A FIBONACCI ARRAY

RICHARD P. STANLEY

1. Introduction

We will define a certain numerical array, which we call the Fibonacci $\operatorname{array} \mathfrak{F}$, and will state some properties of this array related to Fibonacci numbers and the golden mean. Proofs are omitted; for further details see the reference at the end of this article.

Define a diagram as follows. At the top there is a single vertex (or point or node), denoted T (for "top"). Now continue recursively using the following rules:
(P1) Each vertex is connected to exactly two vertices in the row below.
(P2) The diagram is planar, i.e., edges cannot cross.
(P3) Given a vertex t and the two adjacent vertices u, v to t in the row below, complete this figure to a hexagon by adding a vertex u^{\prime} below and adjacent to u, a vertex v^{\prime} below and adjacent to v, and a vertex w below and adjacent to both u^{\prime} and v^{\prime}.
Thus the first step is to add two vertices below T : We cannot add a vertex below both of the two bottom vertices, because we must complete to a hexagon, not a quadrilateral. Since the two bottom vertices must each be adjacent to two vertices below, at the next step we get

Now we add a vertex adjacent to the two middle vertices on the bottom row in order to complete to a hexagon:

[^0]

Add remaining vertices on bottom row so that rule (P1) is satisfied:

Complete the two hexagons:

Add remaining vertices on bottom row:

Continuing in this manner produces a diagram consisting of infinitely many levels. We denote this diagram by \mathcal{D}. The top element T is defined to be at level 0 . The two vertices immediately below T are at level one, etc. The number of vertices at the levels $0,1,2, \ldots$ is $1,2,4,7,12,20,33,54, \ldots$. In fact, the number of vertices at level n is $F_{n+3}-1$, where F_{i} denotes a Fibonacci number (defined by $F_{1}=F_{2}=1$ and $F_{i+1}=F_{i}+F_{i-1}$ for $i \geq 2$). This gives the first glimpse of the connection of our diagram with Fibonacci numbers.

Figure 1. The Fibonacci array \mathfrak{F}
The next step is to attach a positive integer (a label) to each vertex of \mathcal{D} by the following recursive procedure. The top element T is labelled 1. Once we have labelled all the vertices at level n, label a vertex v at level $n+1$ by the sum of the labels of the elements on level n that are adjacent to v. This procedure is analogous to the usual recursive definition of Pascal's triangle ${ }^{1}$. A nonrecursive description of the label of a vertex v is that the label is equal to the number of paths from T to v (along the edges of the diagram \mathcal{D}). We denote the resulting labelled diagram by \mathfrak{F}, called the Fibonacci array. Figure 1 shows the levels 0 to 5 of \mathfrak{F}.

2. The numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$

What are the numbers appearing in \mathfrak{F} ? Let $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ denote the k th number on level n of \mathfrak{F}, beginning with $k=0$. Thus for instance from Figure 1 we see that

$$
\left\langle\begin{array}{l}
5 \\
0
\end{array}\right\rangle=\left\langle\begin{array}{l}
5 \\
1
\end{array}\right\rangle=\left\langle\begin{array}{l}
5 \\
2
\end{array}\right\rangle=1,\left\langle\begin{array}{l}
5 \\
3
\end{array}\right\rangle=2,\left\langle\begin{array}{l}
5 \\
4
\end{array}\right\rangle=1, \ldots
$$

The numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ may be regarded as "Fibonacci analogues" of the binomial coefficients $\binom{n}{k}$. The binomial coefficients satisfy the binomial theorem

$$
\begin{equation*}
\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}=(1+x)^{n} . \tag{2.1}
\end{equation*}
$$

[^1]The numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ satisfy

$$
\begin{gather*}
\left\langle\begin{array}{c}
n \\
0
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
1
\end{array}\right\rangle x+\left\langle\begin{array}{c}
n \\
2
\end{array}\right\rangle x^{2}+\cdots+\left\langle\begin{array}{c}
n \\
F_{n+3}-2
\end{array}\right\rangle x^{F_{n+3}-2} \\
=\left(1+x^{F_{2}}\right)\left(1+x^{F_{3}}\right) \cdots\left(1+x^{F_{n+1}}\right) \tag{2.2}
\end{gather*}
$$

a "Fibonacci analogue" of the binomial theorem. For instance,

$$
\begin{gathered}
(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{5}\right) \\
=1+x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+2 x^{6}+x^{7}+2 x^{8}+x^{9}+x^{10}+x^{11}
\end{gathered}
$$

so the labels on the fourth level of \mathfrak{F} are $(1,1,1,2,1,2,2,1,2,1,1,1)$.

3. Sums of powers of $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$

In Pascal's triangle the sum of the numbers on level n is 2^{n}. In symbols,

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}
$$

This formula follows from the fact that every number in Pascal's triangle is used twice in forming the next row. Alternatively, we can set $x=1$ in the binomial theorem (2.1). Exactly the same reasoning applies to the Fibonacci array. Each number on some row is used twice in forming the next row, essentially a restatement of property (P1). Alternatively, we can set $x=1$ in equation (2.2), so we get

$$
\left\langle\begin{array}{l}
n \tag{3.1}\\
0
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
1
\end{array}\right\rangle+\cdots+\left\langle\begin{array}{c}
n \\
F_{n+3}-2
\end{array}\right\rangle=2^{n}
$$

The situation becomes more interesting when we consider powers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle^{r}$ of the entries. The main result is the following. Let r be a positive integer, and set

$$
v_{r}(n)=\left\langle\begin{array}{l}
n \\
0
\end{array}\right\rangle^{r}+\left\langle\begin{array}{l}
n \\
1
\end{array}\right\rangle^{r}+\cdots+\left\langle\begin{array}{l}
n \\
n
\end{array}\right\rangle^{r} .
$$

Thus $v_{1}(n)=2^{n}$, a restatement of equation (3.1). In general, $v_{r}(n)$ satisfies a linear recurrence with constant coefficients, i.e., there are integers c_{1}, \ldots, c_{k} (which depend on r, as does k) such that

$$
v_{r}(n)=c_{1} v_{r}(n-1)+c_{2} v_{r}(n-2)+\cdots+c_{k} v_{r}(n-k)
$$

for all $n \geq k$. For instance,

$$
\begin{aligned}
v_{2}(n)= & 2 v_{2}(n-1)+2 v_{2}(n-2)-2 v_{2}(n-3) \\
v_{3}(n)= & 2 v_{3}(n-1)+4 v_{3}(n-2)-2 v_{3}(n-3) \\
v_{4}(n)= & 2 v_{4}(n-1)+7 v_{4}(n-2)+2 v_{4}(n-4)-2 v_{4}(n-5) \\
v_{5}(n)= & 2 v_{5}(n-1)+11 v_{5}(n-2)+8 v_{5}(n-3) \\
& \quad+20 v_{5}(n-4)-10 v_{5}(n-5) .
\end{aligned}
$$

Nothing like this is true for the ordinary binomial coefficients $\binom{n}{k}$.
Note (for readers with sufficient mathematical background). Define the power series $V_{r}(x)=\sum_{n \geq 0} v_{r}(n) x^{n}$. Since $v_{r}(n)$ satisfies a linear recurrence with constant coefficients, $V_{r}(x)$ is a rational function. For $1 \leq r \leq 6$ it is given by

$$
\begin{aligned}
& V_{1}(x)=\frac{1}{1-2 x} \\
& V_{2}(x)=\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}} \\
& V_{3}(x)=\frac{1-4 x^{2}}{1-2 x-4 x^{2}+2 x^{3}} \\
& V_{4}(x)=\frac{1-7 x^{2}-2 x^{4}}{1-2 x-7 x^{2}-2 x^{4}+2 x^{5}} \\
& V_{5}(x)=\frac{1-11 x^{2}-20 x^{4}}{1-2 x-11 x^{2}-8 x^{3}-20 x^{4}+10 x^{5}} \\
& V_{6}(x)=\frac{1-17 x^{2}-88 x^{4}-4 x^{6}}{1-2 x-17 x^{2}-28 x^{3}-88 x^{4}+26 x^{5}-4 x^{6}+4 x^{7}} .
\end{aligned}
$$

Note that the numerator of $V_{r}(x)$ is the "even part" of the denominator. It was proved by Ilya Bogdanov that this fact continues to hold for any r (MathOverflow 457900).

4. Two consecutive levels

We now turn to a completely different aspect of \mathfrak{F} : the structure of two consecutive levels. Consider for instance levels four and five, shown as blue vertices in Figure 2. We obtain a sequence of three-vertex diagrams . and five-vertex diagrams ... Thus we can represent the structure of two consecutive levels as a sequence of 3's and 5's. For instance, rows 4 and 5 correspond to the sequence ($3,5,3,5,5,3,5,3$). In general, the number of terms in the sequence corresponding to rows n and $n+1$ is F_{n+2}.

Figure 2. Levels four and five of \mathfrak{F}

How can we describe the sequence corresponding to levels n and $n+1$? It is palindromic (reads the same backwards as forwards), so we only have to describe the first half. The result is that the k th term (beginning with $k=1$) is given by

$$
\begin{equation*}
1+2\lfloor k \phi\rfloor-2\lfloor(k-1) \phi\rfloor \tag{4.1}
\end{equation*}
$$

where $\phi=(1+\sqrt{5}) / 2$, the golden mean. As usual, $\lfloor x\rfloor$ denotes the greatest integer $m \leq x$.

The numbers in equation (4.1), beginning with $k=1$, are

$$
\begin{equation*}
\gamma=(3,5,3,5,5,3,5,3,5,5,3,5,5,3,5,3,5,5, \ldots) \tag{4.2}
\end{equation*}
$$

The first four terms are $3,5,3,5$, agreeing with the description of the first half of levels 4 and 5 .

The sequence (4.2) has several other descriptions.

- If we remove the first term, then the remaining sequence ($5,3,5,5,3,5, \ldots$) is characterized by invariance under $3 \rightarrow 5$ and $5 \rightarrow 53$ (the Fibonacci word in the letters 3,5).
- We have $\gamma=3 z_{1} z_{2} z_{3} \cdots$ (concatenation of words), where $z_{1}=5$, $z_{2}=35$, and $z_{k}=z_{k-2} z_{k-1}$ for $k \geq 3$:

$$
\text { (3) } 5 \cdot 35 \cdot 535 \cdot 35535 \cdot 53535535 \cdot \cdots
$$

- If we replace 3 by 1 and 5 by 2 in γ, then we obtain the sequence that records the number of 5's between consecutive 3's in γ :

$$
3 \underbrace{5}_{1} 3 \underbrace{55}_{2} 3 \underbrace{5}_{1} 3 \underbrace{55}_{2} 3 \underbrace{55}_{2} 3 \underbrace{5}_{1} 3 \underbrace{55}_{2} 3 \cdots
$$

Figure 3. An edge labeling of \mathfrak{D}

5. An edge labelling

Label the edges of \mathfrak{D} as follows. The edges between levels $2 k$ and $2 k+1$ are labelled alternately $0, F_{2 k+2}, 0, F_{2 k+2}, \ldots$ from left to right. The edges between levels $2 k-1$ and $2 k$ are labelled alternately $F_{2 k+1}, 0$, $F_{2 k+1}, 0, \ldots$ from left to right. Figure 3 shows the first four levels of this labeling.

If t is a vertex in \mathfrak{D}, then the sum $\sigma(t)$ of the edge labels on any path from t to the top depends only on t, not on the choice of path. Figure 4 shows these sums for the points at level four. At level n we obtain the integers from 0 to $F_{n+2}-2$ once each. As we go down a path from the top to level n, there are two choices for each step. These choices correspond exactly to expanding the product (2.2). For each of the n factors there are two choices: choose the constant term 1 or the monomial $x^{F_{i+1}}$.

Moreover, if i appears to the left of j at level n, then i appears to the left of j at all subsequent levels. Thus we can define a linear ordering, denoted \prec, on the nonnegative integers by letting $i \prec j$ if i appears to the left of j at some level n (and thus at all subsequent levels). Figure 4 shows that

$$
7 \prec 2 \prec 10 \prec 5 \prec 0 \prec 8 \prec 3 \prec 11 \prec 6 \prec 1 \prec 9 \prec 4 .
$$

The order \prec on the nonnegative integers is dense, meaning that whenever $i \prec k$, there is some (hence infinitely many) j satisfying $i \prec$ $j \prec k$. The description of this order is based on Zeckendorf's theorem, which says that every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2}. The description of the order \prec is a little

Figure 4. An ordering of the integers from 0 to 11
too complicated to describe here, but to give the flavor we give the condition for $n \succ 0$. Namely, let $n=F_{j_{1}}+\cdots+F_{j_{s}}$ be the Zeckendorf representation of $n>0$, where $j_{1}<\cdots<j_{s}$. Then $n \prec 0$ if j_{1} is odd, while $n \succ 0$ if j_{1} is even. For instance, $45=3+8+34=F_{4}+F_{6}+F_{9}$. Since the first index (subscript) 4 is even, we have $45 \succ 0$.

Reference. R. Stanley, Theorems and conjectures on some rational generating functions, Europ. J. Math., to appear; arXiv:2101.02131.

Email address: rstan@math.mit.edu
Department of Mathematics, University of Miami, Coral Gables, FL 33124

[^0]: Date: March 10, 2024.

[^1]: ${ }^{1}$ In fact, if we modify the rule (P3) by saying that we complete a vertex and the two adjacent vertices u, v to a quadrilateral rather than a hexagon and use the same labeling rule, then we obtain Pascal's triangle.

