GENERALIZED RIFFLE SHUFFLES AND QUASISYMMETRIC FUNCTIONS

Richard P. Stanley
Department of Mathematics
M.I.T. 2-375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:
Let $\mathbf{x}_i =$ probability of $i \in \mathbb{P} = \{1, 2 \ldots \}$.

Fix $n \in \mathbb{P}$. Define a random $w \in \mathcal{S}_n$ as follows:

For $1 \leq j \leq n$, choose independently an integer i_j from the distribution x_i. Then standardize the sequence $\mathbf{i} = i_1 \cdot \cdot \cdot i_n$, i.e., replace the 1’s with 1, 2, \ldots, a_1 from left-to-right, then the 2’s with $a_1 + 1$, $a_1 + 2$, \ldots, $a_1 + a_2$ from left-to-right, etc.

$$\mathbf{i} = \underbrace{311431}_{\text{word}}$$

$$w = \underbrace{412653}_{\text{word}}$$

Call this the \textbf{QS}-distribution or $\textbf{QS}(x)$-distribution.
Previously studied by

- Diaconis-Fill-Pitman
- Fulman
- Its-Tracy-Widom
- Kuperberg,

at least when x_i has finite support.
Example. \(w = 213 \). The sequence
\(i_1 i_2 i_3 \) has standardization 213 if and only
if \(i_2 < i_1 \leq i_3 \). Hence
\[
\text{Prob}(213) = \sum_{a < b \leq c} x_a x_b x_c = L_{(1,2)}(x).
\]

Theorem. Let \(w \in \mathfrak{S}_n \). The probability \(\text{Prob}(w) \) that a permutation in
\(\mathfrak{S}_n \) chosen from the QS-permutation
is equal to \(w \) is given by
\[
\text{Prob}(w) = L_{\text{co}(w^{-1})}(x).
\]

Example. \(w = 74513826 \)
\[
w^{-1} = 47 \cdot 5 \cdot 238 \cdot 16
\]
\[
\text{co}(w^{-1}) = (2, 1, 3, 2)
\]
\[
L_{(2,1,3,2)}(x) = \sum_{a \leq b < c < d \leq e \leq f < g \leq h} x_a \cdots x_h.
\]
Special cases:

- $x_1 = x_2 = 1/2$: riffle or dovetail shuffle (Bayer-Diaconis), the U_2-distribution
- $x_1 = \cdots = x_q = 1/q$: q-shuffle (Bayer-Diaconis), the U_q-distribution
- $\lim_{q \to \infty} U_q$: the uniform distribution U

Note. A q-shuffle followed by an r-shuffle is a qr-shuffle, i.e., $U_q * U_r = U_{qr}$.

Theorem. Let y have finite support. Then

\[QS(x) * QS(y) = QS(xy) , \]

where xy denotes the variables $x_i y_j$ in lexicographic order.
The QS-distribution defines a Markov chain (or random walk) on \mathfrak{S}_n by
\[
\text{Prob}(u, uw) = L_{\text{co}(w^{-1})}(x).
\]

Theorem. The eigenvalues of M_n are the power sum symmetric functions $p_\lambda(x)$ for $\lambda \vdash n$. The eigenvalue $p_\lambda(x)$ occurs with multiplicity $n!/z_\lambda$, the number of elements in \mathfrak{S}_n of cycle type λ.

(consequence of Bergeron-Garsia or Bi-digare-Hanlon-Rockmore)
Sample enumerative results. For $w \in \mathfrak{S}_n$ let

$$\text{inv}(w) = \# \{(i, j) : i < j, \ w(i) > w(j)\}$$

$$\text{maj}(w) = \sum_{i: w(i) > w(i+1)} i$$

$$I_n(j) = \text{Prob}(\text{inv}(w) = j)$$

$$M_n(j) = \text{Prob}(\text{maj}(w) = j).$$

Theorem. We have

$$M_n(j) = I_n(j)$$

$$\sum_{n \geq 0} \sum_{j \geq 0} \frac{M_n(j) t^j z^n}{(1 - t)(1 - t^2) \cdots (1 - t^n)}$$

$$= \prod_{i,j \geq 1} \left(1 - t^{i-1} x_j z\right)^{-1}.$$
MacMahon (1913):

$$\# \{ w \in \mathfrak{S}_n : \text{maj}(w) = j \}$$

$$= \# \{ w \in \mathfrak{S}_n : \text{inv}(w) = j \}.$$

Since $U = \lim_{q \to \infty} U_q$, the result $M_n(j) = I_n(j)$ is a generalization.
In fact, if
\[F_\lambda(t) = \sum_v t^{\text{maj}(v)} \]
\[G_\lambda(t) = \sum_v t^{\text{inv}(v)}, \]
where \(v \) ranges over all permutations of the multiset \(\{1^{\lambda_1}, 2^{\lambda_2}, \ldots\} \), then
\[\sum_j M_n(j) t^j = \sum_{\lambda \vdash n} F_\lambda(t)m_\lambda(x) \]
\[\sum_j I_n(j) t^j = \sum_{\lambda \vdash n} G_\lambda(t)m_\lambda(x). \]
Thus \(M_n(j) = I_n(j) \) is equivalent to MacMahon’s result for multisets.
Let
\[L_n(x) = \frac{1}{n} \sum_{d|n} \mu(d) p^{n/d}_d(x) \]
\[= \text{ch ind}_{C_n} \mathcal{S}_n e^{2\pi i/n}. \]

Theorem. Let \(w \) be a random permutation in \(\mathcal{S}_n \), chosen from the QS-distribution. The probability \(\text{Prob}(\rho(w) = \lambda) \) that \(w \) has cycle type \(\lambda = \langle 1^{m_1} 2^{m_2} \cdots \rangle \)
\(\vdash n \) (i.e., \(m_i \) cycles of length \(i \)) is given by
\[\text{Prob}(\rho(w) = \lambda) = \prod_{i \geq 1} h_{m_i}[L_i], \]
where brackets denote plethysm.
Connections with the RSK algorithm

Let $w \in \mathfrak{S}_n$, and let $w \xrightarrow{\text{RSK}} (P, Q)$ denote the RSK algorithm, so P and Q are SYT of the same shape $\lambda \vdash n$. Write

$$\text{sh}(w) = \lambda.$$

Theorem. Choose $w \in \mathfrak{S}_n$ from the QS-distribution, and let $w \xrightarrow{\text{RSK}} (P, Q)$. Let T be a SYT of shape $\lambda \vdash n$. Then

$$\text{Prob}(P = T) = s_\lambda(x),$$

where $s_\lambda(x)$ denotes a Schur function.
Corollary. Choose $w \in \mathfrak{S}_n$ from the QS-distribution, and let $\lambda \vdash n$. Then

$$\text{Prob}(\text{sh}(w) = \lambda) = f^\lambda s_\lambda(x),$$

where f^λ denotes the number of SYT of shape λ (given explicitly by the Frame-Robinson-Thrall hook-length formula).
Longest increasing subsequences

Let $\text{is}(w)$ be the length of the longest increasing subsequence of $w = w_1 \cdots w_n$.

Theorem (Schensted). If

$$\text{sh}(w) = (\lambda_1, \lambda_2, \ldots),$$

then $\lambda_1 = \text{is}(w)$. Hence

$$E_U(\text{is}(w)) = \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2.$$

Theorem (Vershik-Kerov):

$$E_U(\text{is}(w)) \sim 2\sqrt{n}.$$
For the QS-distribution,
\[
E(is(w)) = \sum_{\lambda \vdash n} \lambda_1 f^\lambda s_\lambda(x).
\]
\[
E_{U_q}(is(w)) = \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^\lambda \right)^2 \prod_{u \in \lambda} \left(1 + q^{-1} c(u) \right)
= E_U(is(w))
+ \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^\lambda \right)^2 \left(\sum_{u \in \lambda} c(u) \right) \frac{1}{q} + \cdots.
\]

Let
\[
F_1(n) = \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^\lambda \right)^2 \left(\sum_{u \in \lambda} c(u) \right).
\]

Numerical evidence suggests that \(F_1(n)/n \) is slowly increasing, possibly to a finite limit. We computed \(F_1(47)/47 \approx 0.6991 \).
Logan-Shepp, Vershik-Kerov: “asymptotic shape” of a “typical” $w \in \mathfrak{S}_n$ (uniform distribution) as $n \to \infty$.

Baik-Deift-Johansson: Asymptotic distribution of $\operatorname{sh}(w)$ for $w \in \mathfrak{S}_n$ (uniform distribution) as $n \to \infty$.

Theorem. For each $n \in \mathbb{P}$ let $w^{(n)} \in \mathfrak{S}_n$ be chosen from the QS-distribution. Let $\operatorname{sh}(w^{(n)}) = (\lambda_1^{(n)}, \lambda_2^{(n)}, \ldots)$, and let $y_1 \geq y_2 \geq \cdots$ be the decreasing rearrangement of x_1, x_2, \ldots. Then almost surely (i.e., with probability 1) for all i there holds

$$
\lim_{n \to \infty} \frac{\lambda_i^{(n)}}{n} = y_i.
$$
Corollary. \(\text{Fix } x = (x_1, x_2, \ldots), \) with \(x_i \geq 0 \) and \(\sum x_i = 1 \) as usual. Let \(\mu^{(n)} \) be a partition \(\nu \vdash n \) that maximizes \(f^\nu s_\nu(x) \). Then
\[
\lim_{n \to \infty} \frac{\mu_i^{(n)}}{n} = y_i.
\]
Theorem (Its-Tracy-Widom) Let

\[x_1 > x_2 > \cdots. \]

Then

\[E(is(w)) = x_1 n + \sum_{j>1} \frac{p_j}{p_1 - p_j} + O \left(\frac{1}{\sqrt{n}} \right). \]
Open: Find an asymptotic formula for the expected value of λ_1 (where $\text{sh}(w) = \lambda$ under the $QS(x)$-distribution) that specializes to both the Vershik-Kerov result (uniform distribution) and the case x fixed, $n \to \infty$.