Georg Alexander Pick (1859–1942)

P: lattice polygon in \mathbb{R}^2
(vertices $\in \mathbb{Z}^2$, no self-intersections)
\[A = \text{area of } P \]
\[I = \# \text{ interior points of } P (= 4) \]
\[B = \# \text{boundary points of } P (= 10) \]

Then
\[A = \frac{2I + B - 2}{2} = \frac{2 \cdot 4 + 10 - 2}{2} = 9. \]
Pick’s theorem (seemingly) fails in higher dimensions. For example, let T_1 and T_2 be the tetrahedra with vertices

$v(T_1) = \{ (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) \}$
$v(T_2) = \{ (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1) \}$.

Then

$I(T_1) = I(T_2) = 0$
$B(T_1) = B(T_2) = 4$
$A(T_1) = 1/6, \quad A(T_2) = 1/3$.
Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^d. For $n \geq 1$, let

$$n\mathcal{P} = \{ n\alpha : \alpha \in \mathcal{P} \}.$$
Let
\[i(\mathcal{P}, n) = \#(n\mathcal{P} \cap \mathbb{Z}^d) \]
\[= \#\{\alpha \in \mathcal{P} : n\alpha \in \mathbb{Z}^d\} , \]
the number of lattice points in \(n\mathcal{P} \).

Similarly let
\[\mathcal{P}^\circ = \text{interior of } \mathcal{P} = \mathcal{P} - \partial \mathcal{P} \]
\[\tilde{i}(\mathcal{P}, n) = \#(n\mathcal{P}^\circ \cap \mathbb{Z}^d) \]
\[= \#\{\alpha \in \mathcal{P}^\circ : n\alpha \in \mathbb{Z}^d\} , \]
$i(\mathcal{P}, n) = (n + 1)^2$

$\bar{i}(\mathcal{P}, n) = (n - 1)^2 = i(\mathcal{P}, -n)$.
lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let \mathcal{P} be a three-dimensional lattice polytope. Then the volume $V(\mathcal{P})$ is a certain (explicit) function of $i(\mathcal{P}, 1)$, $\bar{i}(\mathcal{P}, 1)$, and $i(\mathcal{P}, 2)$.
Theorem (Ehrhart 1962, Macdonald 1963) Let

$\mathcal{P} = \text{lattice polytope in } \mathbb{R}^N, \text{ dim } \mathcal{P} = d.$

Then $i(\mathcal{P}, n)$ is a polynomial (the Ehrhart polynomial of \mathcal{P}) in n of degree d. Moreover,

\begin{align*}
&i(\mathcal{P}, 0) = 1 \\
&\bar{i}(\mathcal{P}, n) = (-1)^d i(\mathcal{P}, -n), \ n > 0 \\
&\text{(reciprocity).}
\end{align*}

If $d = N$ then

\begin{align*}
i(\mathcal{P}, n) &= V(\mathcal{P}) n^d + \text{lower order terms}, \\
\text{where } V(\mathcal{P}) \text{ is the volume of } \mathcal{P}.
\end{align*}
Corollary (generalized Pick’s theorem). Let $\mathcal{P} \subset \mathbb{R}^d$ and $\dim \mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for $n > 0$ determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P}, 0) = 1$, this data determines $d + 1$ values of the polynomial $i(\mathcal{P}, n)$ of degree d. This uniquely determines $i(\mathcal{P}, n)$ and hence its leading coefficient $V(\mathcal{P})$. □

Example. When $d = 3$, $V(\mathcal{P})$ is determined by

$$
\begin{align*}
i(\mathcal{P}, 1) &= \#(\mathcal{P} \cap \mathbb{Z}^3) \\
i(\mathcal{P}, 2) &= \#(2\mathcal{P} \cap \mathbb{Z}^3) \\
\bar{i}(\mathcal{P}, 1) &= \#(\mathcal{P}^o \cap \mathbb{Z}^3),
\end{align*}
$$

which gives Reeve’s theorem.
Example (magic squares). Let $\mathcal{B}_M \subset \mathbb{R}^{M \times M}$ be the Birkhoff polytope of all $M \times M$ doubly-stochastic matrices $A = (a_{ij})$, i.e.,

$$a_{ij} \geq 0$$

$$\sum_i a_{ij} = 1 \text{ (column sums 1)}$$

$$\sum_j a_{ij} = 1 \text{ (row sums 1)}.$$
Note. \(B = (b_{ij}) \in n\mathcal{B}_M \cap \mathbb{Z}^{M \times M} \)
if and only if
\[
\sum_i b_{ij} = n
\]
\[
\sum_j b_{ij} = n.
\]

\[
\begin{bmatrix}
2 & 1 & 0 & 4 \\
3 & 1 & 1 & 2 \\
1 & 3 & 2 & 1 \\
1 & 2 & 4 & 0
\end{bmatrix}
\quad (M = 4, \ n = 7)
\]
$H_M(n) := \#\{M \times M \mathbb{N}\text{-matrices, line sums } n\} = i(B_M, n)$.

E.g.,

$H_1(n) = 1$

$H_2(n) = n + 1$

$$\begin{bmatrix} a & n-a \\ n-a & a \end{bmatrix}, \quad 0 \leq a \leq n.$$

$H_3(n) = \binom{n+2}{4} + \binom{n+3}{4} + \binom{n+4}{4}$

(MacMahon)
\[H_M(0) = 1 \]
\[H_M(1) = M! \text{ (permutation matrices)} \]

Theorem (Birkhoff-von Neumann) The vertices of \(\mathcal{B}_M \) consist of the \(M! \) \(M \times M \) permutation matrices. Hence \(\mathcal{B}_M \) is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture) \(H_M(n) \) is a polynomial in \(n \) (of degree \((M - 1)^2 \)).

Example. \[H_4(n) = \frac{1}{11340} \left(11n^9 + 198n^8 + 1596n^7 + 7560n^6 + 23289n^5 + 48762n^4 + 70234n^3 + 68220n^2 + 40950n + 11340 \right). \]
Reciprocity ⇒

\[\pm H_M(-n) = \# \{ M \times M \text{ matrices } B \text{ of positive integers, line sum } n \} \]

But every such \(B \) can be obtained from an \(M \times M \) matrix \(A \) of nonnegative integers by adding 1 to each entry.

Corollary. \(H_M(-1) = H_M(-2) = \cdots = H_M(-M+1) = 0 \)

\[H_M(-M-n) = (-1)^{M-1} H_M(n) \]

(greatly reduces computation)

Applications e.g. to statistics (contingency tables).
Zeros of $H_9(n)$
Zonotopes. Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The zonotope $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k:

$$Z(v_1, \ldots, v_k) = \{ \lambda_1 v_1 + \cdots + \lambda_k v_k : 0 \leq \lambda_i \leq 1 \}$$

Example. $v_1 = (4, 0)$, $v_2 = (3, 1)$, $v_3 = (1, 2)$
Theorem. Let

\[Z = Z(v_1, \ldots, v_k) \subset \mathbb{R}^d, \]

where \(v_i \in \mathbb{Z}^d \). Then

\[i(Z, 1) = \sum_X h(X), \]

where \(X \) ranges over all linearly independent subsets of \(\{v_1, \ldots, v_k\} \), and \(h(X) \) is the \(\gcd \) of all \(j \times j \) minors \((j = \#X) \) of the matrix whose rows are the elements of \(X \).
Example. $v_1 = (4, 0), v_2 = (3, 1), v_3 = (1, 2)$

\[
i(Z, 1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} + \gcd(4, 0) + \gcd(3, 1) + \gcd(1, 2) + \det(\emptyset)
= 4 + 8 + 5 + 4 + 1 + 1 + 1
= 24.
\]
Let G be a graph (with no loops or multiple edges) on the vertex set $V(G) = \{1, 2, \ldots, n\}$. Let

$$d_i = \text{degree (}\#\text{ incident edges) of vertex } i.$$

Define the ordered degree sequence $d(G)$ of G by

$$d(G) = (d_1, \ldots, d_n).$$

Example. $d(G) = (2, 4, 0, 3, 2, 1)$
Let $f(n)$ be the number of distinct $d(G)$, where $V(G) = \{1, 2, \ldots, n\}$.

Example. If $n \leq 3$, all $d(G)$ are distinct, so $f(1) = 1$, $f(2) = 2^1 = 2$, $f(3) = 2^3 = 8$. For $n \geq 4$ we can have $G \neq H$ but $d(G) = d(H)$, e.g.,

In fact, $f(4) = 54 < 2^6 = 64$.
Let \(\text{conv} \) denote convex hull, and
\[
\mathcal{D}_n = \text{conv}\{d(G) : V(G) = \{1, \ldots, n\}\},
\]
the \textit{polytope of degree sequences} (Perles, Koren).

\textbf{Easy fact.} Let \(e_i \) be the \(i \)th unit coordinate vector in \(\mathbb{R}^n \). E.g., if \(n = 5 \) then \(e_2 = (0, 1, 0, 0, 0) \). Then
\[
\mathcal{D}_n = \mathbb{Z}(e_i + e_j : 1 \leq i < j \leq n).
\]

\textbf{Theorem} (Erdős-Gallai). Let \(\alpha = (a_1, \ldots, a_n) \in \mathbb{Z}^n \). Then \(\alpha = d(G) \) for some \(G \) if and only if

- \(\alpha \in \mathcal{D}_n \)
- \(a_1 + a_2 + \cdots + a_n \) is even.
“Fiddling around” leads to:

Theorem. Let

\[F(x) = \sum_{n \geq 0} f(n) \frac{x^n}{n!} \]

\[= 1 + x + 2 \frac{x^2}{2!} + 8 \frac{x^3}{3!} + 54 \frac{x^4}{4!} + \cdots. \]

Then

\[F(x) = \frac{1}{2} \left[\left(1 + 2 \sum_{n \geq 1} n^n \frac{x^n}{n!} \right)^{1/2} \right. \]

\[\times \left. \left(1 - \sum_{n \geq 1} (n - 1)^{n-1} \frac{x^n}{n!} \right) + 1 \right] \]

\[\times \exp \sum_{n \geq 1} n^{n-2} \frac{x^n}{n!}. \]
The h-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} denote the tetrahedron with vertices $(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 13)$. Then

$$i(\mathcal{P}, n) = \frac{13}{6}n^3 + n^2 - \frac{1}{6}n + 1.$$

Thus in general the coefficients of Ehrhart polynomials are not “nice.” Is there a “better” basis?
Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree d, $\exists h_i \in \mathbb{Z}$ such that

$$\sum_{n \geq 0} i(\mathcal{P}, n)x^n = \frac{h_0 + h_1x + \cdots + h_dx^d}{(1 - x)^{d+1}}.$$

Definition. Define

$$h(\mathcal{P}) = (h_0, h_1, \ldots, h_d),$$

the **h-vector** of \mathcal{P}.
Example. Recall

\[i(\mathcal{B}_4, n) = \frac{1}{11340}(11n^9 + 198n^8 + 1596n^7 + 7560n^6 + 23289n^5 \]
\[+ 48762n^5 + 70234n^4 + 68220n^2 + 40950n + 11340) \].

Then

\[h(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0) \].
Elementary properties of $h(\mathcal{P}) = (h_0, \ldots, h_d)$:

- $h_0 = 1$
- $h_d = (-1)^{\dim \mathcal{P}} i(\mathcal{P}, -1) = I(\mathcal{P})$
- $\max\{i : h_i \neq 0\} = \min\{j \geq 0 : i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = \cdots = i(\mathcal{P}, -(d - j)) = 0\}$

E.g., $h(\mathcal{P}) = (h_0, \ldots, h_{d-2}, 0, 0) \Leftrightarrow i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = 0$.

- $i(\mathcal{P}, -n - k) = (-1)^{d} i(\mathcal{P}, n) \forall n \Leftrightarrow h_i = h_{d+1-k-i} \forall i$, and
- $h_{d+2-k-i} = h_{d+3-k-i} = \cdots = h_d = 0$
Recall:

\[h(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0). \]

Thus

\[i(\mathcal{B}_4, -1) = i(\mathcal{B}_4, -2) = i(\mathcal{B}_4, -3) = 0 \]
\[i(\mathcal{B}_4, -n - 4) = -i(\mathcal{B}_4, n). \]
Theorem A (nonnegativity). (McMullen, RS) \(h_i \geq 0 \).

Theorem B (monotonicity). (RS)

If \(\mathcal{P} \) and \(\mathcal{Q} \) are lattice polytopes and \(\mathcal{Q} \subseteq \mathcal{P} \), then \(h_i(\mathcal{Q}) \leq h_i(\mathcal{P}) \) \(\forall i \).

\(B \Rightarrow A \): take \(\mathcal{Q} = \emptyset \).

Theorem A can be proved geometrically, but Theorem B requires commutative algebra.
\(\mathcal{P} = \) lattice polytope in \(\mathbb{R}^d \)

\(\mathcal{R} = \mathcal{R}_\mathcal{P} = \) vector space over \(K \) with basis
\(\{x^\alpha y^n : \alpha \in \mathbb{Z}^d, n \in \mathcal{P}, \alpha/n \in \mathcal{P}\} \cup \{1\}, \)
where if \(\alpha = (\alpha_1, \ldots, \alpha_d) \) then
\[x^\alpha = x_1^{\alpha_1} \cdots x_d^{\alpha_d}. \]

If \(\alpha/m, \beta/n \in \mathcal{P}, \) then
\[(\alpha + \beta)/(m + n) \in \mathcal{P} \]
by convexity. Hence \(\mathcal{R}_\mathcal{P} \) is a subalgebra of the polynomial ring \(K[x_1, \ldots, x_d, y]. \)
Example. (a) Let

\[\mathcal{P} = \text{conv}\{(0, 0), (0, 1), (1, 0), (1, 1)\}. \]

Then

\[R_{\mathcal{P}} = K[y, x_1 y, x_2 y, x_1 x_2 y]. \]

(b) Let

\[\mathcal{P} = \text{conv}\{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)\}. \]

Then

\[R_{\mathcal{P}} = K[y, x_1 x_2 y, x_1 x_3 y, x_2 x_3 y, x_1 x_2 x_3 y^2]. \]
Let

\[R_n = \text{span}_K \{ x^\alpha y^n : \alpha/n \in \mathcal{P} \}, \]

with \(R_0 = \text{span}_K \{1\} = K \). Then

\[R = R_0 \oplus R_1 \oplus \cdots \] (vector space \(\oplus \))

\[R_i R_j \subseteq R_{i+j}. \]

Thus \(R \) is a graded algebra. Moreover,

\[\dim_K R_n = \# \{ x^\alpha y^n : \alpha/n \in \mathcal{P} \} = i(\mathcal{P}, n). \]

Thus \(i(\mathcal{P}, n) \) is the Hilbert function of \(R \). Moreover,

\[F(\mathcal{P}, x) := \sum_{n \geq 0} i(\mathcal{P}, n)x^n \]

is the Hilbert series of \(R_{\mathcal{P}} \).
Theorem (Hochster). Let \mathcal{P} be a lattice polytope of dimension d. Then $R_\mathcal{P}$ is a Cohen-Macaulay ring.

This means: \exists algebraically independent $\theta_1, \ldots, \theta_{d+1} \in R_1$ (called a homogeneous system of parameters or h.s.o.p.) such that $R_\mathcal{P}$ is a finitely generated free module over

$$S = K[\theta_1, \ldots, \theta_{d+1}].$$

Thus $\exists \eta_1, \ldots, \eta_s (\eta_i \in R_{e_i})$ such that

$$R_\mathcal{P} = \bigoplus_{i=1}^{s} \eta_i S$$

and $\eta_i S \cong S$ (as S-modules).
Now
\[
F(R_P, x) := \sum_{n \geq 0} i(P, n)x^n
\]
\[
= \sum_{i=1}^{s} x^{e_i}F(S, x)
\]
\[
= \sum_{i=1}^{s} x^{e_i} \frac{1}{(1 - x)^{d+1}}.
\]

Compare with
\[
F(R_P, x) = \frac{h_0 + h_1x + \cdots + h_dx^d}{(1 - x)^{d+1}}
\]
to conclude:

Corollary. \(\sum_{i=1}^{s} x^{e_i} = \sum_{j=0}^{d} h_jx^j. \) In particular, \(h_i \geq 0. \)
Now suppose:

\[\mathcal{P}, \ Q: \text{ lattice polytopes in } \mathbb{R}^N \]
\[\dim \mathcal{P} = d, \ \dim Q = e \]
\[Q \subseteq \mathcal{P}. \]

Let

\[I = \text{span}_K \{ x^\alpha y^n : \alpha \in \mathbb{Z}^N, \alpha/n \in \mathcal{P}-Q \}. \]

Easy: \(I \) is an ideal of \(R_{\mathcal{P}} \) and

\[R_{\mathcal{P}}/I \cong R_Q. \]
Lemma. \(\exists \) an h.s.o.p. \(\theta_1, \ldots, \theta_{d+1} \) for \(R_P \) such that \(\theta_1, \ldots, \theta_{e+1} \) is an h.s.o.p. for \(R_Q \) and

\[
\theta_{e+2}, \ldots, \theta_{d+1} \in I.
\]

Thus

\[
R_Q/(\theta_1, \ldots, \theta_{e+1}) \cong R_Q/(\theta_1, \ldots, \theta_{d+1}),
\]

so the natural surjection \(f : R_P \to R_Q \)
induces a (degree-preserving) surjection

\[
\overline{f} : A_P := R_P/(\theta_1, \ldots, \theta_{d+1})
\to A_Q := R_Q/(\theta_1, \ldots, \theta_{e+1}).
\]

Since \(R_P \) and \(R_Q \) are Cohen-Macaulay,
\[
dim(A_P)_i = h_i(P), \dim(A_Q)_i = h_i(Q).
\]

The surjection

\[
(A_P)_i \to (A_Q)_i
\]
gives \(h_i(P) \geq h_i(Q) \). \(\square \)
Zeros of Ehrhart polynomials.

Sample theorem (de Loera, Develin, Pfeifle, RS) Let \mathcal{P} be a lattice d-polytope. Then

$$i(\mathcal{P}, \alpha) = 0, \alpha \in \mathbb{R} \Rightarrow -d \leq \alpha \leq [d/2].$$

Theorem. Let d be odd. There exists a $0/1$ d-polytope \mathcal{P}_d and a real zero α_d of $i(\mathcal{P}_d, n)$ such that

$$\lim_{d \to \infty} \frac{\alpha_d}{d} = \frac{1}{2\pi e} = 0.0585 \cdots.$$

Open. Is the set of all complex zeros of all Ehrhart polynomials of lattice polytopes dense in \mathbb{C}? (True for chromatic polynomials of graphs.)
Further directions

• $R_\mathcal{P}$ is the coordinate ring of a projective algebraic variety $X_\mathcal{P}$, a toric variety. Leads to deep connections with toric geometry, including new formulas for $i(\mathcal{P}, n)$.

• **Complexity.** Computing $i(\mathcal{P}, n)$, or even $i(\mathcal{P}, 1)$ is $\#P$-complete. Thus an “efficient” (polynomial time) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). *For fixed* $\dim \mathcal{P}$, \exists polynomial-time algorithm for computing $i(\mathcal{P}, n)$.