Georg Alexander Pick (1859–1942)

P: lattice polygon in \mathbb{R}^2
(vertices $\in \mathbb{Z}^2$, no self-intersections)
\(\mathbf{A} = \text{area of } P \)
\(\mathbf{I} = \# \text{ interior points of } P(= 4) \)
\(\mathbf{B} = \# \text{boundary points of } P(= 10) \)

Then
\[
\mathbf{A} = \frac{2\mathbf{I} + \mathbf{B} - 2}{2} = \frac{2 \cdot 4 + 10 - 2}{2} = 9.
\]
Pick’s theorem (seemingly) fails in higher dimensions. For example, let T_1 and T_2 be the tetrahedra with vertices

\[v(T_1) = \{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)\} \]
\[v(T_2) = \{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)\}. \]

Then

\[I(T_1) = I(T_2) = 0 \]
\[B(T_1) = B(T_2) = 4 \]
\[A(T_1) = 1/6, \quad A(T_2) = 1/3. \]
Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^d. For $n \geq 1$, let
\[
n\mathcal{P} = \{n\alpha : \alpha \in \mathcal{P}\}.
\]
Let
\[i(\mathcal{P}, n) = \#(n\mathcal{P} \cap \mathbb{Z}^d) \]
\[= \#\{\alpha \in \mathcal{P} : n\alpha \in \mathbb{Z}^d\} \],
the number of lattice points in \(n\mathcal{P} \).

Similarly let
\[\mathcal{P}^\circ = \text{interior of } \mathcal{P} = \mathcal{P} - \partial \mathcal{P} \]
\[\bar{i}(\mathcal{P}, n) = \#(n\mathcal{P}^\circ \cap \mathbb{Z}^d) \]
\[= \#\{\alpha \in \mathcal{P}^\circ : n\alpha \in \mathbb{Z}^d\} \],
\[i(\mathcal{P}, n) = (n + 1)^2 \]
\[\bar{i}(\mathcal{P}, n) = (n - 1)^2 = i(\mathcal{P}, -n). \]
lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let \mathcal{P} be a three-dimensional lattice polytope. Then the volume $V(\mathcal{P})$ is a certain (explicit) function of $i(\mathcal{P},1)$, $\bar{i}(\mathcal{P},1)$, and $i(\mathcal{P},2)$.
Theorem (Ehrhart 1962, Macdonald 1963) Let

$\mathcal{P} =$ lattice polytope in \mathbb{R}^N, $\dim \mathcal{P} = d$.

Then $i(\mathcal{P}, n)$ is a polynomial (the \textit{Ehrhart polynomial} of \mathcal{P}) in n of degree d. Moreover,

\begin{align*}
i(\mathcal{P}, 0) &= 1 \\
\bar{i}(\mathcal{P}, n) &= (-1)^d i(\mathcal{P}, -n), \; n > 0
\end{align*}

(reciprocity).

If $d = N$ then

\[i(\mathcal{P}, n) = V(\mathcal{P})n^d + \text{lower order terms}, \]

where $V(\mathcal{P})$ is the volume of \mathcal{P}.
Corollary (generalized Pick’s theorem). Let $\mathcal{P} \subset \mathbb{R}^d$ and $\dim \mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for $n > 0$ determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P}, 0) = 1$, this data determines $d + 1$ values of the polynomial $i(\mathcal{P}, n)$ of degree d. This uniquely determines $i(\mathcal{P}, n)$ and hence its leading coefficient $V(\mathcal{P})$. □

Example. When $d = 3$, $V(\mathcal{P})$ is determined by

\[
\begin{align*}
i(\mathcal{P}, 1) &= \#(\mathcal{P} \cap \mathbb{Z}^3) \\
i(\mathcal{P}, 2) &= \#(2\mathcal{P} \cap \mathbb{Z}^3) \\
\bar{i}(\mathcal{P}, 1) &= \#(\mathcal{P}^\circ \cap \mathbb{Z}^3),
\end{align*}
\]

which gives Reeve’s theorem.
Example (magic squares). Let $\mathcal{B}_M \subset \mathbb{R}^{M \times M}$ be the Birkhoff polytope of all $M \times M$ doubly-stochastic matrices $A = (a_{ij})$, i.e.,

$$a_{ij} \geq 0$$

$$\sum_i a_{ij} = 1 \text{ (column sums 1)}$$

$$\sum_j a_{ij} = 1 \text{ (row sums 1)}.$$
Note. \(B = (b_{ij}) \in n\mathcal{B}_M \cap \mathbb{Z}^{M \times M} \quad \text{if and only if} \quad b_{ij} \in \mathbb{N} = \{0, 1, 2, \ldots\} \)

\[
\sum_i b_{ij} = n \\
\sum_j b_{ij} = n.
\]

\[
\begin{bmatrix}
2 & 1 & 0 & 4 \\
3 & 1 & 1 & 2 \\
1 & 3 & 2 & 1 \\
1 & 2 & 4 & 0
\end{bmatrix}
\quad (M = 4, \ n = 7)
\]
\(\mathbf{H}_M(n) := \# \{ M \times M \text{ N-matrices, line sums } n \} \)

\[= i(\mathcal{B}_M, n). \]

E.g.,

\[H_1(n) = 1 \]
\[H_2(n) = n + 1 \]

\[
\begin{bmatrix}
 a & n - a \\
 n - a & a
\end{bmatrix}, \quad 0 \leq a \leq n.
\]

\[H_3(n) = \binom{n + 2}{4} + \binom{n + 3}{4} + \binom{n + 4}{4} \]

(MacMahon)
\[H_M(0) = 1 \]
\[H_M(1) = M! \text{ (permutation matrices)} \]

Theorem (Birkhoff-von Neumann) *The vertices of \(\mathcal{B}_M \) consist of the \(M! \times M \) permutation matrices. Hence \(\mathcal{B}_M \) is a lattice polytope.*

Corollary (Anand-Dumir-Gupta conjecture) *\(H_M(n) \) is a polynomial in \(n \) (of degree \((M - 1)^2\)).*

Example. \[H_4(n) = \frac{1}{11340} \left(11n^9 + 198n^8 + 1596n^7 + 7560n^6 + 23289n^5 + 48762n^4 + 70234n^3 + 68220n^2 + 40950n + 11340\right). \]
Reciprocity \Rightarrow

$\pm H_M(\neg n) = \#\{M \times M \text{ matrices } B \text{ of positive integers, line sum } n\}$.

But every such B can be obtained from an $M \times M$ matrix A of nonnegative integers by adding 1 to each entry.

Corollary. $H_M(\neg 1) = H_M(\neg 2) = \cdots = H_M(\neg M + 1) = 0$

$H_M(\neg M - n) = (-1)^{M-1} H_M(n)$

(greatly reduces computation)

Applications e.g. to statistics (contingency tables).
Zeros of $H_9(n)$
Zonotopes. Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The zonotope $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k:

$$Z(v_1, \ldots, v_k) = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : 0 \leq \lambda_i \leq 1\}$$

Example. $v_1 = (4, 0)$, $v_2 = (3, 1)$, $v_3 = (1, 2)$
Theorem. Let

\[Z = Z(v_1, \ldots, v_k) \subseteq \mathbb{R}^d, \]

where \(v_i \in \mathbb{Z}^d \). Then

\[i(Z, 1) = \sum_X h(X), \]

where \(X \) ranges over all linearly independent subsets of \(\{v_1, \ldots, v_k\} \), and \(h(X) \) is the gcd of all \(j \times j \) minors \((j = \#X) \) of the matrix whose rows are the elements of \(X \).
Example. $v_1 = (4, 0)$, $v_2 = (3, 1)$, $v_3 = (1, 2)$

\[
i(Z, 1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} + \gcd(4, 0) + \gcd(3, 1) + \gcd(1, 2) + \det(\emptyset)
= 4 + 8 + 5 + 4 + 1 + 1 + 1
= 24.
\]
Let G be a graph (with no loops or multiple edges) on the vertex set $V(G) = \{1, 2, \ldots, n\}$. Let $d_i = \text{degree \ (# incident edges)}$ of vertex i. Define the **ordered degree sequence** $d(G)$ of G by

$$d(G) = (d_1, \ldots, d_n).$$

Example. $d(G) = (2, 4, 0, 3, 2, 1)$
Let \(f(n) \) be the number of distinct \(d(G') \), where \(V(G') = \{1, 2, \ldots, n\} \).

Example. If \(n \leq 3 \), all \(d(G') \) are distinct, so \(f(1) = 1 \), \(f(2) = 2^1 = 2 \), \(f(3) = 2^3 = 8 \). For \(n \geq 4 \) we can have \(G \neq H \) but \(d(G) = d(H) \), e.g.,

\[
\begin{array}{ccc}
1 & 2 & \text{1, 2} \\
3 & 4 & \text{3, 4} \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & \text{1, 2} \\
3 & 4 & \text{3, 4} \\
\end{array}
\]

In fact, \(f(4) = 54 < 2^6 = 64 \).
Let conv denote convex hull, and

\[\mathcal{D}_n = \text{conv}\{d(G) : V(G) = \{1, \ldots, n\}\}, \]

the \textbf{polytope of degree sequences} (Perles, Koren).

\textbf{Easy fact.} Let e_i be the ith unit coordinate vector in \mathbb{R}^n. E.g., if $n = 5$ then $e_2 = (0, 1, 0, 0, 0)$. Then

\[\mathcal{D}_n = \mathbb{Z}(e_i + e_j : 1 \leq i < j \leq n). \]

\textbf{Theorem} (Erdős-Gallai). Let $\alpha = (a_1, \ldots, a_n) \in \mathbb{Z}^n$. Then $\alpha = d(G)$ for some G if and only if

- $\alpha \in \mathcal{D}_n$
- $a_1 + a_2 + \cdots + a_n$ is even.
“Fiddling around” leads to:

Theorem. Let

\[
F(x) = \sum_{n \geq 0} f(n) \frac{x^n}{n!}
\]

\[
= 1 + x + 2 \frac{x^2}{2!} + 8 \frac{x^3}{3!} + 54 \frac{x^4}{4!} + \cdots.
\]

Then

\[
F'(x) = \frac{1}{2} \left[\left(1 + 2 \sum_{n \geq 1} n^n \frac{x^n}{n!} \right)^{1/2} \right.
\]

\[
\times \left(1 - \sum_{n \geq 1} (n - 1)^{n-1} \frac{x^n}{n!} \right) + 1 \left. \right]\]

\[
\times \exp \sum_{n \geq 1} n^{n-2} \frac{x^n}{n!}.
\]
The h-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} denote the tetrahedron with vertices $(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 13)$. Then

$$i(\mathcal{P}, n) = \frac{13}{6} n^3 + n^2 - \frac{1}{6} n + 1.$$

Thus in general the coefficients of Ehrhart polynomials are not “nice.” Is there a “better” basis?
Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree d, $\exists h_i \in \mathbb{Z}$ such that

$$\sum_{n \geq 0} i(\mathcal{P}, n)x^n = \frac{h_0 + h_1x + \cdots + h_dx^d}{(1 - x)^{d+1}}.$$

Definition. Define

$$h(\mathcal{P}) = (h_0, h_1, \ldots, h_d),$$

the h-vector of \mathcal{P}.
Example. Recall

\[i(B_4, n) = \frac{1}{11340} (11n^9 + 198n^8 + 1596n^7 + 7560n^6 + 23289n^5 + 48762n^4 + 70234n^3 + 68220n^2 + 40950n + 11340). \]

Then

\[h(B_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0). \]
Elementary properties of $h(\mathcal{P}) = (h_0, \ldots, h_d)$:

- $h_0 = 1$
- $h_d = (-1)^{\dim \mathcal{P}} i(\mathcal{P}, -1) = I(\mathcal{P})$
- $\max\{i : h_i \neq 0\} = \min\{j \geq 0 : i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = \cdots = i(\mathcal{P}, -(d - j)) = 0\}$

E.g., $h(\mathcal{P}) = (h_0, \ldots, h_{d-2}, 0, 0) \iff i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = 0$.

- $i(\mathcal{P}, -n-k) = (-1)^d i(\mathcal{P}, n) \forall n \iff h_i = h_{d+1-k-i} \forall i$, and

 $h_{d+2-k-i} = h_{d+3-k-i} = \cdots = h_d = 0$
Recall:

$$h(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).$$

Thus

$$i(\mathcal{B}_4, -1) = i(\mathcal{B}_4, -2) = i(\mathcal{B}_4, -3) = 0$$

$$i(\mathcal{B}_4, -n - 4) = -i(\mathcal{B}_4, n).$$
Theorem A (nonnegativity). (McMullen, RS) $h_i \geq 0$.

Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then $h_i(\mathcal{Q}) \leq h_i(\mathcal{P}) \forall i$.

$B \Rightarrow A$: take $\mathcal{Q} = \emptyset$.

Theorem A can be proved geometrically, but Theorem B requires commutative algebra.
$\mathcal{P} = \text{lattice polytope in } \mathbb{R}^d$

$\mathcal{R} = \mathcal{R}_\mathcal{P} = \text{vector space over } K \text{ with basis }$

$\{x^\alpha y^n : \alpha \in \mathbb{Z}^d, n \in \mathcal{P}, \alpha/n \in \mathcal{P}\} \cup \{1\},$

where if $\alpha = (\alpha_1, \ldots, \alpha_d)$ then

$x^\alpha = x_1^{\alpha_1} \cdots x_d^{\alpha_d}.$

If $\alpha/m, \beta/n \in \mathcal{P}$, then

$(\alpha + \beta)/(m + n) \in \mathcal{P}$

by convexity. Hence $\mathcal{R}_\mathcal{P}$ is a \textbf{subalgebra} of the polynomial ring $K[x_1, \ldots, x_d, y]$.
Example. (a) Let

\[\mathcal{P} = \text{conv}\{(0, 0), (0, 1), (1, 0), (1, 1)\}. \]

Then

\[R\mathcal{P} = K[y, x_1 y, x_2 y, x_1 x_2 y]. \]

(b) Let

\[\mathcal{P} = \text{conv}\{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)\}. \]

Then

\[R\mathcal{P} = K[y, x_1 x_2 y, x_1 x_3 y, x_2 x_3 y, x_1 x_2 x_3 y^2]. \]
Let
\[R_n = \text{span}_K \{ x^\alpha y^n : \alpha/n \in \mathcal{P} \}, \]
with \(R_0 = \text{span}_K \{ 1 \} = K. \) Then
\[R = R_0 \oplus R_1 \oplus \cdots \] (vector space \(\oplus \))
\[R_i R_j \subseteq R_{i+j}. \]
Thus \(R \) is a graded algebra. Moreover,
\[
\dim_K R_n = \# \{ x^\alpha y^n : \alpha/n \in \mathcal{P} \} \\
= i(\mathcal{P}, n).
\]
Thus \(i(\mathcal{P}, n) \) is the Hilbert function of \(R \). Moreover,
\[
F(\mathcal{P}, x) := \sum_{n \geq 0} i(\mathcal{P}, n)x^n
\]
is the Hilbert series of \(R_\mathcal{P} \).
Theorem (Hochster). Let \mathcal{P} be a lattice polytope of dimension d. Then $R_\mathcal{P}$ is a **Cohen-Macaulay** ring.

This means: \exists algebraically independent $\theta_1, \ldots, \theta_{d+1} \in R_1$ (called a **homogeneous system of parameters** or **h.s.o.p.**) such that $R_\mathcal{P}$ is a finitely generated free module over

$$S = K[\theta_1, \ldots, \theta_{d+1}].$$

Thus $\exists \eta_1, \ldots, \eta_s$ ($\eta_i \in R_{e_i}$) such that

$$R_\mathcal{P} = \bigoplus_{i=1}^{s} \eta_i S$$

and $\eta_i S \cong S$ (as S-modules).
Now
\[F(R\mathcal{P}, x) := \sum_{n \geq 0} i(\mathcal{P}, n) x^n \]
\[= \sum_{s} x^{e_i} F(S, x) \]
\[= \frac{\sum_{i=1}^{s} x^{e_i}}{(1 - x)^{d+1}}. \]

Compare with
\[F(R\mathcal{P}, x) = \frac{h_0 + h_1 x + \cdots + h_d x^d}{(1 - x)^{d+1}} \]

to conclude:

Corollary. \[\sum_{i=1}^{s} x^{e_i} = \sum_{j=0}^{d} h_j x^j. \] In particular, \(h_i \geq 0. \)
Now suppose:

\(\mathcal{P}, \mathcal{Q} : \) lattice polytopes in \(\mathbb{R}^N \)

\[\dim \mathcal{P} = d, \quad \dim \mathcal{Q} = e \]

\(\mathcal{Q} \subseteq \mathcal{P}. \)

Let

\[I = \text{span}_K \{ x^\alpha y^n : \alpha \in \mathbb{Z}^N, \alpha/n \in \mathcal{P} - \mathcal{Q} \}. \]

Easy: \(I \) is an ideal of \(R_\mathcal{P} \) and

\[R_\mathcal{P} / I \cong R_\mathcal{Q}. \]
Lemma. \(\exists \) an h.s.o.p. \(\theta_1, \ldots, \theta_{d+1} \) for \(R_P \) such that \(\theta_1, \ldots, \theta_{e+1} \) is an h.s.o.p. for \(R_Q \) and
\[
\theta_{e+2}, \ldots, \theta_{d+1} \in I.
\]
Thus
\[
R_Q/(\theta_1, \ldots, \theta_{e+1}) \cong R_Q/(\theta_1, \ldots, \theta_{d+1}),
\]
so the natural surjection \(f : R_P \to R_Q \)
induces a (degree-preserving) surjection
\[
\bar{f} : A_P := R_P/(\theta_1, \ldots, \theta_{d+1})
\to A_Q := R_Q/(\theta_1, \ldots, \theta_{e+1}).
\]
Since \(R_P \) and \(R_Q \) are Cohen-Macaulay,
\[
dim(A_P)_i = h_i(P), \quad \dim(A_Q)_i = h_i(Q).
\]
The surjection
\[
(A_P)_i \to (A_Q)_i
\]
gives \(h_i(P) \geq h_i(Q).\) \(\square \)
Zeros of Ehrhart polynomials.

Sample theorem (de Loera, Develin, Pfeifle, RS) Let \mathcal{P} be a lattice d-polytope. Then

$$i(\mathcal{P}, \alpha) = 0, \; \alpha \in \mathbb{R} \implies -d \leq \alpha \leq \lfloor d/2 \rfloor.$$

Theorem. Let d be odd. There exists a $0/1$ d-polytope \mathcal{P}_d and a real zero α_d of $i(\mathcal{P}_d, n)$ such that

$$\lim_{d \to \infty, \; d \text{ odd}} \frac{\alpha_d}{d} = \frac{1}{2\pi e} = 0.0585 \cdots.$$

Open. Is the set of all complex zeros of all Ehrhart polynomials of lattice polytopes dense in \mathbb{C}? (True for chromatic polynomials of graphs.)
Further directions

• $R_{\mathcal{P}}$ is the coordinate ring of a projective algebraic variety $X_{\mathcal{P}}$, a **toric variety**. Leads to deep connections with toric geometry, including new formulas for $i(\mathcal{P}, n)$.

• **Complexity.** Computing $i(\mathcal{P}, n)$, or even $i(\mathcal{P}, 1)$ is **#P-complete**. Thus an “efficient” (polynomial time) algorithm is extremely unlikely. However:

 Theorem (A. Barvinok, 1994). For **fixed** $\dim \mathcal{P}$, \exists polynomial-time algorithm for computing $i(\mathcal{P}, n)$.