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An OEIS entry

OEIS: Online Encylopedia of Integer Sequences
(Neil Sloane). See A
database of over 270,000 sequences of integers.

:1,1,2,5,14,42,132.429, . . .
00:1, 01:2, 02:3, 03:5, 04:14
C,, 1s a Catalan number.

COMMENTS. ... This is probably the longest

entry in OEIS, and rightly so. I



Catalan monograph

R. Stanley, Catalan Numbers, Cambridge
University Press, 2015.



Catalan monograph

R. Stanley, Catalan Numbers, Cambridge
University Press, 2015.

Includes 214 combinatorial interpretations of C),
and 68 additional problems.
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu (%K), and Jing An

(c. 1692—c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu (%K), and Jing An

(c. 1692—c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.

Typical result (1730's):

O
: : On 1
sin(2a) = 2sina — E sin”" ! o
An—1

n=1

No combinatorics, no further work in China. I
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More history, via Igor Pak

» Euler (1751): conjectured formula for number
C,, of triangulations of a convex (n + 2)-gon
(definition of Catalan numbers). In other
words, draw n — 1 noncrossing diagonals of a
convex polygon with n 4+ 2 sides.
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Completion of proof

» Goldbach and Segner (1758—1759): helped
Euler complete the proof, in pieces.

» Lame (1838): first self-contained, complete
proof.

B



Catalan

» Eugene Charles Catalan (1838): wrote C,, in

the form n!((iﬂ)! and showed it counted

(nonassociative) bracketings (or
parenthesizations) of a string of n -+ 1 letters.
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Catalan

» Eugene Charles Catalan (1838): wrote C,, in

the form n!%ﬂ)! and showed it counted

(nonassociative) bracketings (or
parenthesizations) of a string of n -+ 1 letters.

Born in 1814 in Bruges (now in Belgium, then
under Dutch rule). Studied in France and worked
in France and Liege, Belgium. Died in Liege in

1894.



Why ‘“‘Catalan numbers”’?

» John Riordan (1948): intfroduced the term
“Catalan number” in Math Reviews.
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Why “‘Catalan numbers”’?

» John Riordan (1948): intfroduced the term
“Catalan number” in Math Reviews.

» Riordan (1964): used the term again in Math.
Reviews.

» Riordan (1968): used the term in his book
Combinatorial Identities. Finally caught on.

o Martin Gardner (1976): used the term in his
Mathematical Games column in Scientific

American. Real popularity began. I



The primary recurrence

n—H ZCk n—=~k C10_1



The primary recurrence

n—H ZCk n—=~k C10_1
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Solving the recurrence

n—H ZCk n—=~k C10—1

Let y = ano C,x".

Multiply recurrence by z and sum on n > 0.

B



Solving the recurrence

n+1 Eijche n—~k; Ch‘—'l

Let y = ano C,x".

Multiply recurrence by z and sum on n > 0.
D Cuna" =) (Z Ckcnk) v

n>0 n>0



A quadratic equation

> Copa =) (zn: CkOnk) "

n>0 n>0 k=0



A quadratic equation

D Cuna" =) (Z Okcnk) z"
k=0

n>0 n>0

NOW X ZRZO Cn_|_1fL'n — ZnZl Cnﬂfn =Y — 1.

Moreover, >, _, Ci.C, i is the coefficient of =" in
(ano Cna:”)2 = %, since in general, > o Qibn—

IS the coefficient of 2" In the product

(0 @n”) (220 but™)



A quadratic equation

D Cuna" =) (Z Okcnk) z"
k=0

n>0 n>0

NOW X ZRZO Cn_|_1fL'n — ZnZl Cnﬂfn =Y — 1.

Moreover, >, _, Ci.C, i is the coefficient of =" in

(ano Cna:”)2 = y?, since in general, > ,_, arb,_x
IS the coefficient of 2" In the product

(0 @n”) (220 but™)

— 1
N —y=ay!—y+1=0 I
T




Solving the quadratic equation

1::\/1—4517
21

vy —y+1=0=y=

Which sign is correct?



Solving the quadratic equation

1::\/1—4513
21

7y —y+1=0=y=

Which sign is correct?

Well, in general (Taylor series)

<1+u>a_z< )u =Y aa-1) -+ (a-nt)

n>0 n>0



Solving the quadratic equation

1::\/1—433
21

7y —y+1=0=y=

Which sign is correct?

Well, in general (Taylor series)

(1+u)&_z< )u =Y a(a=1)--(a— n+1)

n>0 n>0

Let u = —4x, o = =, t0 get

V1—4r=1—22x — 22>+ ... I

DO | —




Which sign?

Recall y = ano C x" = ESvAE Ty

2x



Which sign?

Recall y = >, ., Cpa" = =2
The plus sign gives

1 1 —2x — 222+ --- 1
+ ( T — 2x° + >:——1—x+~w
27 X

which makes no sense. The minus sign gives

1 —(1—2x—22%+---
( roem T ):1+x+~-,
2T

which Is correct. I




A formula for C,,

We get




A formula for C,

We get

: — (1 —+/1 — 4x)

B o — 4
! 20
! 1/2
n>0

Where (1/2) - %<—%)(—%)'( 2n2—3).
Simplifies toy = 3", ., -+ (*)2", s0

o "il<2’:> ol ((271)!1)! —I



Other combinatorial interpretations

P. := {triangulations of convex (n + 2)-gon}
= #P, = CC, (where #S = number of elements of .S)

We want other combinatorial interpretations of
C,, 1.e., other sets §,, for which C,, = #S,,.

B



Other combinatorial interpretations

P. := {triangulations of convex (n + 2)-gon}
= #P, = CC, (where #S = number of elements of .S)

We want other combinatorial interpretations of
C,, 1.e., other sets §,, for which C,, = #S,,.

bijective proof: show that C,, = #S§,, by giving a
bijection
w: T, — S,

(or §,, — 7,), where we already know #7,, = C,,. I



Bijection

a bijection ¢: S — T'Is a function
that is one-to-one and onto, that is, for every
t € T there is a unique s € S for which ¢(s) = t.



Bijection

a bijection ¢: S — T'Is a function
that is one-to-one and onto, that is, for every
t € T there is a unique s € S for which ¢(s) = t.

It S, T are finite and ¢: S — T'Is a bijection, then
S = #T (the “pbest” way to prove #S = #T).

B



Binary trees

4. Binary trees with n vertices (each vertex has
a left subtree and a right subtree, which may be

RS
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Binary trees

4. Binary trees with n vertices (each vertex has
a left subtree and a right subtree, which may be

RS
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Bijection with triangulations
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Bijection with triangulations




Bijection with triangulations




Binary parenthesizations

3. Binary parenthesizations or bracketings of
a string of n + 1 letters

B



Binary parenthesizations

3. Binary parenthesizations or bracketings of
a string of n + 1 letters

(z(zz))r)(2((z2)(22)))

B



Binary parenthesizations

3. Binary parenthesizations or bracketings of
a string of n + 1 letters

((z(zx))x) (z((zx)(2)))

B



Bijection with binary trees

((X0x))X) (X((XX)(X)))

(X(xx))X X((}x)(xx))



Plane trees

Plane tree: subirees of a vertex are linearly
ordered

6. Plane trees with n + 1 vertices

L

B



Plane tree recurrence




Plane tree recurrence




Bijection with binary trees




The ballot problem

Bertrand’s ballot problem: first published by W.
A. Whitworth in 1878 but named after Joseph
Louis Francois Bertrand who rediscovered it in
1887 (one of the first results in probability
theory).

B



The ballot problem

Bertrand’s ballot problem: first published by W.
A. Whitworth in 1878 but named after Joseph
Louis Francois Bertrand who rediscovered it in
1887 (one of the first results in probability
theory).

Special case: there are two candidates A and B
In an election. Each receives n votes. What is
the probability that A will never trail B during the
count of votes?

Example. AABABBBAAB is bad, since after
seven votes, A receives 3 while B receives 4. I



Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by —1
(abbreviated —). Clearly a sequence ajas - - - as),
of n each of 1 and —1 is allowed if and only if

S a; > 0forall 1 <k < 2n. Such a sequence
Is called a ballot sequence.

B



Ballot sequences

77. Ballot sequences, i.e., sequences of n 1's
and n —1's such that every partial sum is

nonnegative (with —1 denoted simply as —
below)

mM1——— 11-1 [1—-—1 I-11—— 1-1-1
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Ballot sequences

77. Ballot sequences, i.e., sequences of n 1's
and n —1's such that every partial sum is
nonnegative (with —1 denoted simply as —
below)

mM1———11-1 [1—-—1 I-11—— 1-1-1

Note. Answer to original problem (probability that
a sequence of n each of 1's and —1's is a ballot
sequence) Is therefore

C, () 1
ey @) e+l —I




Bijection with plane trees

depth first order or preorder

B



Bijection with plane trees

down an edge: +1, up anedge: —1

111 -1 I —11 —-11 -1 I




Combinatorial proof

Let B,, denote the number of ballot sequences
ayas - - - as,. We will give a direct combinatorial
proof (no generating functions) that

B, = ! (2n)

n+1\n



Binomial coefficients

If 0 < k < n, then (Z’) is the number
of k-element subsets of an n-element set.

(Z) Cnn=1)-(n—k+1)

k! Kl(n — k)l

Example. () = 6: six 2-element subsets of
{1,2,3,4} are

12 13 23 14 24 34.

B



Cyclic shifts

cyclic shift of a sequence by, ....b,,: any
sequence

bi,bzqu,...,bm,b(),bl,...,bi_l, 0 é ) é .
There are m + 1 cyclic shifts of b, ..., b,,, but

they need not be distinct.

B



The key lemma

Lemma. Letay,ay,...,as, be a sequence with

n + 1 terms equal to 1 andn terms equal to —1.
All 2n 4+ 1 cyclic shifts are distinct since n + 1 and
n are relatively prime. Exactly one of these cyclic
shifts a;,a; .1, . ..,a;,—1 has the property that a; = 1
anda;.1,ai19,...,a,—1 IS a ballot sequence.

B



Example of key lemma

Let n = 4 and consider the sequence
1 —11 -1 — —1. Five cyclic shifts begin with 1:

1o
1o
1O

Nno

yes!

B



Example of key lemma

Let n = 4 and consider the sequence
1 —11 -1 — —1. Five cyclic shifts begin with 1:

no
no
10(0

no

yes!

Proof of key lemma: straightforward induction

argument not given here. I



Enumeration of ballot sequences

The number of sequences 1 = ag, aq, . . ., ag, With
n + 1 terms equal to 1 and n terms equal to —1 is

(*"). (Choose n of the terms ay, . . ., as, to equal

1.)

B



Enumeration of ballot sequences

The number of sequences 1 = ag, aq, . . ., ag, With
n + 1 terms equal to 1 and n terms equal to —1 is

(*"). (Choose n of the terms ay, . . ., as, to equal

1.)

There are n + 1 cyclic shifts of this sequence that
begin with 1. Exactly 1 of them gives a ballot
sequence (of length 2n) when you remove the

first term.



Enumeration of ballot sequences

The number of sequences 1 = ag, aq, . . ., ag, With
n + 1 terms equal to 1 and n terms equal to —1 is

(*"). (Choose n of the terms ay, . . ., as, to equal

1.)

There are n + 1 cyclic shifts of this sequence that
begin with 1. Exactly 1 of them gives a ballot
sequence (of length 2n) when you remove the
first term.

Therefore the number of ballot sequences of
length 2n is -1 (°") = C,..



Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths
from (0,0) to (2n,0) with steps (1,1) and (1, —1),
never falling below the z-axis

AAAL AN N AN

B



Dyck paths

25. Dyck paths of length 2n, I.e., lattice paths
from (0,0) to (2n,0) with steps (1,1) and (1, —1),
never falling below the z-axis
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Dyck paths

25. Dyck paths of length 2n, I.e., lattice paths
from (0,0) to (2n,0) with steps (1,1) and (1, —1),
never falling below the z-axis

Ao AN A
AN L UAAAL
|



Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths
from (0,0) to (2n,0) with steps (1,1) and (1, —1),
never falling below the z-axis

AAAL AN N AN

Walther von Dyck (1856—1934) 4 _I



Bijection with ballot sequences

AN AA

11-11---1-11-1-1- -

For each upstep, record 1.
For each downstep, record —1.

B



Nonerossing chords

99. n nonintersecting chords joining 2n points on
the circumference of a circle

SAUINLGL,

B



Bijection with ballot sequences




Bijection with ballot sequences

1T—-—1—-—-11 1

B



312-avoiding permutations

116. Permutations ajas---a, of 1,2, ... n for
which there does not exist s < 7 < k£ and
a; < ap < a; (called 312-avoiding) permutations)

123 132 213 231 321
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a; < ap < a; (called 312-avoiding) permutations)

123 132 213 231 321

34251768
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which there does not exist s < 7 < k£ and
a; < ap < a; (called 312-avoiding) permutations)

123 132 213 231 321
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312-avoiding permutations

116. Permutations ajas---a, of 1,2, ... n for
which there does not exist s < 7 < k£ and
a; < ap < a; (called 312-avoiding) permutations)

123 132 213 231 321

3425 768

part of the subject of pattern avoidance

B



Bijection with binary trees

T(3425) T(768)

T(34251768)



The tree for 34251768



The tree for 34251768

Note. If we read the vertices in preorder, we
obtain 12345678.

Exercise. This gives a bijection between
312-avoiding permutations and binary trees.



321-avoiding permutations

Another example of pattern avoidance:

115. Permutations ajas---a, 0of 1,2,...,n with

longest decreasing subsequence of length at
most two (i.e., there does not exist i < 5 < k,

a; > a; > ay), called 321-avoiding permutations

123 213 132 312 231

B



321-avoiding permutations

Another example of pattern avoidance:

115. Permutations ajas---a, of 1,2, ..., n with
longest decreasing subsequence of length at
most two (i.e., there does not exist i < 5 < k,

a; > a; > ay), called 321-avoiding permutations

123 213 132 312 231

more subtle: no obvious decomposition into two

pieces



Bijection with Dyck paths

w = 412573968



Bijection with Dyck paths

w = 412573968
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Bijection with Dyck paths

w = 412573968

0O OO © W N O N = b




An unexpected interpretation

92. n-tuples (aq, as,...,a,) of integers a; > 2
such that in the sequence 1ajas- - - a,1, each qa;
divides the sum of its two neighbors

14321 13521 13231 12531 12341

B



Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
—1, except last two



Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
—1, except last two
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Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
—1, except last two

1125341



Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
—1, except last two

112 5(3 41



Bijection with ballot sequences
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—1, except last two
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Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
—1, except last two
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Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
—1, except last two

112 513 4 1
12 513 4 1
v 1—11——1




Analysis

A65.(b)



Analysis

A65.(b)

l+1+-+-=27

2 95



Analysis

A65.(b)

1+1+1+1—27
2 5






Why?

A65.(a)
(x+8) 24z sin”! (34/)
;C 4—:13)2 (4 —x)®2

Sketch of solution. Calculus exercise: let

1 2
Yy =2 <sin1 —\/5> .

n

T
Then y = .
2 |




Completion of proof

Recall y = ) Note that:

n>1 nQ(n)



Completion of proof

Recally ="+, % Note that:

n

d l,n—l

n>1 n




Completion of proof

Recally ="+, % Note that:

n

n

d x

n>1 n




Completion of proof

Recally ="+, % Note that:

n

d d 1
dzwdzy a Z (2”)

n>1 \n




Completion of proof

Recally ="+, % Note that:




Completion of proof

Recally = 5" _, —%—. Note that:

n>1 .2 (2?;1) -

d ,d dx Z(n+1)x”

dedeta T ()



Completion of proof

Recally = > -, -7 ( 7y Note that:

d ,d dv (n+1)a"
du d:)jxa:y_z

:—1+§:C

n>0

etc.



The last slide



The last slide



The last slide
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