Catalan Numbers

Richard P. Stanley

March 25, 2020

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

$C_0 = 1, \quad C_1 = 2, \quad C_2 = 3, \quad C_3 = 5, \quad C_4 = 14, \ldots$

C_n is a Catalan number.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

\[C_0 = 1, \quad C_1 = 2, \quad C_2 = 3, \quad C_3 = 5, \quad C_4 = 14, \ldots \]

\(C_n \) is a **Catalan number**.

Comments. . . . This is probably the longest entry in OEIS, and rightly so.
Catalan monograph

Catalan monograph

Includes 214 combinatorial interpretations of C_n and 68 additional problems.
History

Sharabiin Myangat, also known as Minggatu, Ming’antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.
Sharabiin Myangat, also known as Minggatu, Ming’antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730’s):

\[
\sin(2\alpha) = 2 \sin \alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1} \alpha
\]
Sharabiin Myangat, also known as Minggatu, Ming’antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730’s):

\[
\sin(2\alpha) = 2 \sin \alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1} \alpha
\]

First example of an infinite trigonometric series.
Sharabiin Myangat, also known as Minggatu, Ming’antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730’s):

\[
\sin(2\alpha) = 2 \sin \alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1} \alpha
\]

First example of an infinite trigonometric series.

No combinatorics, no further work in China.
Ming’antu
Manuscript of Ming’antu
Manuscript of Ming’antu
Euler (1751): conjectured formula for the number of triangulations of a convex \((n + 2)\)-gon. In other words, draw \(n - 1\) noncrossing diagonals of a convex polygon with \(n + 2\) sides.
More history, via Igor Pak

Euler (1751): conjectured formula for the number of triangulations of a convex \((n + 2)\)-gon. In other words, draw \(n - 1\) noncrossing diagonals of a convex polygon with \(n + 2\) sides.

1, 2, 5, 14, …
Euler (1751): conjectured formula for the number of triangulations of a convex \((n + 2)\)-gon. In other words, draw \(n - 1\) noncrossing diagonals of a convex polygon with \(n + 2\) sides.

1, 2, 5, 14, ...

We define these numbers to be the Catalan numbers \(C_n\).
Completion of proof

- **Goldbach and Segner** (1758–1759): helped Euler complete the proof, in pieces.
- **Lamé** (1838): first self-contained, complete proof.
Eugène Charles Catalan (1838): wrote C_n in the form
\[
\frac{(2n)!}{n!(n+1)!}
\]
and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of $n+1$ letters.
Eugène Charles Catalan (1838): wrote C_n in the form
\[\frac{(2n)!}{n!(n+1)!} \]
and showed it counted (nonassociative) bracketings
(or parenthesizations) of a string of $n + 1$ letters.

Born in 1814 in Bruges (now in Belgium, then under Dutch rule). Studied in France and worked in France and Liège, Belgium. Died in Liège in 1894.
Why “Catalan numbers”?

- **John Riordan** (1948): introduced the term “Catalan number” in *Math Reviews.*
Why “Catalan numbers”?

- **John Riordan** (1948): introduced the term “Catalan number” in *Math Reviews*.

Why “Catalan numbers”?

- **John Riordan** (1948): introduced the term “Catalan number” in *Math Reviews*.

Why “Catalan numbers”?

- **John Riordan** (1948): introduced the term “Catalan number” in *Math Reviews*.

- **Martin Gardner** (1976): used the term in his Mathematical Games column in *Scientific American*. Real popularity began.
The primary recurrence

\[C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1 \]
The primary recurrence

\[C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1 \]
The primary recurrence

\[C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1 \]
Solving the recurrence

\[C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1 \]

Let \(y = \sum_{n \geq 0} C_n x^n \) (generating function).

\[\Rightarrow \frac{y - 1}{x} = y^2 \]

\[\Rightarrow y = \frac{1 - \sqrt{1 - 4x}}{2x} \]

\[= -\frac{1}{2} \sum_{n \geq 1} (-4)^n \binom{-1/2}{n} x^{n-1} \]
Solving the recurrence

\[C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1 \]

Let \(y = \sum_{n \geq 0} C_n x^n \) (generating function).

\[\Rightarrow \frac{y - 1}{x} = y^2 \]

\[\Rightarrow y = \frac{1 - \sqrt{1 - 4x}}{2x} \]

\[= -\frac{1}{2} \sum_{n \geq 1} (-4)^n \binom{-1/2}{n} x^{n-1} \]

\[C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!} \]
Other combinatorial interpretations

\[\mathcal{P}_n := \{ \text{triangulations of convex } (n + 2)\text{-gon} \} \]
\[\Rightarrow \#\mathcal{P}_n = C_n \] (where \#S = number of elements of S)

We want other combinatorial interpretations of \(C_n \), i.e., other sets \(S_n \) for which \(C_n = \#S_n \).
“Transparent” interpretations

4. **Binary trees** with n vertices (each vertex has a left subtree and a right subtree, which may be empty)
“Transparent” interpretations

4. **Binary trees** with n vertices (each vertex has a left subtree and a right subtree, which may be empty)
“Transparent” interpretations

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)
3. Binary *parenthesizations* or *bracketings* of a string of $n + 1$ letters

$$(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$$
3. Binary **parenthesizations** or **bracketings** of a string of \(n + 1 \) letters

\[
(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx
\]

\[
((x(xx))x)(x((xx)(xx)))
\]
3. Binary *parenthesizations* or *bracketings* of a string of $n + 1$ letters

$$(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$$

$$(x(xx))x(x((xx)(xx)))$$
The ballot problem

Bertrand’s ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).
The ballot problem

Bertrand’s ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).

Special case: there are two candidates A and B in an election. Each receives n votes. What is the probability that A will never trail B during the count of votes?

Example. $AABABBBBAAB$ is bad, since after seven votes, A receives 3 while B receives 4.
Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by -1 (abbreviated $-$). Clearly a sequence $a_1 a_2 \cdots a_{2n}$ of n each of 1 and -1 is allowed if and only if $\sum_{i=1}^{k} a_i \geq 0$ for all $1 \leq k \leq 2n$. Such a sequence is called a ballot sequence.
77. Ballot sequences, i.e., sequences of n 1’s and $n - 1$’s such that every partial sum is nonnegative (with -1 denoted simply as $-$ below)

$$111 - - - 11 - 1 - - 11 - - 1 - 11 - - 1 - 1 - 1 -$$
Ballot sequences

77. Ballot sequences, i.e., sequences of \(n \) 1’s and \(n - 1 \)'s such that every partial sum is nonnegative (with \(-1\) denoted simply as \(-\) below)

\[
111 - - - 11 - 1 - - 11 - - 1 - 11 - - 1 - 1 - 1 -
\]

Note. Answer to original problem (probability that a sequence of \(n \) each of 1’s and \(-1\)’s is a ballot sequence) is therefore

\[
\frac{C_n}{\binom{2n}{n}} = \frac{\frac{1}{n+1}\binom{2n}{n}}{\binom{2n}{n}} = \frac{1}{n+1}.
\]
The ballot recurrence

\[11 - 11 - 1 - - - 1 - 11 - 1 - - \]
The ballot recurrence

\[\begin{array}{ccccccc}
1 & 1 & 1 & - & - & - & 1 - 1 & 1
\end{array} \]

\[\begin{array}{ccccccc}
1 & 1 & 1 & - & - & - & 1 - 1 & 1
\end{array} \]
The ballot recurrence

\[
11 - 11 - 1 - - - 1 - 11 - 1 - - \\
11 - 11 - 1 - - - | 1 - 11 - 1 - - \\
1 - 11 - 1 - - | 1 - 11 - 1 - -
\]
25. **Dyck paths** of length $2n$, i.e., lattice paths from $(0, 0)$ to $(2n, 0)$ with steps $(1, 1)$ and $(1, -1)$, never falling below the x-axis
25. **Dyck paths** of length $2n$, i.e., lattice paths from $(0,0)$ to $(2n,0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis.
25. Dyck paths of length $2n$, i.e., lattice paths from $(0, 0)$ to $(2n, 0)$ with steps $(1, 1)$ and $(1, -1)$, never falling below the x-axis
25. **Dyck paths** of length $2n$, i.e., lattice paths from $(0, 0)$ to $(2n, 0)$ with steps $(1, 1)$ and $(1, -1)$, never falling below the x-axis.

Walther von Dyck (1856–1934)
Bijection with ballot sequences

For each upstep, record 1.
For each downstep, record \(-1\).
312-avoiding permutations

116. Permutations $a_1a_2\cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist $i < j < k$ and $a_j < a_k < a_i$ (called 312-avoiding permutations)

$$
123 \quad 132 \quad 213 \quad 231 \quad 321
$$
312-avoiding permutations

116. Permutations $a_1 a_2 \cdots a_n$ of 1, 2, \ldots, n for which there does not exist $i < j < k$ and $a_j < a_k < a_i$ (called 312-avoiding permutations)

123 132 213 231 321

34251768
312-avoiding permutations

116. Permutations $a_1a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist $i < j < k$ and $a_j < a_k < a_i$ (called **312-avoiding** permutations)

\[
\begin{align*}
123 & \quad 132 & \quad 213 & \quad 231 & \quad 321 \\
3425 & \quad 768
\end{align*}
\]
312-avoiding permutations

116. Permutations $a_1 a_2 \cdots a_n$ of 1, 2, \ldots, n for which there does not exist $i < j < k$ and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

\[123 \quad 132 \quad 213 \quad 231 \quad 321\]

\[3425 \ 768 \quad \text{(note red < blue)}\]
312-avoiding permutations

116. Permutations $a_1 a_2 \cdots a_n$ of 1, 2, \ldots, n for which there does not exist $i < j < k$ and $a_j < a_k < a_i$ (called 312-avoiding) permutations)

$$123 \quad 132 \quad 213 \quad 231 \quad 321$$

$$3425 \quad 768$$ (note red $<$ blue)

part of the subject of pattern avoidance
Another example of pattern avoidance:

115. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist $i < j < k$, $a_i > a_j > a_k$), called **321-avoiding** permutations:

123 213 132 312 231
Another example of pattern avoidance:

115. Permutations \(a_1 a_2 \cdots a_n\) of 1, 2, \ldots, \(n\) with longest decreasing subsequence of length at most two (i.e., there does not exist \(i < j < k, a_i > a_j > a_k\)), called \textbf{321-avoiding} permutations

\[
123 \quad 213 \quad 132 \quad 312 \quad 231
\]

more subtle: no obvious decomposition into two pieces
Bijection with ballot sequences

\[w = 412573968 \]
Bijection with ballot sequences

\[w = 412573968 \]
Bijection with ballot sequences

\[w = 412573968 \]
Bijection with ballot sequences

\[w = 412573968 \]

\[
\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & - & - & - & 1 & - 1 1 & - - 1 1 & - -
\end{array}
\]
An unexpected interpretation

92. n-tuples (a_1, a_2, \ldots, a_n) of integers $a_i \geq 2$ such that in the sequence $1a_1a_2 \cdots a_n1$, each a_i divides the sum of its two neighbors

14321 13521 13231 12531 12341
Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1’s remain; then replace bar with 1 and an original number with -1, except last two

1 2 5 3 4 1
Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1’s remain; then replace bar with 1 and an original number with -1, except last two

$$1 \mid 2 \; 5 \; 3 \; 4 \; 1$$
Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1’s remain; then replace bar with 1 and an original number with -1, except last two

$1 \mid 2 \ 5 \mid 3 \ 4 \ 1$
Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1’s remain; then replace bar with 1 and an original number with −1, except last two

1|2 5 3 4 1
Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1’s remain; then replace bar with 1 and an original number with -1, except last two

\[|1| 2 \ 5 \ 3 \ 4 \ 1 \]
Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1’s remain; then replace bar with 1 and an original number with -1, except last two

<table>
<thead>
<tr>
<th>1</th>
<th>2 5</th>
<th>3 4 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3 4 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3 4 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1’s remain; then replace bar with 1 and an original number with -1, except last two

```
|1|2 5|3 4 1
```

```
| 1 | | 2 5 | 3 4 1
1 1 1 1
```

tricky to prove
(a) Number of two-sided ideals of the algebra of all \((n - 1) \times (n - 1)\) upper triangular matrices over a field
(a) Number of two-sided ideals of the algebra of all $(n - 1) \times (n - 1)$ upper triangular matrices over a field
A symmetric group representation

Dimension of the irreducible representation of \(S_{2n-1} \) indexed by the partition \((n, n - 1)\), and of \(S_{2n} \) indexed by \((n, n)\).
A symmetric group representation

Dimension of the irreducible representation of \mathfrak{S}_{2n-1} indexed by the partition $(n, n - 1)$, and of \mathfrak{S}_{2n} indexed by (n, n).

Is there a “natural” action of \mathfrak{S}_{2n-1} and/or \mathfrak{S}_{2n} on the space QX, where X is some family of Catalan objects indexed by $2n - 1$ and/or $2n$?
(i) Let the symmetric group \mathfrak{S}_n act on the polynomial ring $A = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by
\[w \cdot f(x_1, \ldots, x_n, y_1, \ldots, y_n) = f(x_{w(1)}, \ldots, x_{w(n)}, y_{w(1)}, \ldots, y_{w(n)}) \]
for all $w \in \mathfrak{S}_n$. Let I be the ideal generated by all invariants of positive degree, i.e.,
\[I = \langle f \in A : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n, \text{ and } f(0) = 0 \rangle. \]
Then C_n is the dimension of the subspace of A/I affording the sign representation, i.e.,

$$C_n = \dim\{f \in A/I : w \cdot f = (\text{sgn } w)f \text{ for all } w \in S_n\}.$$
Then C_n is the dimension of the subspace of A/I affording the sign representation, i.e.,

$$C_n = \dim\{ f \in A/I : w \cdot f = (\text{sgn } w)f \text{ for all } w \in \mathfrak{S}_n \}.$$

A12. *k*-triangulation of *n*-gon: maximal collections of diagonals such that no *k* + 1 of them pairwise intersect in their interiors

k = 1: an ordinary triangulation

superfluous edge: an edge between vertices at most *k* steps apart (along the boundary of the *n*-gon). They appear in all *k*-triangulations and are irrelevant.
Example. 2-triangulations of a hexagon (superfluous edges omitted):
Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All \(k \)-triangulations of an \(n \)-gon have \(k(n - 2k - 1) \) nonsuperfluous edges.
Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All k-triangulations of an n-gon have $k(n - 2k - 1)$ nonsuperfluous edges.

Theorem (Jonsson, Serrano-Stump). The number $T_k(n)$ of k-triangulations of an n-gon is given by

$$T_k(n) = \det \left[C_{n-i-j}^k \right]_{i,j=1}$$

$$= \prod_{1 \leq i < j \leq n-2k} \frac{2k + i + j - 1}{i + j - 1}.$$
Note. The number $T_k(n)$ is the dimension of an irreducible representation of the symplectic group $\text{Sp}(2n - 4)$.
Note. The number $T_k(n)$ is the dimension of an irreducible representation of the symplectic group $\text{Sp}(2n - 4)$.

Is there a direct connection?
A61. Let $b(n)$ denote the number of 1’s in the binary expansion of n. Using Kummer’s theorem on binomial coefficients modulo a prime power, show that the exponent of the largest power of 2 dividing C_n is equal to $b(n + 1) - 1$.
Let $f(n)$ denote the number of integers $1 \leq k \leq n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$\lim_{n \to \infty} \frac{f(n)}{n} = \frac{5}{6}.$$
Sums of three squares

Let $f(n)$ denote the number of integers $1 \leq k \leq n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$\lim_{n \to \infty} \frac{f(n)}{n} = \frac{5}{6}.$$

A63. Let $g(n)$ denote the number of integers $1 \leq k \leq n$ such that C_k is the sum of three squares. Then

$$\lim_{n \to \infty} \frac{g(n)}{n} = ??.$$
Let \(f(n) \) denote the number of integers \(1 \leq k \leq n \) such that \(k \) is the sum of three squares (of nonnegative integers). Well-known:

\[
\lim_{n \to \infty} \frac{f(n)}{n} = \frac{5}{6}.
\]

A63. Let \(g(n) \) denote the number of integers \(1 \leq k \leq n \) such that \(C_k \) is the sum of three squares. Then

\[
\lim_{n \to \infty} \frac{g(n)}{n} = \frac{7}{8}.
\]
A65.(b)

\[\sum_{n \geq 0} \frac{1}{C_n} = ?? \]
Analysis

A65.(b)

$$\sum_{n \geq 0} \frac{1}{C_n} = ??$$

$$1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7$$
Analysis

A65.(b)

\[\sum_{n \geq 0} \frac{1}{C_n} = 2 + \frac{4\sqrt{3}\pi}{27} \]

\[1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7 \]
A65.(b)

\[\sum_{n \geq 0} \frac{1}{C_n} = 2 + \frac{4\sqrt{3}\pi}{27} \]

\[1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7 \]

\[2 + \frac{4\sqrt{3}\pi}{27} = 2.806133 \cdots \]
Why?

A65.(a)

\[\sum_{n \geq 0} \frac{x^n}{C_n} = \frac{2(x + 8)}{(4 - x)^2} + \frac{24\sqrt{x} \sin^{-1}\left(\frac{1}{2}\sqrt{x}\right)}{(4 - x)^{5/2}}. \]
Based on a (difficult) calculus exercise: let

\[y = 2 \left(\sin^{-1} \frac{1}{2} \sqrt{x} \right)^2. \]

Then \(y = \sum_{n \geq 1} \frac{x^n}{n^2 \binom{2n}{n}}. \) Use \(\sin^{-1} x = \sum_{n \geq 0} 4^{-n} \binom{2n}{n} \frac{x^{2n+1}}{2n+1}. \)
Recall $y = \sum_{n \geq 1} \frac{x^n}{n^2 \binom{2n}{n}}$. Note that:
Recall $y = \sum_{n \geq 1} \frac{x^n}{n^2 \binom{2n}{n}}$. Note that:

$$\frac{d}{dx} y = \sum_{n \geq 1} \frac{x^{n-1}}{n \binom{2n}{n}}$$
Recall \(y = \sum_{n \geq 1} \frac{x^n}{n^2 \binom{2n}{n}} \). Note that:

\[
x \frac{d}{dx} y = \sum_{n \geq 1} \frac{x^n}{n \binom{2n}{n}}
\]
Recall $y = \sum_{n \geq 1} \frac{x^n}{n^2 \binom{2n}{n}}$. Note that:

$$\frac{d}{dx} x \frac{d}{dx} y = \sum_{n \geq 1} \frac{x^{n-1}}{\binom{2n}{n}}$$
Recall $y = \sum_{n \geq 1} \frac{x^n}{n^2 \binom{2n}{n}}$. Note that:

$$x^2 \frac{d}{dx} \frac{dx}{x} y = \sum_{n \geq 1} \frac{x^{n+1}}{\binom{2n}{n}}$$
Recall $y = \sum_{n \geq 1} \frac{x^n}{n^2 \binom{2n}{n}}$. Note that:

$$\frac{d}{dx} x^2 \frac{d}{dx} x \frac{dx}{x} y = \sum_{n \geq 1} \frac{(n + 1)x^n}{\binom{2n}{n}}$$
Recall $y = \sum_{n \geq 1} \frac{x^n}{n^2 \binom{2n}{n}}$. Note that:

$$\frac{d}{dx} x^2 \frac{d}{dx} x \frac{dy}{dx} = \sum_{n \geq 1} \frac{(n + 1)x^n}{\binom{2n}{n}}$$

$$= -1 + \sum_{n \geq 0} \frac{x^n}{C_n},$$

etc.
What’s next?

Next topic: Euler numbers