Alternating Permutations

Richard P. Stanley

M.I.T.
A sequence \(a_1, a_2, \ldots, a_k \) of distinct integers is **alternating** if

\[a_1 > a_2 < a_3 > a_4 < \cdots , \]

and **reverse alternating** if

\[a_1 < a_2 > a_3 < a_4 > \cdots . \]
Euler numbers

\(\mathfrak{S}_n \): symmetric group of all permutations of 1, 2, \ldots, n

E.g., \(E_4 = 5 : 2143; 3142; 3241; 4132; 4231 \)
Euler numbers

\(\mathcal{S}_n \): symmetric group of all permutations of 1, 2, \ldots, \(n \)

Euler number:

\[
E_n = \# \{ w \in \mathcal{S}_n : w \text{ is alternating} \}
\]

\[
= \# \{ w \in \mathcal{S}_n : w \text{ is reverse alternating} \}
\]
Euler numbers

\(\mathfrak{S}_n \) : symmetric group of all permutations of 1, 2, \ldots, n

Euler number:

\[
E_n = \# \{ w \in \mathfrak{S}_n : w \text{ is alternating} \} = \# \{ w \in \mathfrak{S}_n : w \text{ is reverse alternating} \}
\]

E.g., \(E_4 = 5 : 2143, 3142, 3241, 4132, 4231 \)
Theorem (Désiré André, 1879)

\[y := \sum_{n \geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x \]
André’s theorem

Theorem (Désiré André, 1879)

\[y := \sum_{n \geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x \]

\(E_{2n} \) is a secant number.

\(E_{2n+1} \) is a tangent number.
André’s theorem

Theorem (Désiré André, 1879)

\[y := \sum_{n \geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x \]

\(E_{2n} \) is a secant number.
\(E_{2n+1} \) is a tangent number.

⇒ combinatorial trigonometry
Example of combinatorial trig.

$$\sec^2 x = 1 + \tan^2 x$$
Example of combinatorial trig.

\[\sec^2 x = 1 + \tan^2 x \]

Equate coefficients of \(x^{2n} / (2n)! \):

\[
\sum_{k=0}^{n} \binom{2n}{2k} E_{2k} E_{2(n-k)}
\]

\[
= \sum_{k=0}^{n-1} \binom{2n}{2k + 1} E_{2k+1} E_{2(n-k) - 1}.
\]
Example of combinatorial trig.

\[\sec^2 x = 1 + \tan^2 x \]

Equate coefficients of \(x^{2n} / (2n)! : \)

\[
\sum_{k=0}^{n} \binom{2n}{2k} E_{2k} E_{2(n-k)}
\]

\[
= \sum_{k=0}^{n-1} \binom{2n}{2k + 1} E_{2k+1} E_{2(n-k)-1}.
\]

Prove combinatorially (exercise).
Proof of André’s theorem

\[y := \sum_{n \geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x \]
Proof of André’s theorem

\[y := \sum_{n \geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x \]

Naive proof.

\[2E_{n+1} = \sum_{k=0}^{n} \binom{n}{k} E_k E_{n-k}, \ n \geq 1 \]

\[\Rightarrow 2y' = 1 + y^2, \ \text{etc.} \]

(details omitted)
Some occurrences of Euler numbers

(1) \(E_{2n-1} \) is the number of complete increasing binary trees on the vertex set \([2n + 1] = \{1, 2, \ldots, 2n + 1\} \).
Five vertices

Alternating Permutations – p. 8
Five vertices

Slightly more complicated for E_{2n}
(2) $b_1 b_2 \cdots b_k$ has a **double descent** if for some $1 < i < n$,

$$b_{i-1} > b_i > b_{i+1}.$$
Simsun permutations

(2) $b_1 b_2 \cdots b_k$ has a **double descent** if for some $1 < i < n$,

$$b_{i-1} > b_i > b_{i+1}.$$

$w = a_1 a_2 \cdots a_n \in S_n$ is a **simsun** permutation if the subsequence with elements $1, 2, \ldots, k$ has no double descents, $1 \leq k \leq n$.

Example. 3241 is not simsun: the subsequence with $1, 2, 3$ is 321.

Theorem (R. Simion & S. Sundaram) The number of simsun permutations in S_n is E_{n+1}.

Alternating Permutations – p. 9
(2) \(b_1 b_2 \cdots b_k \) has a **double descent** if for some \(1 < i < n \),

\[
b_{i-1} > b_i > b_{i+1}.
\]

\(w = a_1 a_2 \cdots a_n \in \mathfrak{S}_n \) is a **simsun** permutation if the subsequence with elements \(1, 2, \ldots, k \) has no double descents, \(1 \leq k \leq n \).

Example. 3241 is **not** simsun: the subsequence with 1, 2, 3 is 321.
Simsun permutations

(2) $b_1 b_2 \cdots b_k$ has a **double descent** if for some $1 < i < n$,

$$b_{i-1} > b_i > b_{i+1}. \tag{2}$$

$w = a_1 a_2 \cdots a_n \in \mathcal{S}_n$ is a **simsun** permutation if the subsequence with elements $1, 2, \ldots, k$ has no double descents, $1 \leq k \leq n$.

Example. 3241 is **not** simsun: the subsequence with 1, 2, 3 is 321.

Theorem *(R. Simion & S. Sundaram)* The number of simsun permutations in \mathcal{S}_n is E_{n+1}.
(3) Start with \(n \) one-element sets \(\{1\}, \ldots, \{n\} \).
(3) Start with n one-element sets $\{1\}, \ldots, \{n\}$. Merge together two at a time until reaching $\{1, 2, \ldots, n\}$.
(3) Start with n one-element sets $\{1\}, \ldots, \{n\}$. Merge together two at a time until reaching $\{1, 2, \ldots, n\}$.

$1 - 2 - 3 - 4 - 5 - 6, \ 12 - 3 - 4 - 5 - 6, \ 12 - 34 - 5 - 6$

$125 - 34 - 6, \ 125 - 346, \ 123456$
Orbits of mergings

(3) Start with n one-element sets $\{1\}, \ldots, \{n\}$. Merge together two at a time until reaching $\{1, 2, \ldots, n\}$.

\[1 - 2 - 3 - 4 - 5 - 6, \quad 12 - 3 - 4 - 5 - 6, \quad 12 - 34 - 5 - 6\]
\[125 - 34 - 6, \quad 125 - 346, \quad 123456\]

S_n acts on these sequences.
(3) Start with \(n \) one-element sets \(\{1\}, \ldots, \{n\} \). Merge together two at a time until reaching \(\{1, 2, \ldots, n\} \).

\[
1-2-3-4-5-6, \quad 12-3-4-5-6, \quad 12-34-5-6
\]
\[
125-34-6, \quad 125-346, \quad 123456
\]

\(S_n \) acts on these sequences.

Theorem. *The number of \(S_n \)-orbits is \(E_{n-1} \).*
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12–3–4–5</td>
<td>123–4–5</td>
<td>1234–5</td>
</tr>
<tr>
<td>12–3–4–5</td>
<td>123–4–5</td>
<td>123–45</td>
</tr>
<tr>
<td>12–3–4–5</td>
<td>12–34–5</td>
<td>125–34</td>
</tr>
<tr>
<td>12–3–4–5</td>
<td>12–34–5</td>
<td>12–345</td>
</tr>
<tr>
<td>12–3–4–5</td>
<td>12–34–5</td>
<td>1234–5</td>
</tr>
</tbody>
</table>
(4) Let \mathcal{E}_n be the convex polytope in \mathbb{R}^n defined by

$$
x_i \geq 0, \ 1 \leq i \leq n$$

$$
x_i + x_{i+1} \leq 1, \ 1 \leq i \leq n - 1.
$$
(4) Let \mathcal{E}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \geq 0, \ 1 \leq i \leq n$$
$$x_i + x_{i+1} \leq 1, \ 1 \leq i \leq n - 1.$$

Theorem. The volume of \mathcal{E}_n is $E_n/n!$.
The “nicest” proof

Triangulate \mathcal{E}_n so that the maximal simplices σ_w are indexed by alternating permutations $w \in S_n$.

$\text{Show } \text{Vol}(w) = 1 = n!$
The “nicest” proof

- Triangulate \mathcal{E}_n so that the maximal simplices σ_w are indexed by alternating permutations $w \in \mathcal{S}_n$.

- Show $\text{Vol}(\sigma_w) = 1/n!$,
An $n \times n$ matrix $M = (m_{ij})$ is tridiagonal if $m_{ij} = 0$ whenever $|i - j| \geq 2$.

doubly-stochastic: $m_{ij} \geq 0$, row and column sums equal 1

\mathcal{T}_n: set of $n \times n$ tridiagonal doubly stochastic matrices
Polytope structure of \mathcal{T}_n

Easy fact: the map

$$\mathcal{T}_n \rightarrow \mathbb{R}^{n-1}$$

$$M \mapsto (m_{12}, m_{23}, \ldots, m_{n-1,n})$$

is a (linear) bijection from \mathcal{T}_n to \mathcal{E}_n.
Polytope structure of \mathcal{T}_n

Easy fact: the map

$$\mathcal{T}_n \rightarrow \mathbb{R}^{n-1}$$

$$M \mapsto (m_{12}, m_{23}, \ldots, m_{n-1,n})$$

is a (linear) bijection from \mathcal{T}_n to \mathcal{E}_n.

Application (Diaconis et al.): random doubly stochastic tridiagonal matrices and random walks on \mathcal{T}_n
Yesterday: \(\text{is}(w) = \text{length of longest increasing subsequence of } w \in \mathcal{S}_n \)

\[
E(n) \sim 2\sqrt{n}
\]
Yesterday: $is(w) = \text{length of longest increasing subsequence of } w \in S_n$

$$E(n) \sim 2\sqrt{n}$$

For fixed $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \text{Prob} \left(\frac{is_n(w) - 2\sqrt{n}}{n^{1/6}} \leq t \right) = F(t),$$

the Tracy-Widom distribution.
Analogues of distribution of $\text{is}(w)$

- Length of longest alternating subsequence of $w \in S_n$
Analogues of distribution of $\text{is}(w)$

- Length of longest alternating subsequence of $w \in S_n$
- Length of longest increasing subsequence of an alternating permutation $w \in S_n$.

The first is much easier!
Analogues of distribution of $\text{is}(w)$

- Length of longest alternating subsequence of $w \in \mathcal{S}_n$

- Length of longest increasing subsequence of an alternating permutation $w \in \mathcal{S}_n$.

The first is much easier!
Longest alternating subsequences

$$\text{as}(w) = \text{length longest alt. subseq. of } w$$

$$D(n) = \frac{1}{n!} \sum_{w \in \mathcal{S}_n} \text{as}(w) \sim ?$$

$$w = 56218347 \Rightarrow \text{as}(w) = 5$$
Definitions of $a_k(n)$ and $b_k(n)$

\[
a_k(n) = \#\{w \in S_n : \text{as}(w) = k\}
\]

\[
b_k(n) = a_1(n) + a_2(n) + \cdots + a_k(n)
\]

\[
= \#\{w \in S_n : \text{as}(w) \leq k\}.
\]
The case $n = 3$

<table>
<thead>
<tr>
<th>w</th>
<th>$\text{as}(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>1</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
</tr>
<tr>
<td>213</td>
<td>3</td>
</tr>
<tr>
<td>231</td>
<td>2</td>
</tr>
<tr>
<td>312</td>
<td>3</td>
</tr>
<tr>
<td>321</td>
<td>2</td>
</tr>
</tbody>
</table>
The case $n = 3$

<table>
<thead>
<tr>
<th>w</th>
<th>$\text{as}(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>1</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
</tr>
<tr>
<td>213</td>
<td>3</td>
</tr>
<tr>
<td>231</td>
<td>2</td>
</tr>
<tr>
<td>312</td>
<td>3</td>
</tr>
<tr>
<td>321</td>
<td>2</td>
</tr>
</tbody>
</table>

$a_1(3) = 1$, $a_2(3) = 3$, $a_3(3) = 2$

$b_1(3) = 1$, $b_2(3) = 4$, $b_3(3) = 6$
Lemma. $\forall w \in S_n \exists$ alternating subsequence of maximal length that contains n.
The main lemma

Lemma. \(\forall \, w \in \mathfrak{S}_n \, \exists \) alternating subsequence of maximal length that contains \(n \).

Corollary.

\[
\Rightarrow a_k(n) = \sum_{j=1}^{n} \binom{n-1}{j-1}
\]

\[
\sum_{2r+s=k-1} (a_{2r}(j-1) + a_{2r+1}(j-1)) a_s(n-j)
\]
The main generating function

\[B(x, t) = \sum_{k,n \geq 0} b_k(n) t^k \frac{x^n}{n!} \]

Theorem.

\[B(x, t) = \frac{2/\rho}{1 - \frac{1-\rho}{t} e^{\rho x}} - \frac{1}{\rho}, \]

where \(\rho = \sqrt{1 - t^2} \).
Corollary.

\[\Rightarrow b_1(n) = 1 \]
\[b_2(n) = n \]
\[b_3(n) = \frac{1}{4}(3^n - 2n + 3) \]
\[b_4(n) = \frac{1}{8}(4^n - (2n - 4)2^n) \]
\[\vdots \]
Corollary.

\[\Rightarrow \quad b_1(n) = 1\]
\[b_2(n) = n\]
\[b_3(n) = \frac{1}{4}(3^n - 2n + 3)\]
\[b_4(n) = \frac{1}{8}(4^n - (2n - 4)2^n)\]

\[\vdots\]

no such formulas for longest increasing subsequences
Mean (expectation) of \(\text{as}(w) \)

\[
D(n) = \frac{1}{n!} \sum_{w \in \mathcal{S}_n} \text{as}(w) = \frac{1}{n!} \sum_{k=1}^{n} k \cdot a_k(n),
\]

the expectation of \(\text{as}(w) \) for \(w \in \mathcal{S}_n \).
Mean (expectation) of $as(w)$

$$D(n) = \frac{1}{n!} \sum_{w \in S_n} as(w) = \frac{1}{n!} \sum_{k=1}^{n} k \cdot a_k(n),$$

the expectation of $as(w)$ for $w \in S_n$

Let

$$A(x, t) = \sum_{k, n \geq 0} a_k(n) t^k \frac{x^n}{n!} = (1 - t) B(x, t)$$

$$= (1 - t) \left(\frac{2/\rho}{1 - \frac{1-\rho}{t} e^{\rho x}} - \frac{1}{\rho} \right).$$
Formula for $D(n)$

$$\sum_{n \geq 0} D(n) x^n = \frac{\partial}{\partial t} A(x, 1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1 - x)^2}$$

$$= x + \sum_{n \geq 2} \frac{4n + 1}{6} x^n.$$
Formula for $D(n)$

$$\sum_{n \geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x, 1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1 - x)^2}$$

$$= x + \sum_{n \geq 2} \frac{4n + 1}{6} x^n.$$

$$\Rightarrow D(n) = \frac{4n + 1}{6}, \quad n \geq 2$$
Formula for $D(n)$

\[
\sum_{n \geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x, 1)
\]

\[
= \frac{6x - 3x^2 + x^3}{6(1 - x)^2}
\]

\[
= x + \sum_{n \geq 2} \frac{4n + 1}{6} x^n.
\]

\[
\Rightarrow D(n) = \frac{4n + 1}{6}, \quad n \geq 2
\]

Compare $E(n) \sim 2\sqrt{n}$.
Variance of $\text{as}(w)$

$$V(n) = \frac{1}{n!} \sum_{w \in \mathcal{S}_n} \left(\text{as}(w) - \frac{4n + 1}{6} \right)^2, \quad n \geq 2$$

the variance of $\text{as}(n)$ for $w \in \mathcal{S}_n$
Variance of $\text{as}(w)$

$$V(n) = \frac{1}{n!} \sum_{w \in \mathcal{S}_n} \left(\text{as}(w) - \frac{4n + 1}{6} \right)^2, \ n \geq 2$$

the variance of $\text{as}(n)$ for $w \in \mathcal{S}_n$

Corollary.

$$V(n) = \frac{8}{45} n - \frac{13}{180}, \ n \geq 4$$
Variance of $\text{as}(w)$

$$V(n) = \frac{1}{n!} \sum_{w \in \mathcal{S}_n} \left(\text{as}(w) - \frac{4n + 1}{6} \right)^2, \quad n \geq 2$$

the variance of $\text{as}(n)$ for $w \in \mathcal{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \quad n \geq 4$$

similar results for higher moments
A new distribution?

\[P(t) = \lim_{n \to \infty} \text{Prob}_{w \in \mathcal{S}_n} \left(\frac{\text{as}(w) - 2n/3}{\sqrt{n}} \leq t \right) \]
A new distribution?

\[P(t) = \lim_{n \to \infty} \text{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\text{as}(w) - 2n/3}{\sqrt{n}} \leq t \right) \]

Stanley distribution?
Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \text{Prob}_{w \in \mathcal{S}_n} \left(\frac{\text{as}(w) - 2n/3}{\sqrt{n}} \leq t \right)$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45/4}} e^{-s^2} ds$$

(Gaussian distribution)
Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

\[
\lim_{n \to \infty} \text{Prob}_{w \in S_n} \left(\frac{\alpha_s(w) - 2n/3}{\sqrt{n}} \leq t \right)
\]

\[
= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t \sqrt{45}/4} e^{-s^2} \, ds
\]

(Gaussian distribution)

😊😊
Umbral formula: involves E^k, where E is an indeterminate (the umbra). Replace E^k with the Euler number E_k. (Technique from 19th century, modernized by Rota et al.)
Umbral enumeration

Umbral formula: involves E^k, where E is an indeterminate (the *umbra*). Replace E^k with the Euler number E_k. (Technique from 19th century, modernized by Rota et al.)

Example.

\[
(1 + E^2)^3 = 1 + 3E^2 + 3E^4 + E^6 \\
= 1 + 3E_2 + 3E_4 + E_6 \\
= 1 + 3 \cdot 1 + 3 \cdot 5 + 61 \\
= 80
\]
Another example

\[(1 + t)^E = 1 + Et + \left(\frac{E}{2}\right)t^2 + \left(\frac{E}{3}\right)t^3 + \cdots\]

\[= 1 + Et + \frac{1}{2}E(E - 1)t^2 + \cdots\]

\[= 1 + E_1t + \frac{1}{2}(E_2 - E_1))t^2 + \cdots\]

\[= 1 + t + \frac{1}{2}(1 - 1)t^2 + \cdots\]

\[= 1 + t + O(t^3).\]
fixed point free involution $w \in S_{2n}$: all cycles of length two
fixed point free involution \(w \in S_{2n} \): all cycles of length two

Let \(f(n) \) be the number of alternating fixed-point free involutions in \(S_{2n} \).
fixed point free involution $w \in S_{2n}$: all cycles of length two

Let $f(n)$ be the number of alternating fixed-point free involutions in S_{2n}.

$n = 3$:

- $214365 = (1, 2)(3, 4)(5, 6)$
- $645231 = (1, 6)(2, 4)(3, 5)$

$f(3) = 2$
An umbral theorem

Theorem.

\[F(x) = \sum_{n \geq 0} f(n)x^n \]
An umbral theorem

Theorem.

\[F(x) = \sum_{n \geq 0} f(n)x^n \]

\[= \left(\frac{1 + x}{1 - x} \right)^{(E^2 + 1)/4} \]
Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n.
Proof. Uses representation theory of the symmetric group \mathfrak{S}_n.

There is a character χ of \mathfrak{S}_n (due to H. O. Foulkes) such that for all $w \in \mathfrak{S}_n$,

$$\chi(w) = 0 \text{ or } \pm E_k.$$
Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n.

There is a character χ of \mathfrak{S}_n (due to H. O. Foulkes) such that for all $w \in \mathfrak{S}_n$,

$$\chi(w) = 0 \text{ or } \pm E_k.$$

Now use known results on combinatorial properties of characters of \mathfrak{S}_n.
Theorem (Ramanujan, Berndt, implicitly) As $x \to 0+$,

\[
2 \sum_{n \geq 0} \left(\frac{1 - x}{1 + x} \right)^n (n+1) \sim \sum_{k \geq 0} f(k)x^k = F(x),
\]

an analytic (non-formal) identity.
A formal identity

Corollary (via Ramanujan, Andrews).

\[
F(x) = 2 \sum_{n \geq 0} q^n \frac{\prod_{j=1}^{n} (1 - q^{2j-1})}{\prod_{j=1}^{2n+1} (1 + q^j)},
\]

where \(q = \left(\frac{1-x}{1+x} \right)^{2/3} \), a formal identity.
Simple result, hard proof

Recall: number of n-cycles in \mathfrak{S}_n is $(n - 1)!$.
Recall: number of \(n \)-cycles in \(S_n \) is \((n - 1)!\).

Theorem. Let \(b(n) \) be the number of **alternating** \(n \)-cycles in \(S_n \). Then if \(n \) is odd,

\[
b(n) = \frac{1}{n} \sum_{d|n} \mu(d) (-1)^{(d-1)/2} E_{n/d}.
\]
Corollary. Let p be an odd prime. Then

$$b(p) = \frac{1}{p} \left(E_p - (-1)^{(p-1)/2} \right).$$
Corollary. Let p be an odd prime. Then

$$b(p) = \frac{1}{p} \left(E_p - (-1)^{(p-1)/2} \right).$$

Combinatorial proof?
Recall: $is(w)$ = length of longest increasing subsequence of $w \in S_n$. Define

$$C(n) = \frac{1}{E_n} \sum w is(w),$$

where w ranges over all E_n alternating permutations in S_n.
Little is known, e.g., what is
\[\beta = \lim_{n \to \infty} \frac{\log C(n)}{\log n} \]?

I.e., \(C(n) = n^{\beta + o(1)} \).

Compare \(\lim_{n \to \infty} \frac{\log E(n)}{\log n} = 1/2 \).
Little is known, e.g., what is

$$\beta = \lim_{n \to \infty} \frac{\log C(n)}{\log n}?$$

I.e., $C(n) = n^{\beta + o(1)}$.

Compare $\lim_{n \to \infty} \frac{\log E(n)}{\log n} = 1/2$.

Easy: $\beta \geq \frac{1}{2}$.
What is the (suitably scaled) limiting distribution of $is(w)$, where w ranges over all alternating permutations in \mathfrak{S}_n?
What is the (suitably scaled) limiting distribution of $is(w)$, where w ranges over all alternating permutations in \mathfrak{S}_n?

Is it the Tracy-Widom distribution?
Limiting distribution?

What is the (suitably scaled) limiting distribution of is(\(w\)), where \(w\) ranges over all alternating permutations in \(\mathfrak{S}_n\)?

Is it the Tracy-Widom distribution?

Possible tool: ∃ “umbral analogue” of Gessel’s determinantal formula.
Let $w = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$. Descent set of w:

$$D(w) = \{ i : a_i > a_{i+1} \} \subseteq \{1, \ldots, n - 1 \}$$
Descent sets

Let $w = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$. **Descent set of** w:

$$D(w) = \{ i : a_i > a_{i+1} \} \subseteq \{1, \ldots, n - 1\}$$

\[
\begin{align*}
D(4157623) &= \{1, 4, 5\} \\
D(4152736) &= \{1, 3, 5\} \text{ (alternating)} \\
D(4736152) &= \{2, 4, 6\} \text{ (reverse alternating)}
\end{align*}
\]
$\beta_n(S) = \#\{w \in \mathfrak{S}_n : D(w) = S\}$
\[\beta_n(S) = \# \{ w \in \mathfrak{S}_n : D(w) = S \} \]

<table>
<thead>
<tr>
<th>(w)</th>
<th>(D(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>213</td>
<td>{1}</td>
</tr>
<tr>
<td>312</td>
<td>{1}</td>
</tr>
<tr>
<td>132</td>
<td>{2}</td>
</tr>
<tr>
<td>231</td>
<td>{2}</td>
</tr>
<tr>
<td>321</td>
<td>{1, 2}</td>
</tr>
</tbody>
</table>
Fix n. Let $S \subseteq \{1, \cdots, n-1\}$. Let $u_S = t_1 \cdots t_{n-1}$, where

$$t_i = \begin{cases} a, & i \notin S \\ b, & i \in S. \end{cases}$$
Fix \(n \). Let \(S \subseteq \{1, \ldots, n - 1\} \). Let \(u_S = t_1 \cdots t_{n-1} \), where

\[
t_i = \begin{cases}
a, & i \notin S \\
b, & i \in S.
\end{cases}
\]

Example. \(n = 8, \ S = \{2, 5, 6\} \subseteq \{1, \ldots, 7\} \)

\[
u_S = abaabba
\]
A noncommutative gen. function

\[\Psi_n(a, b) = \sum_{S \subseteq \{1, \ldots, n-1\}} \beta_n(S) a_S. \]
A noncommutative gen. function

\[\Psi_n(a, b) = \sum_{S \subseteq \{1, \ldots, n-1\}} \beta_n(S) u_S. \]

Example. Recall

\[\beta_3(\emptyset) = 1, \quad \beta_3(1) = 2, \quad \beta_3(2) = 2, \quad \beta_3(1, 2) = 1 \]

Thus

\[\Psi_3(a, b) = aa + 2ab + 2ba + bb \]
A noncommutative gen. function

\[\Psi_n(a, b) = \sum_{S \subseteq \{1, \ldots, n-1\}} \beta_n(S) u_S. \]

Example. Recall

\[\beta_3(\emptyset) = 1, \quad \beta_3(1) = 2, \quad \beta_3(2) = 2, \quad \beta_3(1, 2) = 1 \]

Thus

\[\Psi_3(a, b) = aa + 2ab + 2ba + bb \]

\[= (a + b)^2 + (ab + ba) \]
The cd-index Theorem. There exists a noncommutative polynomial $\Phi_n(c, d)$, called the cd-index of S_n, with nonnegative integer coefficients, such that

$$\Psi_n(a, b) = \Phi_n(a + b, ab + ba).$$
Theorem. There exists a noncommutative polynomial $\Phi_n(c, d)$, called the cd-index of \mathfrak{S}_n, with nonnegative integer coefficients, such that

$$\Psi_n(a, b) = \Phi_n(a + b, ab + ba).$$

Example. Recall

$$\Psi_3(a, b) = aa + 2ab + 2ba + b^2 = (a + b)^2 + (ab + ba).$$

Therefore

$$\Phi_3(c, d) = c^2 + d.$$
Small values of $\Phi_n(c, d)$

\[
\begin{align*}
\Phi_1 &= 1 \\
\Phi_2 &= c \\
\Phi_3 &= c^2 + d \\
\Phi_4 &= c^3 + 2cd + 2dc \\
\Phi_5 &= c^4 + 3c^2d + 5cdc + 3dc^2 + 4d^2 \\
\Phi_6 &= c^5 + 4c^3d + 9c^2dc + 9cdc^2 + 4dc^3 \\
&\quad + 12cd^2 + 10dcd + 12d^2c.
\end{align*}
\]
Let $\deg c = 1$, $\deg d = 2$.
Let \(\deg c = 1 \), \(\deg d = 2 \).

\(\mu \): \(cd \)-monomial of degree \(n - 1 \)
Let $\deg c = 1$, $\deg d = 2$.

μ: cd-monomial of degree $n - 1$

Replace each c in μ with 0, each d with 10, and remove final 0. Get the characteristic vector of a set $S_\mu \subseteq [n - 2]$.
Let \(\deg c = 1, \deg d = 2 \).

\(\mu \): \(cd \)-monomial of degree \(n - 1 \)

Replace each \(c \) in \(\mu \) with 0, each \(d \) with 10, and remove final 0. Get the characteristic vector of a set \(S_\mu \subseteq [n - 2] \).

Example. \(n = 10 \):

\[
\mu = cd^2 c^2 d \rightarrow 0 \cdot 10 \cdot 10 \cdot 0 \cdot 0 \cdot 1\text{\cancel{0}} = 01010001,
\]

the characteristic vector of \(S_\mu = \{2, 4, 8\} \subseteq [8] \).
Recall: \(w = a_1 a_2 \cdots a_n \in S_n \) is a **simsun** permutation if the subsequence with elements 1, 2, \ldots, \(k \) has no double descents, 1 \(\leq k \leq n \).
Recall: \(w = a_1 a_2 \cdots a_n \in \mathfrak{S}_n \) is a \textbf{simsun} permutation if the subsequence with elements \(1, 2, \ldots, k \) has no double descents, \(1 \leq k \leq n \).

Theorem (Simion-Sundaram, variant of Foata-Schützenberger) \textit{The coefficient of} \(\mu \) \textit{in} \(\Phi(c, d) \) \textit{is equal to the number of simsun permutations in} \(\mathfrak{S}_{n-1} \) \textit{with descent set} \(S_\mu \).
Example. \(\Phi_6 = c^5 + 4c^3d + 9c^2dc + 9cdc^2 + 4dc^3 + 12cd^2 + 10dcd + 12d^2c, \)

\[dcd \rightarrow 10 \cdot 0 \cdot 1 \times \Rightarrow S_{dcd} = \{1, 4\} \]
Example. $\Phi_6 =$
$c^5 + 4c^3 d + 9c^2 dc + 9cdc^2 + 4dc^3 + 12cd^2 + 10dcd + 12d^2 c,$

$dcd \rightarrow 10 \cdot 0 \cdot 1\times \Rightarrow S_{dcd} = \{1, 4\}$

The ten simsun permutations $w \in S_5$ with $D(w) = \{1, 4\}$:

21354, 21453, 31254, 31452, 41253
41352, 42351, 51243, 51342, 52341,
Example. \(\Phi_6 = c^5 + 4c^3d + 9c^2dc + 9dcd^2 + 4dc^3 + 12cd^2 + 10dcd + 12d^2c \),

\[dcd \rightarrow 10 \cdot 0 \cdot 1 \times \Rightarrow S_{dcd} = \{1, 4\} \]

The ten simsun permutations \(w \in S_5 \) with \(D(w) = \{1, 4\} \):

21354, 21453, 31254, 31452, 41253

41352, 42351, 51243, 51342, 52341,

but **not** 32451.
Two consequences

Theorem. (a) $\Phi_n(1, 1) = E_n$ *(the number of simsum permutations $w \in \mathfrak{S}_n$).*
Two consequences

Theorem. (a) \(\Phi_n(1, 1) = E_n \) (the number of simsum permutations \(w \in \mathcal{S}_n \)).

(b) \textbf{(Niven, de Bruijn)} For all \(S \subseteq \{1, \ldots, n-1\} \),

\[
\beta(n) \leq E_n,
\]

with equality if and only if \(S = \{1, 3, 5, \ldots\} \) or \(S = \{2, 4, 6 \ldots\} \)
An example

\[\Phi_5 = 1c^4 + 3c^2d + 5cdc + 3dc^2 + 4d^2 \]

\[1 + 3 + 5 + 3 + 4 = 16 = E_5 \]
Darn!
That's the end...