Some Combinatorial Aspects of Cyclotomic Polynomials

Richard P. Stanley

April 1, 2024

Motivic cohomology

Motivic cohomology

What day is today?

A theorem of MacMahon

Theorem (MacMahon, 1916) The number $f(n)$ of partitions of n for which no part appears exactly once equals the number of partitions of n into parts $\not \equiv \pm 1(\bmod 6)$.

$$
\text { Proof. } \begin{aligned}
\sum_{n \geq 0} f(n) x^{n} & =\prod_{i \geq 1}\left(1+x^{2 i}+x^{3 i}+x^{4 i}+\cdots\right) \\
& =\prod_{i \geq 1}\left(\frac{1}{1-x^{i}}-x^{i}\right) \\
& =\prod_{i \geq 1} \frac{1-x^{i}+x^{2 i}}{1-x^{i}} \\
& =\prod_{i \geq 1} \frac{1-x^{6 i}}{\left(1-x^{2 i}\right)\left(1-x^{3 i}\right)} \\
& =\prod_{j \neq \pm 1 \bmod 6)}\left(1-x^{j}\right)^{-1}
\end{aligned}
$$

Why does this work?

$\Phi_{n}(x)$: the nth cyclotomic polynomial

$$
\Phi_{n}(x)=\prod_{\substack{1 \leq j \leq n \\ \operatorname{gcd}(j, n)=1}}\left(x-e^{2 \pi i j / n}\right)=\prod_{d \mid n}\left(1-x^{d}\right)^{\mu(n / d)}
$$

Why does this work?

$\Phi_{n}(x)$: the nth cyclotomic polynomial

$$
\begin{gathered}
\Phi_{n}(x)=\prod_{\substack{1 \leq j \leq n \\
\operatorname{gcd}(j, n)=1}}\left(x-e^{2 \pi i j / n}\right)=\prod_{d \mid n}\left(1-x^{d}\right)^{\mu(n / d)} \\
=\prod_{i=1}^{k}\left(1-x^{i}\right)^{a_{i}}, \quad a_{i} \in \mathbb{Z}
\end{gathered}
$$

Two points

1. (the main point)

$$
F(x):=\frac{1}{1-x}-x=\frac{\Phi_{6}(x)}{1-x}=\frac{1-x^{6}}{\left(1-x^{2}\right)\left(1-x^{3}\right)}
$$

Two points

1. (the main point)

$$
F(x):=\frac{1}{1-x}-x=\frac{\Phi_{6}(x)}{1-x}=\frac{1-x^{6}}{\left(1-x^{2}\right)\left(1-x^{3}\right)}
$$

2.

$$
\begin{aligned}
& \sum_{n \geq 0} f(n) x^{n}=F(x) F\left(x^{2}\right) F\left(x^{3}\right) \cdots \\
&= \frac{\left(1-x^{6}\right)\left(1-x^{12}\right)\left(1-x^{18}\right) \cdots}{\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{6}\right) \cdots\left(1-x^{3}\right)\left(1-x^{6}\right)\left(1-x^{9}\right) \cdots} \\
&= \frac{1}{\left(1-x^{2}\right)\left(1-x^{3}\right)\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{8}\right)\left(1-x^{9}\right) \cdots}
\end{aligned}
$$

Cyclotomic sets

Definition. A cyclotomic set is a subset S of $\mathbb{P}=\{1,2, \ldots\}$ such that

$$
F_{S}(x):=\frac{1}{1-x}-\sum_{j \in S} x^{j}=\frac{N_{S}(x)}{D_{S}(x)}
$$

where $N_{S}(x)$ and $D_{S}(x)$ are finite products of cyclotomic polynomials.

Cyclotomic sets

Definition. A cyclotomic set is a subset S of $\mathbb{P}=\{1,2, \ldots\}$ such that

$$
F_{S}(x):=\frac{1}{1-x}-\sum_{j \in S} x^{j}=\frac{N_{S}(x)}{D_{S}(x)}
$$

where $N_{S}(x)$ and $D_{S}(x)$ are finite products of cyclotomic polynomials.

Think of S as the set of "forbidden part multiplicities."

An example: $S=\{1,2,3,5,7,11\}$

$$
\begin{aligned}
F_{s}(x) & :=\frac{1}{1-x}-\left(x+x^{2}+x^{3}+x^{5}+x^{7}+x^{11}\right) \\
& =\frac{\Phi_{6}(x) \Phi_{12}(x) \Phi_{18}(x)}{1-x} \\
& =\frac{\left(1-x^{12}\right)\left(1-x^{18}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{9}\right)}
\end{aligned}
$$

An example: $S=\{1,2,3,5,7,11\}$

$$
\begin{aligned}
& F_{S}(x):=\frac{1}{1-x}-\left(x+x^{2}+x^{3}+x^{5}+x^{7}+x^{11}\right) \\
&=\frac{\Phi_{6}(x) \Phi_{12}(x) \Phi_{18}(x)}{1-x} \\
&=\frac{\left(1-x^{12}\right)\left(1-x^{18}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{9}\right)} \\
& F(x) F\left(x^{2}\right) F\left(x^{3}\right) \cdots=\prod_{i}\left(1-x^{i}\right)^{-1}, \\
& i \equiv 0,4,6,8,9,12,16,18,20,24,27,28,30,32(\bmod 36) . \quad(*)
\end{aligned}
$$

An example: $S=\{1,2,3,5,7,11\}$

$$
\begin{aligned}
& F_{S}(x):=\frac{1}{1-x}-\left(x+x^{2}+x^{3}+x^{5}+x^{7}+x^{11}\right) \\
&=\frac{\Phi_{6}(x) \Phi_{12}(x) \Phi_{18}(x)}{1-x} \\
&=\frac{\left(1-x^{12}\right)\left(1-x^{18}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{9}\right)} \\
& F(x) F\left(x^{2}\right) F\left(x^{3}\right) \cdots=\prod_{i}\left(1-x^{i}\right)^{-1}, \\
& i \equiv 0,4,6,8,9,12,16,18,20,24,27,28,30,32(\bmod 36) . \quad(*)
\end{aligned}
$$

Theorem. For all $n \geq 0$, the number of partitions of n such that no part occurs exactly $1,2,3,5,7$ or 11 times equals the number of partitions of n into parts i satisfying (*).

A further example

$S=\{2,3,4, \ldots\}$ is cyclotomic:

$$
\frac{1}{1-x}-\left(x^{2}+x^{3}+\cdots\right)=1+x=\frac{1-x^{2}}{1-x}
$$

A further example

$S=\{2,3,4, \ldots\}$ is cyclotomic:

$$
\begin{gathered}
\frac{1}{1-x}-\left(x^{2}+x^{3}+\cdots\right)=1+x=\frac{1-x^{2}}{1-x} \\
\prod_{i \geq 1} \frac{1-x^{2 i}}{1-x^{i}}=\prod_{i \geq 1}\left(1-x^{2 i-1}\right)^{-1}
\end{gathered}
$$

A further example

$S=\{2,3,4, \ldots\}$ is cyclotomic:

$$
\begin{gathered}
\frac{1}{1-x}-\left(x^{2}+x^{3}+\cdots\right)=1+x=\frac{1-x^{2}}{1-x} \\
\prod_{i \geq 1} \frac{1-x^{2 i}}{1-x^{i}}=\prod_{i \geq 1}\left(1-x^{2 i-1}\right)^{-1}
\end{gathered}
$$

Theorem (Euler). The number of partitions of n into distinct parts equals the number of partitions of n into odd parts.

Properties of finite cyclotomic sets

Classification: wide open.

Properties of finite cyclotomic sets

Classification: wide open.

1. If S is a finite cyclotomic set, then $\max (S)$ is odd.

Proof. We have $\operatorname{deg} \Phi_{n}(x)$ is even for $n>2$. Since $N_{S}(x)=1-(1-x) \sum_{j \in S} x^{j}$ we have $\operatorname{deg} N_{S}(x)=1+\max (S)$. Thus it suffices to show that $N_{S}(x)$ isn't divisible by $\Phi_{1}(x)=x-1$ or $\Phi_{2}(x)=x+1$. But $N_{S}(\pm 1)$ is odd. \square

Properties of finite cyclotomic sets

Classification: wide open.

1. If S is a finite cyclotomic set, then $\max (S)$ is odd.

Proof. We have $\operatorname{deg} \Phi_{n}(x)$ is even for $n>2$. Since $N_{S}(x)=1-(1-x) \sum_{j \in S} x^{j}$ we have $\operatorname{deg} N_{S}(x)=1+\max (S)$. Thus it suffices to show that $N_{S}(x)$ isn't divisible by $\Phi_{1}(x)=x-1$ or $\Phi_{2}(x)=x+1$. But $N_{S}(\pm 1)$ is odd.
2. If $N_{S}(x)$ is divisible by $\Phi_{n}(x)$ then $n \neq 1$ (by above) and $n \neq p^{r}, p$ prime.
Proof. Suppose

$$
1-(1-x) \sum_{j \in S} x^{j}=\Phi_{p^{r}}(x) A(x), \quad A(x) \in \mathbb{Z}[x]
$$

Set $x=1$ to get $1=p A(1)$, a contradiction.

Further properties

3. For $0 \leq j \leq d=\max (S)$, exactly one of j and $d-j$ belongs to S. Hence $\# S=(d+1) / 2$ (yielding another proof that d is odd).

Proof. Symmetry or antisymmetry of $\Phi_{n}(x)$ implies
$P_{S}(x)+x^{d} P_{S}(1 / x)=1+x+\cdots+x^{d}$, where $P_{S}(x)=\sum_{i \in S} x^{i}$.

Further properties

3. For $0 \leq j \leq d=\max (S)$, exactly one of j and $d-j$ belongs to S. Hence $\# S=(d+1) / 2$ (yielding another proof that d is odd).

Proof. Symmetry or antisymmetry of $\Phi_{n}(x)$ implies $P_{S}(x)+x^{d} P_{S}(1 / x)=1+x+\cdots+x^{d}$, where $P_{S}(x)=\sum_{i \in S} x^{i}$.
4. Let d be odd. There are $2^{(d-1) / 2}$ sets $S \subset \mathbb{P}$ with $\max (S)=d$ such that $N_{S}(x)$ is symmetric. Let $f(d)$ be the number of these that are cyclotomic. Then

d	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29
$f(d)$	1	2	3	5	5	9	10	12	18	22	22	37	39	41	54

Small cyclotomic sets

Write e.g. $125=\{1,2,5\}$.
The cyclotomic sets S with $\max (S) \leq 9$:
1
13, 23
125, 135, 345
1237, 1247, 1357, 2367, 4567
12359, 12569, 13579, 14679, 56789

Small cyclotomic sets

Write e.g. $125=\{1,2,5\}$.
The cyclotomic sets S with $\max (S) \leq 9$:
1
13, 23
125, 135, 345
1237, 1247, 1357, 2367, 4567
12359, 12569, 13579, 14679, 56789
Some infinite families, e.g., $1,23,345,4567,56789, \ldots$

An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form

$$
N_{S}(x)=1-(1-x) \sum_{j \in S} x^{j}
$$

where S is a finite subset of \mathbb{P}, seem to have lots of zeros α on the unit circle $(|\alpha|=1)$.

An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form

$$
N_{S}(x)=1-(1-x) \sum_{j \in S} x^{j}
$$

where S is a finite subset of \mathbb{P}, seem to have lots of zeros α on the unit circle $(|\alpha|=1)$.

There are 2^{m} such polynomials when $\max (S)=2 m+1$. For instance, when $n=33$, the average number of zeros on the unit circle of the $2^{16}=65536$ polynomials is

$$
\frac{751153}{1081344}=0.69464 \cdots
$$

An aside (MathOverflow 461829)

The symmetric (palindromic) polynomials of the form

$$
N_{S}(x)=1-(1-x) \sum_{j \in S} x^{j}
$$

where S is a finite subset of \mathbb{P}, seem to have lots of zeros α on the unit circle $(|\alpha|=1)$.

There are 2^{m} such polynomials when $\max (S)=2 m+1$. For instance, when $n=33$, the average number of zeros on the unit circle of the $2^{16}=65536$ polynomials is

$$
\frac{751153}{1081344}=0.69464 \cdots
$$

No reason known.

Cleanness

Note. Any $f(x) \in \mathbb{Z}[[x]]$ with $f(0)=1$ can be uniquely written (formally) as

$$
f(x)=\prod_{n \geq 1}\left(1-x^{n}\right)^{-a_{n}}, \quad a_{n} \in \mathbb{Z}
$$

Cleanness

Note. Any $f(x) \in \mathbb{Z}[[x]]$ with $f(0)=1$ can be uniquely written (formally) as

$$
f(x)=\prod_{n \geq 1}\left(1-x^{n}\right)^{-a_{n}}, \quad a_{n} \in \mathbb{Z}
$$

Let S be a subset of \mathbb{P} and

$$
F(x)=\frac{1}{1-x}-\sum_{j \in S} x^{j}
$$

S is clean if

$$
F(x) F\left(x^{2}\right) F\left(x^{3}\right) \cdots=\prod_{n \geq 1}\left(1-x^{n}\right)^{-a_{n}}
$$

where each $a_{n}=0,1$. (Get a "clean" partition identity-no weighted or colored parts.)

An example

Not every cyclotomic set S is clean, e.g., $S=\{1,5,7,8,9,11\}$, for which

$$
\begin{gathered}
F(x) F\left(x^{2}\right) F\left(x^{3}\right) \cdots= \\
\frac{\left(1-x^{5}\right)\left(1-x^{25}\right)\left(1-x^{35}\right)\left(1-x^{55}\right) \cdots}{\left(1-x^{2}\right)\left(1-x^{3}\right)\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{8}\right)\left(1-x^{9}\right)\left(1-x^{10}\right)\left(1-x^{12}\right) \cdots} .
\end{gathered}
$$

An example

Not every cyclotomic set S is clean, e.g., $S=\{1,5,7,8,9,11\}$, for which

$$
\begin{gathered}
F(x) F\left(x^{2}\right) F\left(x^{3}\right) \cdots= \\
\frac{\left(1-x^{5}\right)\left(1-x^{25}\right)\left(1-x^{35}\right)\left(1-x^{55}\right) \cdots}{\left(1-x^{2}\right)\left(1-x^{3}\right)\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{8}\right)\left(1-x^{9}\right)\left(1-x^{10}\right)\left(1-x^{12}\right) \cdots} .
\end{gathered}
$$

No nice theory of clean sets.

Numerical semigroups

Definition. A numerical semigroup is a submonoid M of $\mathbb{N}=\{0,1,2, \ldots\}$ (under addition) such that $\mathbb{N}-M$ is finite.

Numerical semigroups

Definition. A numerical semigroup is a submonoid M of $\mathbb{N}=\{0,1,2, \ldots\}$ (under addition) such that $\mathbb{N}-M$ is finite.

Note. (a) Every submonoid of \mathbb{N} is either $\{0\}$ or of the form $n M$, where M is a numerical semigroup and $n \geq 1$.
(b) Every submonoid of \mathbb{N} is finitely-generated.

Numerical semigroups

Definition. A numerical semigroup is a submonoid M of $\mathbb{N}=\{0,1,2, \ldots\}$ (under addition) such that $\mathbb{N}-M$ is finite.

Note. (a) Every submonoid of \mathbb{N} is either $\{0\}$ or of the form $n M$, where M is a numerical semigroup and $n \geq 1$.
(b) Every submonoid of \mathbb{N} is finitely-generated.

Define $\boldsymbol{A}_{M}(x)=\sum_{i \in M} x^{i}$.

Numerical semigroups

Definition. A numerical semigroup is a submonoid M of $\mathbb{N}=\{0,1,2, \ldots\}$ (under addition) such that $\mathbb{N}-M$ is finite.
Note. (a) Every submonoid of \mathbb{N} is either $\{0\}$ or of the form $n M$, where M is a numerical semigroup and $n \geq 1$.
(b) Every submonoid of \mathbb{N} is finitely-generated.

Define $\boldsymbol{A}_{M}(x)=\sum_{i \in M} x^{i}$.
Note $A_{M}(x)=\frac{1}{1-x}-\sum_{i \in \mathbb{N}-M} x^{i}$,

Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is cyclotomic if $(1-x) A_{M}(x)$ is a product of cyclotomic polynomials. Equivalently, $\mathbb{N}-M$ is a cyclotomic set.

Cyclotomic numerical semigroups

Definition (E.-A. Ciolan, et al.) A numerical semigroup M is cyclotomic if $(1-x) A_{M}(x)$ is a product of cyclotomic polynomials. Equivalently, $\mathbb{N}-M$ is a cyclotomic set.

Example. $M=\langle a, b\rangle$, where $a, b \geq 2, \operatorname{gcd}(a, b)=1$. Then

$$
A_{M}(x)=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

so M is a cyclotomic semigroup (and clean).
Example. (a) $M=\langle 4,6,7\rangle=\mathbb{N}-\{1,2,3,5,9\}$ is cyclotomic.
(b) $M=\langle 5,6,7\rangle=\mathbb{N}-\{1,2,3,4,8,9\}$ is not cyclotomic.

Consequence of $\langle a, b\rangle$ being cyclotomic

Theorem. Let $a, b \geq 2, \operatorname{gcd}(a, b)=1$. Let $M=\langle a, b\rangle$. Then for all $n \geq 0$, the following numbers are equal:

- the number of partitions of n all of whose part multiplicities belong to M
- the number of partitions of n into parts divisible by a or b (or both)

Semigroup algebra

The semigroup algebra $K[M]$ (over K) of a numerical semigroup M is

$$
K[M]=K\left[z^{i}: i \in M\right] .
$$

Definition. Let $M=\left\langle a_{1}, \ldots, a_{r}\right\rangle . M$ is a complete intersection if all the relations among the generators $z^{a_{1}}, \ldots, z^{a_{r}}$ are consequences of $r-1$ of them (the minimum possible).

Semigroup algebra

The semigroup algebra $K[M]$ (over K) of a numerical semigroup M is

$$
K[M]=K\left[z^{i}: i \in M\right] .
$$

Definition. Let $M=\left\langle a_{1}, \ldots, a_{r}\right\rangle . M$ is a complete intersection if all the relations among the generators $z^{a_{1}}, \ldots, z^{a_{r}}$ are consequences of $r-1$ of them (the minimum possible).

By elementary commutative algebra, if $K[M]$ is a complete intersection, then M is cyclotomic.

Semigroup algebra

The semigroup algebra $K[M]$ (over K) of a numerical semigroup M is

$$
K[M]=K\left[z^{i}: i \in M\right] .
$$

Definition. Let $M=\left\langle a_{1}, \ldots, a_{r}\right\rangle . M$ is a complete intersection if all the relations among the generators $z^{a_{1}}, \ldots, z^{a_{r}}$ are consequences of $r-1$ of them (the minimum possible).

By elementary commutative algebra, if $K[M]$ is a complete intersection, then M is cyclotomic.

Converse is open (main open problem on cyclotomic numerical semigrops).

An example

Example. $M=\langle 4,6,7\rangle=\mathbb{N}-\{1,2,3,5,9\}$. Generators of $K[M]$ are $a=z^{4}, b=z^{6}, c=z^{7}$. Some relations:

$$
a^{3}=b^{2}, a^{2} b=c^{2}, a^{7}=c^{4}, b^{7}=c^{6}, \ldots
$$

An example

Example. $M=\langle 4,6,7\rangle=\mathbb{N}-\{1,2,3,5,9\}$. Generators of $K[M]$ are $a=z^{4}, b=z^{6}, c=z^{7}$. Some relations:

$$
a^{3}=b^{2}, a^{2} b=c^{2}, a^{7}=c^{4}, b^{7}=c^{6}, \ldots
$$

All are consequences of the first two, so $K[M]$ is a complete intersection. E.g.,

$$
c^{4}=\left(a^{2} b\right)^{2}=a^{4} b^{2}=a^{4} a^{3}=a^{7} .
$$

An example

Example. $M=\langle 4,6,7\rangle=\mathbb{N}-\{1,2,3,5,9\}$. Generators of $K[M]$ are $a=z^{4}, b=z^{6}, c=z^{7}$. Some relations:

$$
a^{3}=b^{2}, a^{2} b=c^{2}, a^{7}=c^{4}, b^{7}=c^{6}, \ldots
$$

All are consequences of the first two, so $K[M]$ is a complete intersection. E.g.,

$$
c^{4}=\left(a^{2} b\right)^{2}=a^{4} b^{2}=a^{4} a^{3}=a^{7} .
$$

The relation $a^{3}=b^{2}$ has degree $3 \cdot 4=6 \cdot 2=12$. The relation $a^{2} b=c^{2}$ has degree $2 \cdot 4+6=2 \cdot 7=14$

$$
\Rightarrow A_{M}(x)=\frac{\left(1-x^{12}\right)\left(1-x^{14}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)\left(1-x^{7}\right)} .
$$

A nonexample

$$
\begin{aligned}
& M=\langle 4,13,23\rangle . \text { Generators of } K[M] \text { are } a=z^{4}, b=z^{13}, \text { and } \\
& c=z^{23} .
\end{aligned}
$$

A nonexample

$M=\langle 4,13,23\rangle$. Generators of $K[M]$ are $a=z^{4}, b=z^{13}$, and $c=z^{23}$.

Minimal relations: $a^{9}=b c, b^{3}=a^{4} c, c^{2}=a^{5} b^{2}$, so not a complete intersection.

A nonexample

$M=\langle 4,13,23\rangle$. Generators of $K[M]$ are $a=z^{4}, b=z^{13}$, and $c=z^{23}$.

Minimal relations: $a^{9}=b c, b^{3}=a^{4} c, c^{2}=a^{5} b^{2}$, so not a complete intersection.

Note. Multiply $c^{2}=a^{5} b^{2}$ by $b: c^{2} b=a^{5} b^{3}$. Substitute $a^{4} c$ for $b^{3}: c^{2} b=a^{9} c$. Divide by $c: b c=a^{9}$ (first relation). So why not just two relations?

A nonexample

$M=\langle 4,13,23\rangle$. Generators of $K[M]$ are $a=z^{4}, b=z^{13}$, and $c=z^{23}$.

Minimal relations: $a^{9}=b c, b^{3}=a^{4} c, c^{2}=a^{5} b^{2}$, so not a complete intersection.

Note. Multiply $c^{2}=a^{5} b^{2}$ by $b: c^{2} b=a^{5} b^{3}$. Substitute $a^{4} c$ for $b^{3}: c^{2} b=a^{9} c$. Divide by $c: b c=a^{9}$ (first relation). So why not just two relations?

Answer: not allowed to divide (not a ring operation).

A theorem of Herzog

Theorem (H. Herzog, 1969) Let $M=\langle a, b, c\rangle$. The following conditions are equivalent.

- $K[M]$ is a complete intersection.

A theorem of Herzog

Theorem (H. Herzog, 1969) Let $M=\langle a, b, c\rangle$. The following conditions are equivalent.

- $K[M]$ is a complete intersection.
- M is a cyclotomic semigroup.

A theorem of Herzog

Theorem (H. Herzog, 1969) Let $M=\langle a, b, c\rangle$. The following conditions are equivalent.

- $K[M]$ is a complete intersection.
- M is a cyclotomic semigroup.
- If $M=\mathbb{N}-S$, then $1-(1-x) \sum_{j \in S} x^{j}$ is symmetric (palindromic).

A theorem of Herzog

Theorem (H. Herzog, 1969) Let $M=\langle a, b, c\rangle$. The following conditions are equivalent.

- $K[M]$ is a complete intersection.
- M is a cyclotomic semigroup.
- If $M=\mathbb{N}-S$, then $1-(1-x) \sum_{j \in S} x^{j}$ is symmetric (palindromic).

A theorem of Herzog

Theorem (H. Herzog, 1969) Let $M=\langle a, b, c\rangle$. The following conditions are equivalent.

- $K[M]$ is a complete intersection.
- M is a cyclotomic semigroup.
- If $M=\mathbb{N}-S$, then $1-(1-x) \sum_{j \in S} x^{j}$ is symmetric (palindromic).
Thus the main open problem on cyclotomic numerical semigroups is true for semigroups with at most three generators.

Polynomials over finite fields

Fix a prime power \boldsymbol{q}.
$\boldsymbol{\beta}(\boldsymbol{n})$: number of monic irreducible polynomials of degree n over \mathbb{F}_{q}.

Polynomials over finite fields

Fix a prime power \boldsymbol{q}.
$\boldsymbol{\beta}(\boldsymbol{n})$: number of monic irreducible polynomials of degree n over \mathbb{F}_{q}.

$$
\beta(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d} \quad \text { (irrelevant) }
$$

Polynomials over finite fields

Fix a prime power \boldsymbol{q}.
$\beta(\boldsymbol{n})$: number of monic irreducible polynomials of degree n over \mathbb{F}_{q}.

$$
\beta(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d} \quad \text { (irrelevant) }
$$

There are q^{n} monic polynomials of degree n over \mathbb{F}_{q}. Every such polynomial is uniquely (up to order of factors) a product of monic irreducible polynomials. Hence

$$
\sum_{n \geq 0} q^{n} x^{n}=\frac{1}{1-q x}=\prod_{m \geq 1}\left(1-x^{m}\right)^{-\beta(m)}
$$

Powerful polynomials

Example. Let $f(n)$ be the number of monic polynomials of degree n over \mathbb{F}_{q} such that every irreducible factor has multiplicity at least two (powerful polynomials). Thus

Powerful polynomials

Example. Let $f(n)$ be the number of monic polynomials of degree n over \mathbb{F}_{q} such that every irreducible factor has multiplicity at least two (powerful polynomials). Thus

$$
\begin{aligned}
\sum_{n \geq 0} f(n) x^{n} & =\prod_{m \geq 1}\left(1+x^{2 m}+x^{3 m}+\cdots\right)^{\beta(m)} \\
& =\prod_{m \geq 1}\left(\frac{1-x^{6 m}}{\left(1-x^{2 m}\right)\left(1-x^{3 m}\right)}\right)^{\beta(m)} \\
& =\frac{1-q x^{6}}{\left(1-q x^{2}\right)\left(1-q x^{3}\right)} \\
& =\frac{1+x+x^{2}+x^{3}}{1-q x^{2}}-\frac{x\left(1+x+x^{2}\right)}{1-q x^{3}} \\
& \Rightarrow f(n)=q^{\lfloor n / 2\rfloor}+q^{\lfloor n / 2\rfloor-1}-q^{\lfloor(n-1) / 3\rfloor}
\end{aligned}
$$

Generalization.

Theorem. Let S be a cyclotomic subset of \mathbb{P}, so

$$
\frac{1}{1-x}-\sum_{i \in S} x^{i}=\frac{\prod\left(1-x^{i}\right)^{a_{i}}}{\prod\left(1-x^{j}\right)^{b_{j}}},
$$

where the products are finite. Let $f(n)$ be the number of monic polynomials of degree n over \mathbb{F}_{q} such that no irreducible factor has multiplicity $m \in S$. Then

$$
\sum f(n) x^{n}=\frac{\prod_{i}\left(1-q x^{i}\right)^{a_{i}}}{\prod_{j}\left(1-q x^{j}\right)^{b_{j}}}
$$

Generalization.

Theorem. Let S be a cyclotomic subset of \mathbb{P}, so

$$
\frac{1}{1-x}-\sum_{i \in S} x^{i}=\frac{\prod\left(1-x^{i}\right)^{a_{i}}}{\prod\left(1-x^{j}\right)^{b_{j}}},
$$

where the products are finite. Let $f(n)$ be the number of monic polynomials of degree n over \mathbb{F}_{q} such that no irreducible factor has multiplicity $m \in S$. Then

$$
\sum f(n) x^{n}=\frac{\prod_{i}\left(1-q x^{i}\right)^{a_{i}}}{\prod_{j}\left(1-q x^{j}\right)^{b_{j}}}
$$

Can convert to a partial fraction in q and find an explicit (though in general very lengthy) formula for $f(n)$.

An example

$$
\begin{aligned}
S & =\{1,2,3,5,7,11\} \\
\sum_{n \geq 0} f(n) x^{n} & =\frac{\left(1-q x^{12}\right)\left(1-q x^{18}\right)}{\left(1-q x^{4}\right)\left(1-q x^{6}\right)\left(1-q x^{9}\right)}
\end{aligned}
$$

An example

$$
\begin{aligned}
S= & \{1,2,3,5,7,11\} \\
\sum_{n \geq 0} f(n) x^{n}= & \frac{\left(1-q x^{12}\right)\left(1-q x^{18}\right)}{\left(1-q x^{4}\right)\left(1-q x^{6}\right)\left(1-q x^{9}\right)} \\
= & \frac{\Phi_{2} \Phi_{4} \Phi_{8} \Phi_{7} \Phi_{14}}{\Phi_{5}\left(1-q x^{4}\right)}+\frac{\Phi_{3} \Phi_{9} x^{8}}{\Phi_{5}\left(1-q x^{9}\right)} \\
& -\frac{\Phi_{2} \Phi_{3} \Phi_{4} \Phi_{6}^{2} \Phi_{12} x^{2}}{1-q x^{6}}
\end{aligned}
$$

where $\Phi_{j}=\Phi_{j}(x)$.

Yet another example

Let $S=\{2,3,4, \ldots\}$. Recall

$$
\frac{1}{1-x}-\sum_{i \in S} x^{i}=1+x=\frac{1-x^{2}}{1-x}
$$

$\boldsymbol{f}(\boldsymbol{n})$: number of squarefree monic polynomials of degree n over \mathbb{F}_{q}. Then

$$
\begin{aligned}
\sum_{n \geq 0} f(n) x^{n} & =\frac{1-q x^{2}}{1-q x} \\
& =\sum_{n \geq 0}(q-1) q^{n-1} x^{n} \\
& \Rightarrow f(n)=(q-1) q^{n-1} \text { (well-known) }
\end{aligned}
$$

Yet another example

Let $S=\{2,3,4, \ldots\}$. Recall

$$
\frac{1}{1-x}-\sum_{i \in S} x^{i}=1+x=\frac{1-x^{2}}{1-x}
$$

$\boldsymbol{f}(\boldsymbol{n})$: number of squarefree monic polynomials of degree n over \mathbb{F}_{q}. Then

$$
\begin{aligned}
\sum_{n \geq 0} f(n) x^{n} & =\frac{1-q x^{2}}{1-q x} \\
& =\sum_{n \geq 0}(q-1) q^{n-1} x^{n} \\
& \Rightarrow f(n)=(q-1) q^{n-1} \text { (well-known) }
\end{aligned}
$$

a kind of analogue (though not a q-analogue in the usual sense) of Euler's result on partitions of n into distinct parts and into odd parts.

Factorization of integers

- Argument did not involve $\beta(d)$.

Factorization of integers

- Argument did not involve $\beta(d)$.
- Hence works for other situations with unique factorization.

Factorization of integers

- Argument did not involve $\beta(d)$.
- Hence works for other situations with unique factorization.
- What about \mathbb{Z} ?

Factorization of integers

- Argument did not involve $\beta(d)$.
- Hence works for other situations with unique factorization.
- What about \mathbb{Z} ?

For functions $f(n)$ involving factorization of integers into primes, often convenient to use Dirichlet series $\sum_{n \geq 1} f(n) n^{-s}$. In particular,

$$
\begin{aligned}
\zeta(s) & =\sum_{n \geq 1} n^{-s} \\
& =\prod_{p}\left(1+p^{-s}+p^{-2 s}+p^{-3 s}+\cdots\right) \\
& =\prod_{p} \frac{1}{1-p^{-s}} .
\end{aligned}
$$

Factorization of integers

- Argument did not involve $\beta(d)$.
- Hence works for other situations with unique factorization.
- What about \mathbb{Z} ?

For functions $f(n)$ involving factorization of integers into primes, often convenient to use Dirichlet series $\sum_{n \geq 1} f(n) n^{-s}$. In particular,

$$
\begin{aligned}
\zeta(s) & =\sum_{n \geq 1} n^{-s} \\
& =\prod_{p}\left(1+p^{-s}+p^{-2 s}+p^{-3 s}+\cdots\right) \\
& =\prod_{p} \frac{1}{1-p^{-s}} .
\end{aligned}
$$

Note. Formally, a Dirichlet series is simply a power series in the infinitely many variables $x_{i}=p_{i}^{-s}$, where \boldsymbol{p}_{i} is the ith prime.

Powerful numbers

A positive integer is powerful if $p\left|n \Rightarrow p^{2}\right| n$ when p is prime.

$$
\begin{aligned}
F(s) & :=\sum_{\substack{n \geq 1 \\
n \text { powerful }}} n^{-s} \\
& =\prod_{p}\left(1+p^{-2 s}+p^{-3 s}+p^{-4 s}+\cdots\right) \\
& =\prod_{p}\left(\frac{1}{1-p^{-s}}-p^{-s}\right) \\
& =\prod_{p} \frac{1-p^{-6 s}}{\left(1-p^{-2 s}\right)\left(1-p^{-3 s}\right)} \\
& =\frac{\zeta(2 s) \zeta(3 s)}{\zeta(6 s)}
\end{aligned}
$$

Insignificant corollary

$$
\begin{aligned}
\zeta(4)=\frac{\pi^{4}}{90}, \quad \zeta(6)=\frac{\pi^{6}}{945} & , \quad \zeta(12)=\frac{691 \pi^{12}}{638512875} \\
\Rightarrow \sum_{\substack{n \geq 1 \\
n \text { powerful }}} \frac{1}{n^{2}} & =\frac{\zeta(4) \zeta(6)}{\zeta(12)} \\
& =\frac{15015}{1382 \pi^{2}} \\
& \approx 1.100823 \ldots
\end{aligned}
$$

A general result

Theorem. Let S be a finite cyclotomic subset of \mathbb{P}, so

$$
\frac{1}{1-x}-\sum_{i \in S} x^{i}=\frac{\prod(1-x)^{a_{i}}}{\prod(1-x)^{b_{j}}} \quad \text { (finite products). }
$$

Then

$$
\sum_{n} n^{-s}=\frac{\prod \zeta\left(b_{i} s\right)}{\prod \zeta\left(a_{j} s\right)}
$$

where n ranges over all positive integers such that if $m \in S$, then no prime p divides n with multiplicity m.

The final slide

The final slide

