts, largest part $\leq n$, i.e., number of 1-dimensional integer arrays (sequences) a_1, a_2, \ldots, a_k such that

$$n \geq a_1 \geq a_2 \geq \cdots \geq a_k \geq 0, \quad \sum a_j = i.$$
Higher dimensional partitions

Recall: $P_i(n, k)$: number of partitions of i with $\leq k$ parts, largest part $\leq n$, i.e., number of 1-dimensional integer arrays (sequences) a_1, a_2, \ldots, a_k such that

$$n \geq a_1 \geq a_2 \geq \cdots \geq a_k \geq 0, \quad \sum a_j = i.$$

Generalize to $P_i(n_1, n_2, \ldots, n_{d+1})$: number of d-dimensional arrays $\left(a_{j_1, j_2, \ldots, j_d}\right)_{1 \leq j_r \leq n_r}$ of nonnegative integers, weakly decreasing in each coordinate, maximum entry $\leq n_{d+1}$, sum of entries $= i$.
Higher dimensional partitions

Recall: $P_i(n, k)$: number of partitions of i with $\leq k$ parts, largest part $\leq n$, i.e., number of 1-dimensional integer arrays (sequences) a_1, a_2, \ldots, a_k such that

$$n \geq a_1 \geq a_2 \geq \cdots \geq a_k \geq 0, \quad \sum a_j = i.$$

Generalize to $P_i(n_1, n_2, \ldots, n_{d+1})$: number of d-dimensional arrays $(a_{j_1, j_2, \ldots, j_d})_{1 \leq j_r \leq n_r}$ of nonnegative integers, weakly decreasing in each coordinate, maximum entry $\leq n_{d+1}$, sum of entries $= i$.

$P_i(n_1, n_2, \ldots, n_{d+1})$ is symmetric in n_1, \ldots, n_{d+1}.
Higher dimensional partitions

Recall: \(P_i(n, k) \): number of partitions of \(i \) with \(\leq k \) parts, largest part \(\leq n \), i.e., number of 1-dimensional integer arrays (sequences) \(a_1, a_2, \ldots, a_k \) such that

\[
n \geq a_1 \geq a_2 \geq \cdots \geq a_k \geq 0, \quad \sum a_j = i.
\]

Generalize to \(P_i(n_1, n_2, \ldots, n_{d+1}) \): number of \(d \)-dimensional arrays \(\left(a_{j_1, j_2, \ldots, j_d} \right)_{1 \leq j_r \leq n_r} \) of nonnegative integers, weakly decreasing in each coordinate, maximum entry \(\leq n_{d+1} \), sum of entries = \(i \).

\(P_i(n_1, n_2, \ldots, n_{d+1}) \) is symmetric in \(n_1, \ldots, n_{d+1} \).

The case \(d = 2 \): plane partitions (MacMahon)
Example: \(n_1 = n_2 = n_3 = 2 \)

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
00 & 10 & 11 & 10 & 20 & 11 & 21 & 20 & \ldots & 22 \\
00 & 00 & 00 & 10 & 00 & 10 & 00 & 10 & \ldots & 22 \\
\end{array}
\]
Example: \(n_1 = n_2 = n_3 = 2 \)

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 & 00 & 10 & 11 & 10 & 20 & 11 & 21 & 20 & \ldots & 22 \\
00 & 00 & 00 & 10 & 00 & 10 & 00 & 10 & \ldots & 22 \\
\end{array}
\]

\((P_0, \ldots, P_8) = (1, 1, 3, 3, 4, 3, 3, 1, 1)\)

(symmetric, unimodal, not log-concave)
Example: $n_1 = n_2 = n_3 = 2$

\[\begin{array}{c|c|ccc|ccc|c}
00 & 10 & 11 & 10 & 20 & 11 & 21 & 20 & ... & 22 \\
00 & 00 & 00 & 10 & 00 & 10 & 00 & 10 & ... & 22 \\
\end{array}\]

$(P_0, \ldots, P_8) = (1, 1, 3, 3, 4, 3, 3, 1, 1)$

(symmetric, unimodal, not log-concave)

Theorem. *For fixed (n_1, n_2, n_3), the sequence P_0, P_1, \ldots is symmetric (easy) and unimodal.*
Example: \(n_1 = n_2 = n_3 = 2 \)

\[
\begin{array}{ccc|ccc|ccc|c}
00 & 10 & 11 & 10 & 20 & 11 & 21 & 20 & \cdots & 22 \\
00 & 00 & 00 & 10 & 00 & 10 & 00 & 10 & \cdots & 22
\end{array}
\]

\((P_0, \ldots, P_8) = (1, 1, 3, 3, 4, 3, 3, 1, 1)\)

(symmetric, unimodal, not log-concave)

Theorem. *For fixed \((n_1, n_2, n_3)\), the sequence \(P_0, P_1, \ldots\) is symmetric (easy) and unimodal.*

Proof follows from principal \(\mathfrak{sl}(2, \mathbb{C}) \subset \mathfrak{sl}(N, \mathbb{C})\), \(N = 1 + \max n_j\), and choosing a certain irrep of \(\mathfrak{sl}(N, \mathbb{C})\).
A conjecture

Conjecture. For fixed \(n_1, \ldots, n_{d+1} \), the sequence \(P_0, P_1, \ldots \) is unimodal.
A conjecture

Conjecture. For fixed n_1, \ldots, n_{d+1}, the sequence P_0, P_1, \ldots is unimodal.

Open for $d = 3$. Also open for $n_1 = n_2 = \cdots = n_{d+1} = 2$. In these cases, no nice way to compute P_i or $\sum P_i$.

For $n_1 = n_2 = \cdots = n_{d+1} = 2$, $\sum P_i$ is the order of the **free distributive lattice** on $d + 1$ generators (Dedekind’s problem).
Let X be an irreducible n-dimensional complex projective variety with finite quotient singularities (e.g., smooth).

$$\beta_i = \dim_{\mathbb{C}} H^i(X; \mathbb{C})$$

$\mathfrak{sl}(2, \mathbb{C})$ acts on $H^*(X; \mathbb{C})$, and $H^i(X; \mathbb{C})$ is a weight space with weight $i - N$

$$\Rightarrow \{\beta_{2i}\}, \{\beta_{2i+1}\} \text{ are unimodal.}$$
Let X be an irreducible n-dimensional complex projective variety with finite quotient singularities (e.g., smooth).

$$\beta_i = \dim_{\mathbb{C}} H^i(X; \mathbb{C})$$

$\mathfrak{sl}(2, \mathbb{C})$ acts on $H^*(X; \mathbb{C})$, and $H^i(X; \mathbb{C})$ is a weight space with weight $i - N$

$$\Rightarrow \{\beta_{2i}\}, \{\beta_{2i+1}\} \text{ are unimodal}.$$

Follows from hard Lefschetz theorem.
Two examples

Example. \(X = G_k(\mathbb{C}^{n+k}) \) (Grassmannian). Then

\[
\sum \beta_i q^i = \left[\begin{array}{c} n + k \\ k \end{array} \right]_{q^2}.
\]
Two examples

Example. $X = G_k(\mathbb{C}^{n+k})$ (Grassmannian). Then

$$\sum \beta_i q^i = \binom{n+k}{k}_{q^2}.$$

Example. (Hessenberg varieties.) Fix $1 \leq p \leq n - 1$. For $w = w_1 \cdots w_n \in \mathfrak{S}_n$, let

$$d_p(w) = \# \{(i, j) : w_i > w_j, \ 1 \leq j - i \leq p\}.$$

$$d_1(w) = \#\text{descents of } w$$
$$d_{p-1}(w) = \#\text{inversions of } w.$$

Let $A_p(n, k) = \# \{ w \in \mathfrak{S}_n : d_p(w) = k \}$.
de Mari-Shayman theorem
Theorem (de Mari-Shayman, 1987). The sequence

\[A_p(n, 0), A_p(n, 1), \ldots, A_p(n, p(2n - p - 1)/2) \]

is unimodal.
Theorem (de Mari-Shayman, 1987). The sequence

$$A_p(n, 0), A_p(n, 1), \ldots, A_p(n, p(2n - p - 1)/2)$$

is unimodal.

Proof. Construct a “generalized Hessenberg variety” X_{np} satisfying $\beta_{2k}(X_{np}) = A_p(n, k)$. □
Polytope definitions

(Convex) polytope: the convex hull \mathcal{P} of a finite set $S \subset \mathbb{R}^n$

$\text{dim } \mathcal{P}$: dimension of affine span of \mathcal{P} (so \mathcal{P} is homeomorphic to a d-dimensional ball)

Face of \mathcal{P}: the intersection of \mathcal{P} with a supporting hyperplane H (so \mathcal{P} lies on one side of H)
(convex) polytope: the convex hull \mathcal{P} of a finite set $S \subset \mathbb{R}^n$

$\dim \mathcal{P}$: dimension of affine span of \mathcal{P} (so \mathcal{P} is homeomorphic to a d-dimensional ball)

face of \mathcal{P}: the intersection of \mathcal{P} with a supporting hyperplane H (so \mathcal{P} lies on one side of H)
Simplicial polytopes and f-vectors

i-dimensional simplex: convex hull of $i + 1$ affinely independent points in \mathbb{R}^n

simplicial polytope: every proper face is a simplex

E.g, the tetrahedron, octahedron, and icosahedron are simplicial, but not the cube or dodecahedron

Let \mathcal{P} be a simplicial polytope, with f_i i-dimensional faces (with $f_{-1} = 0$). E.g., for the octahedron,

$$f_0 = 6, \quad f_1 = 12, \quad f_2 = 8.$$
The *h*-vector

\(\mathcal{P} \): a simplicial polytope of dimension \(d \)

Define the *h*-vector \(h(\mathcal{P}) = (h_0, h_1, \ldots, h_d) \) of \(\mathcal{P} \) by

\[
\sum_{i=0}^{d} f_{i-1}(x - 1)^{d-i} = \sum_{i=0}^{d} h_i x^{d-i}.
\]

E.g., for the octahedron \(\mathcal{O} \),

\[
(x - 1)^3 + 6(x - 1)^2 + 12(x - 1) + 8 = x^3 + 3x^2 + 3x + 1,
\]

so \(h(\mathcal{O}) = (1, 3, 3, 1) \).
Conditions on h_i

Dehn-Sommerville equations (1905,1927): $h_i = h_{d-i}$

GLBC (McMullen-Walkup, 1971):

$$h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor},$$

so the sequence h_0, h_1, \ldots, h_d is unimodal.

(Generalized Lower Bound Conjecture)
Conditions on h_i

Dehn-Sommerville equations (1905,1927): $h_i = h_{d-i}$

GLBC (McMullen-Walkup, 1971):

$$h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor},$$

so the sequence h_0, h_1, \ldots, h_d is unimodal.

(Generalized Lower Bound Conjecture)

Even stronger condition (the \textit{g-conjecture for simplicial polytopes}) conjectured by McMullen in 1971. Gave a conjectured complete characterization of f-vectors of simplicial polytopes.
Toric varieties

Note. Every simplicial polytope in \mathbb{R}^n can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the **toric variety** corresponding to a rational simplicial polytope \mathcal{P}. Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$H(\mathcal{P}) = H^0 \oplus H^2 \oplus H^4 \oplus \ldots \oplus H^{2d}$$

be its cohomology ring (over \mathbb{C}), so $\beta_{2i} := \dim_{\mathbb{C}} H^{2i} < \infty$.

Fact. $\beta_{2i} = h_i$
Toric varieties

Note. Every simplicial polytope in \mathbb{R}^n can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the **toric variety** corresponding to a rational simplicial polytope \mathcal{P}. Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$H(\mathcal{P}) = H^0 \oplus H^2 \oplus H^4 \oplus \cdots \oplus H^{2d}$$

be its cohomology ring (over \mathbb{C}), so $\beta^{2i} := \dim_{\mathbb{C}} H^{2i} < \infty$.

Fact. $\beta_{2i} = h_i$

\Rightarrow GLBC.
Note. Every simplicial polytope in \mathbb{R}^n can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the toric variety corresponding to a rational simplicial polytope \mathcal{P}. Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$H(\mathcal{P}) = H^0 \oplus H^2 \oplus H^4 \oplus \cdots \oplus H^{2d}$$

be its cohomology ring (over \mathbb{C}), so $\beta^{2i} := \dim_{\mathbb{C}} H^{2i} < \infty$.

Fact. $\beta_{2i} = h_i$

\Rightarrow GLBC.

Also, $H(\mathcal{P})$ is generated as a \mathbb{C}-algebra by H^2. This and hard Lefschetz imply the g-conjecture for simplicial polytopes.
A **triangulated sphere** is an abstract simplicial complex Δ whose geometric realization is a $(d - 1)$-sphere.
A **triangulated sphere** is an abstract simplicial complex Δ whose geometric realization is a $(d - 1)$-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.
Triangulated spheres

A **triangulated sphere** is an abstract simplicial complex Δ whose geometric realization is a $(d - 1)$-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (**Steinitz’ theorem**). There exist nonpolytopal triangulated 3-spheres.
A **triangulated sphere** is an abstract simplicial complex Δ whose geometric realization is a $(d - 1)$-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (**Steinitz’ theorem**). There exist nonpolytopal triangulated 3-spheres.

In fact (**Kalai, Goodman-Pollack**), the number of triangulated spheres on 10^6 vertices exceeds 2^{619000}. The number which are polytope is at most 2^{42}.
Triangulated spheres

A **triangulated sphere** is an abstract simplicial complex Δ whose geometric realization is a $(d-1)$-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (**Steinitz’ theorem**). There exist nonpolytopal triangulated 3-spheres.

In fact (**Kalai, Goodman-Pollack**), the number of triangulated spheres on 10^6 vertices exceeds $2^{2^{619000}}$. The number which are polytope is at most $2^{2^{42}}$.

If Δ triangulates a $(d-1)$-sphere, then (h_0, h_1, \ldots, h_d) is defined as before, and $h_i = h_{d-i}$.
Theorem (K. Adiprasito, 2018). The g-conjecture for spheres is true. In particular, if Δ triangulates a $(d - 1)$-sphere then $h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor}$ (and $h_i = h_{d-i}$).
Theorem (K. Adiprasito, 2018). The g-conjecture for spheres is true. In particular, if Δ triangulates a $(d-1)$-sphere then $h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor}$ (and $h_i = h_{d-i}$).

Idea of proof. There is a ring $H(\Delta)$ (the face ring modulo a linear system of parameters) which for a certain l.s.o.p is isomorphic to $H(\mathcal{P})$ when Δ is the boundary complex of a rational simplicial polytope. Then prove a hard Lefschetz theorem for $H(\Delta)$.

V. SOME OPEN PROBLEMS
P: a p-element fence, i.e., a poset such as

order ideal: $I \subseteq P$ such that $t \in I, s \leq t \Rightarrow s \in I$

c_i: number of i-element order ideals of P
Conjecture of Morier-Genoud and Ovsienko

\[
\emptyset, a, b, ab, bc, abc, abd, abcd
\]

\[
(c_0, \ldots, c_4) = (1, 2, 2, 2, 1)
\]
Conjecture of Morier-Genoud and Ovsienko

\[\emptyset, a, b, ab, bc, abc, abd, abcd \]
\[(c_0, \ldots, c_4) = (1, 2, 2, 2, 1) \]

Conjecture. For any \(p \)-element fence, the sequence \(c_0, c_1, \ldots, c_p \) is unimodal.
Knots

*\(K \): a knot in \(\mathbb{R}^3 \)

*\(\Delta_K(t) \in \mathbb{Z}[t, t^{-1}] \): the **Alexander polynomial** of \(K \) (a famous knot invariant).

Fact. A polynomial \(\Gamma(t) \in \mathbb{Z}[t, t^{-1}] \) is the Alexander polynomial of some knot if and only if \(\Gamma(1) = 1 \) and \(\Gamma(1/t) = \Gamma(t) \).
Knots

\(K \): a knot in \(\mathbb{R}^3 \)

\(\Delta_K(t) \in \mathbb{Z}[t, t^{-1}] \): the **Alexander polynomial** of \(K \) (a famous knot invariant).

Fact. A polynomial \(\Gamma(t) \in \mathbb{Z}[t, t^{-1}] \) is the Alexander polynomial of some knot if and only if \(\Gamma(1) = 1 \) and \(\Gamma(1/t) = \Gamma(t) \).

alternating knot: can be projected to \(\mathbb{R}^2 \) so that crossings alternate between over and under.
Knots

\(K \): a knot in \(\mathbb{R}^3 \)

\(\Delta_K(t) \in \mathbb{Z}[t, t^{-1}] \): the **Alexander polynomial** of \(K \) (a famous knot invariant).

Fact. A polynomial \(\Gamma(t) \in \mathbb{Z}[t, t^{-1}] \) is the Alexander polynomial of some knot if and only if \(\Gamma(1) = 1 \) and \(\Gamma(1/t) = \Gamma(t) \).

alternating knot: can be projected to \(\mathbb{R}^2 \) so that crossings alternate between over and under.

Conjecture (A. Stoimenow, 2014) If \(K \) is alternating, then \(\Delta_K(t) \) has log-concave coefficients. (Unimodality for \(\Delta_K(-t) \) conjectured by R. H. Fox in 1962)
Genus distribution of graphs

G: finite connected graph

g_i(G):$ number of combinatorially distinct cellular embeddings (i.e., every face is homeomorphic to an open disk) of G in an orientable surface of genus i

Fact. The sequence $g_0(G), g_1(G), g_2(G), \ldots$ (the genus distribution of G) has finitely many positive terms and no internal zeros.

Conjecture (Gross-Robbins-Tucker, 1989) The genus distribution of G is log-concave. (Known that $\sum g_i(G)t^i$ need not have only real zeros.)
The last slide
The last slide