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DIFFERENTIAL POSETS

RICHARD P. STANLEY

1. INTRODUCTION

In this paper we introduce a class of partially ordered sets, called differential
posets, with many remarkable combinatorial and algebraic properties. (Termi-
nology from lattice theory and the theory of partially ordered sets not explained
here may be found in [St6].) The combinatorial properties of differential posets
are concerned with the counting of saturated chains x, < x, <--- < x, or of
“Hasse walks” x,,x,,...,x, (iLe,for 1 <i< k — 1, either X;,, Covers X,
or x; covers x, ) with various properties. The counting of chains in partially
ordered sets is a well-developed subject with many applications both within and
outside of combinatorics. For an introduction to this area, see [St6], especially
883.5, 3.11, 3.12, 3.13, 3.15, 3.16, 4.5, and many of the exercises in Chapters 3
and 4. The counting of Hasse walks in a poset is a special case of the counting
of walks in a graph. This is the basis for the “transfer-matrix method” [St6,
§4.7] of enumerative combinatorics, with many applications to probability the-
ory (Markov chains in particular), statistical mechanics, and other areas. See
[C-D-S] for additional information.

A basic tool in the theory of differential posets P is the use of two adjoint
linear transformations U and D on the vector space of linear combinations of
elements of P. If x € P then Ux (respectively, Dx ) is the sum of all elements
covering x (respectively, which x covers). Such linear transformations have
appeared in many contexts, but rarely does one have such explicit information as
for differential posets. Linear transformations identical or similar to U and/or
D appear, for instance, in [P, St5, St7] in order to obtain structural information
about P ; for differential posets the corresponding result is our Corollary 4.4.
One may also regard U and D as instances of the finite Radon transform (e.g.,
[Ku]). |

For differential posets a fundamental property of U and D is the commuta-
tion rule DU — UD = rI for some positive integer r (see Theorem 2.2). Thus
differential posets may be regarded as affording a representation of the “Weyl

Received by the editors December 8, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 05A15; Secondary 05A17,
06A10, 20C30.

Partially supported by NSF grant #DMS-8401376.

© 1988 American Mathematical Society
0894-0347/88 $100 + $ 25 per page

919



920 R. P. STANLEY

algebra” generated by U and D/r. This provides an interesting combinato-
rial realization of Weyl algebras (though we obtain no new theoretical results
involving Weyl algebras).

In Theorem 4.1 we compute the spectrum of the operator UD and in Propo-
sition 4.6 its eigenvectors; this result is extended in Proposition 4.12 to more
general functions of U and D . Besides their intrinsic interest, such results are
used in the theory of towers of multimatrix algebras [G-H-J].

The spectrum of UD is closely related to the spectrum (= eigenvalues of
the adjacency matrix) of certain finite graphs associated with differential posets.
We give (Theorem 4.14) a complete description of such spectra, as well as the
corresponding eigenvectors. Thus we have a new class of graphs whose spectra
can be explicitly computed. Many interesting properties of a graph are related
to its spectrum (such as properties of random walks on the graph); see [C-D-S]
for further information.

The prototypical example of a differential poset is Young’s lattice Y, first
studied per se by G. Kreweras [K]. Y is defined to be the set of all partitions
of all nonnegative integers #, ordered by inclusion of Young diagrams. Thus
if A=(4,,4,,...) and p = (u,,u,,...) are partitions (always ordered so
Ay 24y, > and u > u,>---),then u <24 in Y if and only if u, < 4
forall i. Wewrite N={0,1,2,...} and P={1,2,3,...}. Young’s lattice
is a locally finite distributive lattice with 0 (the empty partition & ); in fact,
it is the lattice J f(Nz) of finite order ideals of the poset N (with the usual
total ordering of N). If A €Y is a partition of n (ie, Y A = n), then we
write |A| = n or A+ n. Young’s lattice is graded with rank function p given
by p(4) =|4].

Many remarkable enumerative properties of Y are consequences of the the-
ory of symmetric functions, the representation theory of the symmetric group
and the complex general linear group, and the Robinson-Schensted correspon-
dence. In particular, a standard Young tableau (SYT) of shape A may be identi-
fied with a saturated chain ¢ = Rcilc..ca"=1of partitions from ¢ to
A (viz., insert the number i in the square A' — A'~', where we are identifying
a partition with its diagram [M, pp. 1-2]). Thus, for instance, if f % denotes
the number of SYT of shape 4, then the classical result

S =n

AR
asserts, in terms of Young’s lattice, that the number of sequences (or Hasse
walks)

p= <t < <> s 5=,

where A' and u' are partitions of i, is equal to n!. The theory of differential
posets shows that such a result depends on only simple structural properties of
Y and can be extended to many other posets.

Many of our results on differential posets are new even for Young’s lattice.
In [S-S] a number of our present results are given combinatorial proofs for the
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case of Young’s lattice. We should also mention that several generalizations of
differential posets are discussed in [St8], which is a sequel to the present paper.

In general, if P is any graded poset then we let p denote its rank function,
Le, if x € P then p(x) is the length / of the longest chain x, < x, <--- <
X;=x in P with top element x. Write

P, ={xeP:p(x)=1i},

so P=PyUP U--- (disjoint union). We will also use the notation #S or |S|
for the cardinality of the finite set S'.

1.1. Definition. Let r be a positive integer. A poset P is called r-differential
if it satisfies the following three conditions:

(D1) P islocally finite and graded and has a O element.

(D2) If x # y in P and there are exactly k elements of P which are
covered by both x and y, then there are exactly k elements of P
which cover both x and y.

(D3) If x € P and x covers exactly k elements of P, then x is covered
by exactly k +r elements of P.

If P is an r-differential poset for some r, then we call P a differential
poset. [

1.2. Proposition. If P is a poset satisfying (D1) and (D2), then for x # y in
P the integer k of (D2) is equal to 0 or 1.

Proof. Suppose the contrary. Let x and y be elements of minimal rank for
which k> 1. Thus x and y both cover elements x, # y, of P. But then
x, and y, are elements of smaller rank with k> 1, a contradiction. O

1.3. Proposition. Let L be a lattice satisfying (D1) and (D3). Then L is
r-differential if and only if L is modular.

Proof. It is well known (e.g., [Bi, Theorem 16, p. 41]) that a locally finite lattice
is modular if and only if the following condition is satisfied: For all x,y € L,
x and y cover x Ay if and only if xVy covers x and y. But this condition
is equivalent to (D2). O

1.4. Corollary. Young’s lattice Y is 1-differential. More generally, Y' is
r-differential.

Proof. Tt was observed in [St3, p. 225] or [St6, Exercise 3.22(c)] that Y’ sat-
isfies (D3). Since Y’ is distributive, it is also modular, so by Proposition 1.3
Y' is r-differential. O

Further examples of differential posets are given in §5 and in Proposition
6.1.

2. TWO LINEAR TRANSFORMATIONS

Let K be a field of characteristic 0. Let N be a “big enough” set of indeter-
minates (almost always N = {q, ¢} will suffice, but for instance in Proposition
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3.10 weneed N ={q,s,,s,,...,%,,1,,...}), and let K denote the quotient
field of the ring K ((N)) of formal Laurent series

F(N)=Ya, ],
v 1eN
where the sum ranges over all functions v: N — Z, and where a, = 0 if
v(t) < n, for fixed integers n, (depending on F). (It would suffice to let
K = K,((N)), but for convenience we work over a field.)

Given a set S, let KS denote the K-vector space with basis S, and let KS
denote the K-vector space of arbitrary (i.e., infinite) linear combinations

Z C.X, ¢ € K,
xXE€S

of elements of S. Thus KS is the completion of KS in a suitable topology.
Given a locally finite poset P and x € P, define

C (x)={ye€P: xcovers y},
C'(x)={yeP: y covers x}.

2.1. Definition. Let P be a locally finite poset such that for all x € P the sets
C™(x) and C™(x) are finite. Define two continuous linear transformations
U,D: KP — KP by the condition that for x € P,

(1) Ux= Yy,

yeCH(x)

(2) Dx= Y y. O

yeC~(x)

Note. Continuity means that U and D preserve infinite linear combinations,
while the condition that C™(x) and C*(x) are finite insures that for any v €
KP the coefficient of x € P in Uv and Dv is a finite sum. Hence (1) and (2)
indeed define Uv and Dv for any v eKP.

Let I: KP — KP denote the identity transformation, i.e., [v = v for all
v e KP. We come to two simple but fundamental results.

2.2. Theorem. Let P be alocally finite graded poset with O, with finitely many
elements of each rank. Let r be a positive integer. The following two conditions
are equivalent:

(a) P is r-differential.

(b) DU —UD =+l .

(Linear transformations operate right-to-left, e.g., DUv = D(Uv).)
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Proof. Let x € P. Then DUx = Y ¢y, where ¢, = #(C"(x) N C*(y)).

Moreover, UDx = Zy dyy , where dy =#(C (x)NC (y)). Hence DU-UD =
rl if and only if forall x,y € P,

#HCT(X)NCT(y) =#C (X)NC™(»)), ifx#y,
and
#CT(x)=r +#C (x).
But these are precisely the conditions for P to be r-differential. O

If S C P, then write
S=) SekP.
x€S
2.3. Theorem. If P is an r-differential poset, then

DP = (U + r)P.

Proof. If DP = Y a x, then a, = #C"(x). Similarly, if (U +r)P=3b x,
then b = r+#C  (x). The result follows from (D3). ((D2) is not needed.) O

Given a vector space V', let End(V) denote the ring of all linear transfor-
mations 7: V — V. In the results below we will be dealing with certain formal
power series in the linear transformations U, D € End(KP), where P is al-
ways assumed to be an r-differential poset. We may regard such formal power
series as elements of the ring K((U,D))/(DU — UD — r), where K((U, D))
denotes the ring of noncommutative formal power series in U and D over the
field K. Arbitrary power series need not define elements of End(IA< P),eg.,
s D" or eP = > ,>0D"/n!. But most of the power series we deal with will
define linear transformations. In particular, we will consider such power series
as

3) GU)=> aU", a,€kK,
n>0
H(U,Dr)=Y A, (U)D"t",  A4,(z)€K,lz]].
n>0

Thus (3) defines an element of End(I?P) because for any x € P and v € KP
the coefficient of x in U"v is equal to 0 for n sufficiently large. Similarly
H(U,Dt) € End(I?P) since for any x € P and v € KP the coefficient of
x in H(U,Dt)v is easily seen to be a well-defined formal power series in the
variable ¢ with coefficients in K. (We could make the above discussion more
precise by introducing suitable topological notions, but this seems unnecessarily
pedantic.)

Given formal power series such as f(U) = 3 .4, U" and H(U,t) =
2> [n(U )t" /n!, we will use notation from calculus in a formal way, such as

f1U)y=3"na, U =3 "(n+a,, U",

n>0 n>0
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oH PR
5ﬁ<=Hba/J)=g;fnaUt/m,
6}{ n—1 n
> =H(U 1= oL =3 f, () nt,
n>0 n>0
/Uf(s)ds = ZanU"H/(n +1)=)Ya, U"/n,
0 n>0 n>1

etc.
It will be convenient to introduce a pairing

(,):KPxKP—K

defined by the conditions that the pairing is bilinear, continuous in the first
coordinate, and
(x,y) =(5Xy forx,yeP.

Thus in general
<Zaxx, bex> = Zaxbx ,
which is a finite sum since only finitely many b, # 0. (We cannot extend ( , )

to a scalar preduct on all of KP since in general the infinite sum y.ab, is
not defined.) Note that D and U are adjoint under this pairing, i.e.,

(Df . g)=(f.Ug), (Uf.g =(f.Dg),
since for x,y € P, we have

1, if x covers y,
(Dx,y)=(x,Uy)={0 otherwise,
and similarly for (Ux,y) and (x,Dy).

2.4. Corollary. Suppose P is r-differential. Then for any f(U) € K[[U]] we
have

(a)
(4) Df(U)=rf"(U)+ f(U)D.
Moreover, if f(U) defines an element of End(KP), then
(b) Df(U)P = (rf"(U)+ (U +r)f(U)P.

Proof. (a) By linearity and continuity it suffices to assume f(U)=U", n>0.
It is then straightforward to prove (4) by induction on 7 ; the details are left to
the reader.

(b) By (a) and Theorem 2.3,

Df(U)P = (rf"(U) + f(U)D)P
= (rf'(U)+ f(U)r + U)P. O
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The effect of Corollary 2.4 is that, informally, we can view the operator D as
the derivative 9/0U . (We use the partial derivative symbol since later we will
also be differentiating with respect to indeterminates in K .) In this way many
enumerative problems will reduce to solving a partial differential equation. This
explains our terminology “differential poset.”

We now come to our primary tools for deriving enumerative properties of
differential posets.

2.5. Theorem. Let P be an r-differential poset. Let f(U),h(U) € K [[U]]
and c € K. Then

(a)
(5) e(f(U)+cD)1h(U) _ efo f(U+crs)dsh(U n crt)eCDI.

Moreover, if f(U) and h(U) define elements of End(I?OP), then:
(b)
(6)

t
e UHDN p ()P = exp [crt +ictr? +cUr + / f(U + crs) a’s] h(U + crt)P.
0
Proof. (a) Let
n
(7) H() = e PN RU) = 3 (£(U) + D) "h(U) .
n>0 '
Then the operator H(t) is uniquely determined by the conditions
(8) (f(U)+cD)H =H,, H(0)=h(U).
Hence we need to verify only that the right-hand side of (5) satisfies (8). But
this is a formal computation, taking care that U and D do not commute.

Specifically, writing L(z) for the right-hand side of (5), we have (using Corollary
2.4(a)),

(f(U)+cD)L(t) = [f(U)+cr/0’fU(U+crs)a’s

+erh (U + crt) /(U + crt)] L(t) +cL(t)D

=[f(U) + (f(U +crt) - f(U))
+crh’ (U + crt)Jh(U + crt)]L(t) + cL(t)D
(since crfy, (U +crs) = f (U + crs))
=[f(U +crt) + crh' (U + crt) /(U + crt)]L(t)
+cL(t)D,
L(t)=[f(U+crt)+ erh' (U + cert)Jh(U + crt)]L(t) + cL(t)D ,
L(0)=h(U) (by inspection).
Thus (8) is satisfied, so (a) is proved.
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(b) By (a) we have
e(f(U)+cD)lh(U)P _ efo’ f(U+ers) dsh(U + Crt)echP.
Let H(t) =™ and
(9) L(1) = ecrt+czr12/2+cU1 .
Then H(?)P is uniquely determined by the conditions
cDH(t)P = H (1)P, H(O)P=P.
On the other hand, we have (using Corollary 2.4(b))
¢DL(t)P = (crL(t) + c(U +r)L(1))P
= (*rt+c(U +r)L(1)P,

L,(t)P = (cr + c*rt + cU)L(1)P
= ¢DL(1)P.

Since clearly L(0)P = P, it follows that H(¢)P = L(¢)P. Hence (6) follows
from (5). O

Remark on Young’s lattice. In the case of Young’s lattice Y we can reformu-
late Theorem 2.5(a) in a more concrete form. We follow the notation of [M]
throughout. Let A ¢ denote the ring of symmetric formal power series in vari-
ables x = (x,,x,,...) with coefficients in K. Define a continuous vector
space isomorphism ¢: KY — 1A\K by ¢(4) = s, for A €Y, where 5, denotes
a Schur function. By Pieri’s formula [M, (5.16)] and by [M, Example 1.5.3(b)],
the following diagrams commute:

=)

g

KY ——-2——>KK Y '—_¢__’KK
la/apl
KY N KK KY —, KK

Here p, denotes multiplication by the power-sum p, = in , while 9/0p,
denotes partial differentiation with respect to p, when f € A, is regarded as

a function of p,,p,,.... Thus Theorem 2.5(a) in the case & = 1 takes the
form
(10) o @+dop _ [ S prres) ds etdfopy

Here f(p,) can be any symmetric function, but we regard it only as a func-
tion of p, (regard p,,p,, ... asconstants). Now apply (10) to a symmetric
function #(p,). We have

o/ a"h "
P h(p) =" (,,p‘)c"—'zh(p1+ct),
S0 op, n!
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by Taylor’s formula. Hence

(11) el pseionty I, 7(pi+es)ds h(

p)=e p, +ct).

This formula can also be gleaned by keeping 4 arbitrary in Theorem 2.5(a) and
letting both sides act on O. Under the isomorphism ¢, we have

$(e”0) = (e 1) = 1,

so we obtain (11) once again.
The following special cases of Theorem 2.5 will be of the greatest use to us.

cDt

2.6. Corollary. Let P be an r-differential poset. Then
(U+D)t rt>/2+Ut Dt

(a) e =e e,
Dt t2+Ut Dt

(b) PV =™tV
Dt t+rt2)2

Q) e P=€r+r’/+U’P

’

e(U+D)1P _ err+rr3+2UtP

Di 27242
(e e teUtP - ert+3rt /2+ U'P.

’

Proof. (a) Put f(U)=U, h(U) =1,and ¢ =1 in Theorem 2.5(a).
(b) Put f(U)=0, h(U)=e"", and ¢ =1 in Theorem 2.5(a).
(c) Put f(U)=0, h(U) and ¢ =1 in Theorem 2.5(b).

(d) Put f(U)=U, h(U)= 1 and ¢ =1 in Theorem 2.5(b).

(e) Put f(U)=0, h(U)= eU' and ¢ =1 in Theorem 2.5(b). O

I 'am grateful to D. Freedman for pointing out to me that Corollary 2.6(a), (b)
is an immediate consequence of [G, equation (39)] (and the method of proof
there is essentially the same as ours). In fact, Theorem 2.5(a) itself is well
known, at least implicitly, to Lie theorists; see, e.g., [Mi, pp. 18-19].

3. ENUMERATIVE PROPERTIES OF DIFFERENTIAL POSETS
To convey the flavor of what we will do here, we first give a special case of
subsequent much more general results.
3.1. Proposition. Let P be an r-differential poset. Let a(0 — n) denote the
number of chains O = x; < x; < -+ < X, in P such that x, covers X
for 1 < i< n(so p(x;)=1i) Let 6, denote the number of sequences 0=

Xg: Xy, ..., X, Ssuch that for 1 < i < n, either x, covers x,_, or x,_, covers
X;. Then
(12) 3" a(0 05 —exp (rt+ Lrt?
— —_ = —
n! p 2 ’
n>0
13 55 _exp(n £)
(13) Znn—!—exp(r +rt) .

n>0
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Proof. Clearly
a(0 = n)=(D"P,0), &, =((U+D)"P,0).
By Corollary 2.6(c),
e”'P = exp (rt + %rt2 + Ut) P.
Now for any function E(U) we have
(14) (E(U)P,0) = E(0),

since (ka,5>=0 forall k>0 and xe P.
Thus

" ~ 1" ~ 5
Za(O - n)m = Z(an,o)m = (e"'P,0) = exp (rt +1int ) ,
n>0 n>0
as desired.
Similarly, apply (14) to Corollary 2.6(d) to get (13). O

Note. Equation (12) is well known for Young’s lattice; it asserts that a(0 — n) is
the number of involutions in the symmetric group S, (see [M, Example 1.5.12;
St2, Proposition 17.3]). Equation (13) appears to be new even for Young’s
lattice, though it is easy to give a combinatorial proof based on a version of
Schensted’s correspondence due to this writer and G. Viennot (independently),
and discussed in [Su, Lemma 8.3].

Now let P be any locally finite poset, and let x,y € P. A Hasse walk of
length n from x to y isasequence x = x,,Xx,,...,X, =y of elements of
P such that for 1 < i < n either x; covers x,_, or x, is covered by x,_, .
Thus a Hasse walk is just a walk (in the usual graph-theoretical sense, e.g.,
[B-C-L, p. 20; B-M, p. 12]) on the Hasse diagram (considered as a graph) of
P.If S, T are subsets of P, we also say that the Hasse walk x,,x,,...,x,
goes from S to T if x; € S and x, € T. Many of our enumerative results
concerning differential posets will deal with counting Hasse walks satisfying
various conditions. In this regard, it will be convenient to generalize the notation
a(0 — n) in a way best explained by an example. Namely, a(3 -7 — 5 — 8)
denotes the number of Hasse walks x,,x,,...,x, in P such that

Xy <X <Xy <Xy <X, of ranks 3,4,5,6,7,
X, > Xg > X, of ranks 7,6,5,
Xg <X, < Xg<Xy, Ofranks5,6,7,8.

Thus if we let e(x) denote the number of maximal chains in the interval [0, x],
then

(15) a0 —=n—0)=Y e(x),

x€P,
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while
2
an—-0-n)=|Y e(x)
xeP,
=a(n— 0 =a(0— n)’.
We also let

F(P.q)=Y¢"" =Y #P)q" =3 a(n)yq",

xeP n>0 n>0
the rank-generating function of P [St6, p. 99]. For the lattice Y',
F(Y" q)=TJ(1-4")".
i>1
3.2. Theorem. Let P be an r-differential poset, and define A,(q) by

(16) Y a(n—n+k)q" =A4,(9)F(P,q).
n>0

Then

(17) 34, q) cep )
k>0 k! I-a 201-¢%

In particular, A,(q) is a rational function of q whose only poles are at +1 (for
k>1)and —1 (for k> 2).

Proof. Write
tk qntk
G(q.t) = F(P,q)ZAk(q)k—! =) Y a(n— n+ k)
k>0 n>0k>0

Let y: KP - K [[g]] be the continuous linear transformation defined by y(x) =
¢’ for x € P. (Thus in particular y(P) = F(P,q).)

Now
e P) ZyD P)t
(18) k>0
_ZZ n—>n+k)qt —Glg.1).
n>0 k>0

On the other hand, by Corollary 2.6(c) we have
y(eDtP) _ erl+rt2/2y(eUtP)

ri+rt2)2 an—k — n)q"tk
=€ >0 A

n>0k>0

= /ZZZ n—k—>n) (qt)

n>0k>0

(19)

_ er1+r1'/2G(q , qt) ]
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Thus G(gq,t) satisfies
(20) Glg.0)=e""""Gg.qt),  G(q.0)=F(P.q),

and these conditions determine G(q,?) uniquely. But the power series

rt rt’
F(P,q)exp(l =" 2 _q2)>

is easily seen to satisfy (20), so the theorem is proved. O

The rational functions 4, (q) for 0 < k <5 are given by

Ayg) =1,
A,(q) = I:q’
A,)(q) = r(r(r_l)q;lr(_r ;2;)q
2 2
A= (<rl+—3;;(r1 - _2>3)q
A,(q) = (r +6r+3)+2r (r —3)q+r (r —6r+3)q
(1 —4) (1-¢%)?

Pt +10r +15) + 2.3 (% = 15)g + r2(r* = 10r + 15)¢*
(1-@’(1-¢%’

Note that for any locally finite graded poset with O and with finite rank sizes,
(16) holds when k& = 0. Moreover, it is easy to see that properties (D1) and
(D3) alone imply (16) when k = 1. However, (D1) and (D3) are not sufficient
to imply (16) when k > 2.

In the case P =Y (Young’s lattice), the problem of evaluating 4, (q) was
raised in [St6, solution to Exercise 4.21(b)] (where it was denoted A[k](q) ).
Theorem 3.2 can also be proved for P = Y by proving the symmetric function
identity

(21) Zsu g™ = Fv o) TT |TT - a"xx)” ' T[(1 -4"x)""

n>0 |[i<y i

A5(q) =

and then consndermg the coefficient of x,x,---x, on both sides. A combinato-
rial proof of (21) appears in [S-S].

We now come to one of our main results on enumerative properties of dif-
ferential posets.

3.3. Theorem. Let P be an r-differential poset. Let f(U,D) be any non-
commutative power series in the variables U and D over the field K such that
f(U, D) defines a linear transformation KP — KP . Then

(22) y(f(U,D)P)=A (q)F(P,q)
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for some power series A 7(a) depending only on f and r (not on P). To

compute A f(q) explicitly, repeatedly use Theorem 2.3 and Corollary 2.4(b) to
write

(23) f(U,D)P = g(U)P.

Then in the power series expansion of g(U), replace Uk by qkAk(q) to get
A.:(q).
S

Proof. It is clear that repeated applications of Theorem 2.3 and Corollary 2.4(b)
allow us to write f(U,D)P = g(U)P for some g(U). Now

Saln—n+kg"" = yU'P),

n>0
so by (16) we have

k k
Y(U'P)=q A (q)F(P,q).
Since y is linear and continuous, the proof follows. O
Let us consider further the polynomial g(U) of (23) when f(U, D) consists

of a single word w € {U,D}", where {U,D}" denotes the free monoid with
generators U and D. (Every f(U, D) is of course an infinite linear combina-

tion of such w.) Forany w € {U,D}" define inductively a polynomial 8,(2)
as follows:

g ¢(z) =1, where ¢ denotes the empty word,
(24) 8y,(2) = zg,(z), foranywe {U,D}",
gp,(2) = rg,:,(z) +(r+2)g,(z), foranyve{U,D}",

where ' denotes differentiation. Equivalently, for w = w(U, D) we have

(25) g,(z) = "z, rdjdz)e Y

since it is easy to check that the right-hand side of (25) satisfies the conditions
(24).

3.4. Corollary. Let P be an r-differential poset. If w € {U,D}", then
y(wP) =4, (9)F(P.q),

w

where A, (q) is obtained from g, (z) by replacing X with qkAk(q). (Thus

w
A, (q) is a nonnegative integral linear combination of the rational functions
k
q A4,(q).)
Proof. We claim that

(26) wP=g (U)P,

w

from which the proof will follow from Theorem 3.3. We use induction on the
length of w. If w = ¢, then (26) is clear since ¢P = P. Now assuming (26)
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for all words of length /-1, let v have length / — 1. Then
UvP = Ug, (U)P = g, (U)P,
DvP = Dg (U)P
= [rg;,(U) +(r+U)g,(U)]P (by Corollary 2.4(b))
= g, (U)P,
so the proof follows. [

3.5. Example. Let us illustrate the meaning of Corollary 3.4 with the example
w = UDUU . Thus

y(UDUUP)=> a(n-2—n—n—-1-n)q"

n>0
=Za(n—>n—l—>n—>n—2)q".
n>0
We have
g¢(z) =1,
gu(z) =z,
2
guU(Z) =z,
&pyy(2) =2rz+(r + z)z2
=2rz+rzz+z3,
2 3 4
Supyy(Z) =2rz" +rz" +z.
Hence

2 3 4
Aypyy(9) = 2rq"Ay(q) + rq"A;3(q) + g A,(q).
It follows that the coefficient of ¢” in

(27) F(P,q)(2rd* 4,(q) + ra’ 4,(q) + 4" 4,(a))

is equal to the number of Hasse walks x,, x,, X,, X;, X, in P of the form
Xy <X <X, > X3 <Xx,, where p(x,)=n.

Theorem 3.3 asserts that certain combinatorial invariants of P depend only
on F(P,q) (and of course on r). There is a special case which is even inde-
pendent of F(P,q).

3.6. Corollary. Preserve the notation of Theorem 3.3. Then {f(U,D)P, 5) =
A(0).
Proof. By definition of y, the coefficient of ¢" in y(f(U,D)P) is equal to
> (f(U.D)P,x).
p(x)=n

Now take the constant term of both sides of (22). The left-hand side becomes
(f(U,D)P,O0), while the right-hand side becomes A f(O) . O
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Let us now consider the special case of Corollary 3.6 where f(U,D) is a
single word w € {U,D}". Surprisingly there is a simple formula for A4,00).
More generally, we can give a formula for (wa,x) for any x € P. Let us
call the word w = w(U,D) = w,w,---w, of length [ a valid x-word if

(w@,x) # 0. Equivalently, (a) for all 1 < </, the number of D’s among
w,, W, ..., w, does not exceed the number of U’s, and (b) the difference
between the number of U’s and number of D’s in w is the rank p(x) of x.

3.7. Theorem. Let P be an r-differential poset, and let x € P . Suppose that
W =ww, - w, is avalid x-word. Let S ={i:w; =D}. Foreach i €S, let
a; be the number of D ’s in w to the right of w,, and let b, be the number of
U'sin w tothe right of w;. Set d;=b,—a,. Then

(wa ,X) = e(x)r#s H d,,
1€8
where e(x) is as in (15). Thus (summing over all x € P, where n is the rank
of elements x for which w is a valid x-word),
(w0, P) = a(0— n)r™ [ d,.
i€s
Proof. By successive uses of Theorem 2.2(b) we can put w in the form
(28) w=Y ¢, (wU'D,
i,j

where cij(w) is a polynomial in r, and where if clj(w) #0 then i—j = p(x).
Moreover, this representation is easily seen to be unique. Now

Uw = Zci,(w)U"“Df = ¢, (Uw) =c_, (w).
1,J

Moreover, by (4) we have

Dw =3¢, (w)DU'D’
L
=Y ¢, (w)(U'D+iry' ™D’
1.Jj

= cU.(Dw) =, ‘j_,(w) + i+ Dre,,, 'j(w).
In particular, when j =0 we have

(29(a)) Co(Uw) =¢,_; (w),
(29(b)) Co(Dw) = (i+ e, o(w).

Now let (28) operate on O. Since D’O = 0 for j > 0, we get (setting
p=px)), wo= cpo(w)U”O. Thus

(wa,x) = cpo(w)(Upa,x) = ¢ o(w)e(x).
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It is easy to see from (29(a),(b)) that
s
cpo(w) =" Ha’l ,
i€S
and the proof follows. O

3.8. Example. Let us continue Example 3.5 by asking for the value of
(UDUUO Xx) = (0 DDUDx) for x € P,, i.e., the number of Hasse walks
0 = Xy <X, <X, >Xx; <x, =x. In Theorem 3.7 take w = UDUU, so
S={2}, a,=2, b,=0, d,=2. We get (UDUUO, x) = 2re(x). Thus also

(UDUUOD ,P) = 2ra(0 — 2) = 272 (r + 1),

since (0 — 2) =r(r+1) by (12). We obtain the same answer by dividing (27)
by q2 and putting ¢ = 0.

A special case of Theorem 3.7 deserves special mention because it is well
known for Young’s lattice [St2, Proposition 17.2].

3.9. Corollary. Let P be an r-differential poset. Then, using the notation of
(15),
a0—n—0)=ex) =r"n.
xepP,
Proof. This is just the case w = D"U" (and thus x = 5) of Theorem 3.7. O

The next result evaluates the rational functions A4, (g) of Corollary 3.4 in
terms of generating functions. Let us introduce the following notation. Let Q
denote the set of all infinite sequences v = (v ,v,, ...) of nonnegative integers
such that 3" v, < oo. Write ¢ =¢"¢;?--- , and similarly for ¢*, s”, s*, etc.
Define v! = v 'y,l--- and set § = ES, and T =} ¢,. Finally write 4(w,q)

instead of 4, (q).
3.10. Proposition. Let P be an r-differential poset. Then

K2y /ll tV
3 ACDUSD U 9
unreEQ

_ expr q(S+T)+ S+T +ZS

I-q 1<y
1
+Zsltj+S+§Zs,.2
127 1
Proof. We first prove by induction on k that
GP=G(U,D,s;,....5.t,....1)P

(30) = eDS"eUt‘ S eDs'eU"P

= exp[rE, + U(S, + T,)IP
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where

Z 58, + Z st+Z(s+s/2

1<i<j<k k>i>j>1

k k
=ZS:" Tk=2t:"
i-1

i=1
Equation (30) is clear for kK =0, so assume it for kK — 1. Then

Ds;, Uty
e 'G._P

GP=e
Ds, Uty
=e e “explrE,_, +U(S,_,+T,_))IP.
Now apply Theorem 2.5(b) to the case f(U)=0, c=1, t=s,,and
h(U) = e"* exp[rE,_, + U(S,_, + T,_))].
We obtain
(31) G, P =h(U +rs;)exp (rsk+%rs,f+skU)P.

It is easy to check that the right-hand sides of (30) and (31) agree, so (30) is
proved.

Now apply the linear transformation y defined in the proof of Theorem 3.2
to (30). We get

U
F(P.g) Y AD"U" DU g5
4 DeNt uv.

(32) _ erEky(EU(SA+Tk)P)

aS, +T) &S, +T)
1-¢ 2(1-¢%)

by (19) and Theorem 3.2. Now let kK — oo in (32) and divide by F(P,q) to
complete the proof. O

=F(P,q)expr |E, +

We next consider a variation of our previous results which involves closed
Hasse walks, i.e ., Hasse walks which begin and end at the same element of P .
We use the notation x instead of a to denote that we are enumerating closed
walks. Thus, e.g., k(n — n + k — n) denotes the number of Hasse walks
Xg» Xy s ..o Xy Such that p(xg) =n, X, <X, <= <X > X > > Xy,
and x,, = x,. If e(x,y) denotes the number of maximal chains of the interval
[x,y] (with e(x,y) =0 if x £ y), then it follows that

k(n—n+k—n)y=3 > e(x,y).
XEP, yEP 14

We come to the “closed analogue” of Theorem 3.2.
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3.11. Theorem. Let P be an r-differential poset, and fix k € N. Then

S k(n—n+k—n)g"=rki(1-q) " F(P.q).

n>0

Proof. We have

(33) k(n—n+k—n)=3 (DUx,x).
xePpP,

Since (D'U’x,x) =0 if i # j, it follows that

k n
Glg,t) = Z x(n—>n+k—»n)t qz
K om>0 (k1)
Dt U p(x)
= (e7e x,x)q
xXeP
(34) =e" S (%" x, x)g""
XEP

by Theorem 2.5(a). But

(35) x(n—k—»n—»n—k)zic(n—uz—k—»n):Z(Ukax,x).

xXEP,
Hence
tkqn
Glg.)=e" Y kn—k—>n—-n-k)—5
k.n>0 (k”

=e¢"Glq,qt).

The unique solution to G(q,1) = e"G(q, qt) satisfying G(q,0) = F(P,q) is
given by

(36) Gg.1) = F(P.q)exp <rr_t—5) .

Equating coefficients of t* / (k!)2 on both sides of (36) completes the proof. n O

Theorem 3.11 is yet another result already known for Young’s lattice. It was
conjectured by B. Sagan and then proved combinatorially in [S-S]. It can also
be proved by equating coefficients of x,---x,p, - ykq" on both sides of the
identity

S0, e = TTa-am 7 TJa-xy,d"H7"
Au m>1 1,

This identity is essentially the special case (v, ,v,,v
[St4, Theorem 5.1].
The following theorem is the “closed analogue” of Theorem 3.3.

4 --)=1(q.,0,0,...) of
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3.12. Theorem. Let P be an r-differential poset, and let f(U,D) be as in
Theorem 3.3. Then

S/ (U.D)x, x)q"™ = B (q)F(P,q)

xE€P

for some power series B, (q) depending only on f and r (not on P). To
compute B f(q) explicitly, repeatedly use Corollary 2.4(a) to write

(37) f(U.D)=3 a,U'D.

Then
k —k
=Y Kkla,rq"(1-q)
k

Proof . Clearly Corollary 2.4(a) allows f (U, D) to be written in the form (37).
The proof follows from the fact that (U ‘D'x, x) =0 if i # j, together with
(35) and Theorem 3.11. O

3.13. Example. Let x(n — n+ 1 — n—1— n) denote the number of closed
Hasse walks x;, < x; > x, > x; < x, = x;, with p(x,) = n. Thus

Zx(n—>n+ l1-n-1-n)q"= Z(UDDUx,x)qp(x).

n>0 x€P

It is easily computed that UDDU = U’D? + 2rUD . Hence by Theorem 3.12,

2qr2 2(12r2
+

I-g (1-9)

If, as in the previous example, f(U,D) is a single word w(U,D) €
{U,D}" which contains m U’sand m D’s, then it is easy to see that

w(U,D) = Zak

Y k(n—n+l—-n-1-n)q"=
n>0

2)F(P,q). ]

where
> a K= (2 4 e’
k "dz '
A corollary of Theorem 3.12 is of particular interest.

3.14. Corollary. Let P be an r-differential poset. Let k,, (n) denote the total
number of closed Hasse walks of length 2k starting at P, . Then for fixed k,

(2k)r* (1 +q>k
38 = —T9) Fp.g).
(38) ';)sz n)g" = S i) &0
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Proof. We have
g (D+U)t p(x)
E ’Czk(”)m = E (e X,X)q

k.n>0 xXEP

_ en-/z Z(e“emx x)q p(x)
xeP

(by Corollary 2.6(a))
_ e”z/zG(q ’ qtz) ,
where G(q,t) is defined by (34). Thus by (36),

n 2k
t 1 rqt*
E KZk(n)%zF(P,q)exp(zrt +lq )

k.n>0 q

Extracting the coefficient of 12 /(2k)! on both sides yields the desired result. O
If we set ¢ =0 in Corollary 3.14, we obtain

(39) Ky, (0) = (2K)1F* )25kt

This result is already known for Young’s lattice. It follows from [Be] using tools

from representation theory (viz., the theory of the Brauer algebra of Sp(2n) or

O(n) ), and was subsequently given a combinatorial proof by this writer and G.

Viennot (independently). See also [Su, Lemma 8.3].
Another generalization of (39) is the following.

3.15. Corollary. Preserve the notation of Theorem 2.5. Then
( (f(U)+D)t h(U)O 0 ffrs a’sh( l)

Proof Apply both sides of Theorem 2.5(a) to 0 and then extract the coefficient
of O. Since ¢”0 = O, the proof follows from (14). O

The following is a sample special case of the preceding corollary.

3.16. Corollary. Let P be an r-differential poset, and fix k,n € P. Then the
number of closed Hasse walks

~

0=x0<x1<--~<xk,xk+l,...,x =0

2(k+n)
in P is equal to r"**(2n+k)!/2"n!.
Proof. The desired number N is given by

N = ((U+D)"*u*0,0),

which by the preceding corollary is the coefficient of ¢ "+k/ (2n + k)! in

. k k
efo rsds(rt)k kK rﬂ/z_Zr"+ Qn+k) "

rte - x
=0 2"n! (2n+k)!

so the proof follows. O

We next give the analogue of Corollary 3.14 for arbitrary (i.e ., not necessarily
closed) Hasse walks.
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3.17. Proposition. Let P be an r-differential poset. Let ,(j — k) denote the
number of Hasse walks from Pj to P, of length n. Then

Jj_k.,n 2 2\,2
Y 5,0 —kEEL ZF(P gz)expr [(‘IHZ)I LUra)d+z J .
j k>0 n: -4z 2(1-g¢°z%)
Proof. We have
Jj_k—j,n
. qgz 't -! D
(40) > U= k)T =y(e(z v )'P).
j k>0

Apply Theorem 2.5(b) to the case f(U) = z7'U, c=1z, h(U) =1 to get
(41) eFTUHDIp _ oy [rzz +ir(1+ 2+ (z+ 27| P,

It follows from Theorem 3.2 that

42) (VP = F(P,q)exp

l-q 2(1-¢%)

rg(z +z ")t + rqz(z + z_l)tzl

Combining (40), (41), and (42) yields

Jj k—j.n
: qz t
Z 6n(1_'k)_—n'_—
J .k .n>0
-1 2 —1,2,2
= F(P.q)expr Zf+%(1+z2)t2+q(z+z )t q(z+z 2)z]
L-q 2(1-¢%)
! 2,-2 2,,2
=F(P,q)expr (g2 +Z)t+(1+qz )(12+Z)t |
1-q 20-4)

Now substitute gz for g to complete the proof. O

Note that setting z = 0 in Proposition 3.17 yields (since 6,(0 — j) =
6,(j—0))

Jj.n
N
> 8,0~ )%

1
=expr [qt +=(1+ qz)tz]
j.n>0

2
_ 6”2 /Zer(ql+q212/2)
12/2 . qj tj
=er / Za(0—>])-7!—,
Jj20
from which it follows that
a(0 — j)r'"(j + 2m)!

J Jj12"m!

Jj+2m

(0—j)=

Note that if we put j = 0 then we get (39), while putting ¢ = 1 in the
above generating function yields (13). It can be shown, similarly to the proof
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of Theorem 3.7, that if x € P, then the number e, (x) of Hasse paths of

+2m
length j + 2m from O to x is given by

_e(x)r"(j +2m)!

B 12" m! ‘

6_7j+2m (.X)

For Young’s lattice the above formula for e
proof in [Su, Lemma 8.7].

+2m(X) 1s given a combinatorial

4. CHARACTERISTIC POLYNOMIALS

In this section we will compute the characteristic polynomials of certain linear
transformations and matrices associated with differential posets. We will apply
these results to obtain more structural properties of differential posets.

If A: KP — KP isalinear transformation, then let A, denote the restriction
of 4 t0 K Pj. Note that such notation as AB; is unambiguous since A(B j) and
(AB) j have the same meaning. For a linear transformation 4: VV — V' on a
finite-dimensional vector space V', write Ch A = Ch(A4, A) for the characteristic
polynomial det(i/ — A) (normalized to be monic) of 4. For a differential
poset P, we let p; = #Pj , the number of elements of rank j, and we set
Apj = pj —pj—l .

4.1. Theorem. Let P be an r-differential poset and let j € N. Then

J
(43) Ch(UD,) = [J(a=ri)*"~.

=0
Proof. Induction on j. Since clearly ChUD, = 4, (43) is valid for j = 0.
Assume (43) for j. Suppose that 4: V' — W and B: W — V' are linear trans-
formations on finite-dimensional vector spaces V' and W and that dimV =v
and dim W = w . Then

Ch(BA) = """ Ch(A4B).
Applying this fact to D]H and U, yields
N Ap, .y
Ch(UD,,, ,4) =" Ch(DU, 1)
= 2% Ch(UD; +rI .2) (by Theorem 2.2)
=i Ch(UD, A=)

J
=AM = e+ 1) (by (43))
(=0

J+1
=[Ix - ri)*"
=0

and (43) follows for all j by induction. O
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4.2. Corollary. For any differential poset P, the linear transformation D is
surjective, and U s injective.

Proof. 1t suffices to show that for each j € N, Dj. 41 1s surjective and U ; is
injective. Since DU = UD + rI , we have by Theorem 4.1 that

Ch(DU,) = [¢a = ri+ 1))*" .

T :\,
S

Hence DU ; has no zero eigenvalues, so is invertible. Thus D, is surjective
and U, is injective. O

4.3. Corollary. Every differential poset P satisfies py < p, < p, <

Proof. Since U: KPJ. — KPJ.+l is injective we have p,<p Or use (43),

J+1
since the multiplicity of an eigenvalue is nonnegative. [
If 0<i<j, then write

Pu,” PUP_ U UP—{xePz<p (x) < j}.

Thus P, is a rank-selected subposet of P in the sense of [St6, p. 131],
and the number of maximal chains in P, is a(i — j). We abbreviate F,

[0} {71
as P. (agreeing with our previous notation) and PU 1] as Pj_l,j. For the

1
terminology used in the next corollary, see e.g. [St7].

4.4. Corollary. Every differential poset can be partitioned into saturated infinite
chains. As a consequence, for any 0 < i < j the poset P[L i has the k-Sperner
property forall 1 <k <j—i+1.

Proof. Since Py <p, <--- and U is injective, it follows just as in the proof
of [St7, Lemma 1.1] that P can be partitioned into saturated infinite chains.
Thus P[i ;) can be partitioned into saturated chains, all going from P to Pj
for some s . It is then a standard simple argument that P[, 1 has the k-Sperner

property for 1 <k <j—i+1. O

4.5. Corollary. Let P be an r-differential poset and Q an s-differential poset
with p, = #P and q, = #Q,, and let i,j € P. Suppose that P _, , = QJ—IJ
(as posets or simply as graphs, where we identify P,_, & and Q, | . with their
Hasse diagrams). Then one of the following two alternatzves is true:
(@) r=s,i=j,and p =q, for 0 <k <.
(b) One of (r,i) and (s,j) is equal to (1,2) and the other is equal to
(2.1). Moreover, P_,  and Q,,, are isomorphic to the complete
bipartite graph K, ,.

Proof. We will show that, except in the situation of (b), we can recover the
numbers r,i,p,,p,,....p, from P_, . 1Itisa simple consequence of prop-
erties (D1) and (D )that P_, s connected Hence if p, > p,_, then (since

p, > p,_, always) we can determme the decomposition P,_, ,=P,_, UP and
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thus the linear transformation UD,. If p,_, = p, then we cannot distinguish
between UD, and DU,_, but in this case Ch(UD,) = Ch(DU,_,). Thus it is
always possible to compute Ch(UD,) from P _, ,» even if we are only given
P,_, , as an (undirected) graph.

Now note that Ch(UD;) has degree at least one, and degCh(UD,) = 1 if
andonly if r =1 and i =1 (so P, has one element). Hence we can assume
deg Ch(UD,) > 2.

By Theorem 4.1 the largest eigenvalue o, of UD, is ri, and this eigenvalue
has multiplicity p, = 1. Since by assumption deg Ch(UD,) > 2, there is at least
one additional eigenvalue. Again by Theorem 4.1, the second largest eigenvalue
a, is r(i — 1) with multiplicity P, — Py, unless p, = p,. Now p, =p, (=1)
if and only if r = 1. Itis then evident that p, = 2, so in this case a, = r(i—2)
with multiplicity p, — p, = 1. It follows that if «, has multiplicity larger than
one, then a, =r(i —1). From o, =ri and a, =r(i — 1) we can determine i
and r. Then from (43) we can easily recover PysPys---D,-

There remains the case that «, has multiplicity one, i.e., r =1 or 2. Now
when r = 2 it is easily seen that p, =1, p, =2, p, =5. Thus either i =1
and P,_, ; =K, ,, or else there is a third largest eigenvalue a; = r(i —2) of
multiplicity p, — p; = 3. Similarly when r =1 we see that p,=1, p, =1,
py =2, p;=3. Thuseither i =1 (which is equivalent to degCh(UD,) = 1),
or i =2 (in which case P,_, i = K, ,), or there is a third largest eigenvalue
a, = r(i—3) of multiplicity p;—p, = 1. Hence unless (r,i)=(1,2) or (2,1)
(in which case P,_, /=K, ,)or (r,i)=(1,1) (so degCh(UD,) = 1), we can
determine whether a, = r(i —2) or a, = r(i — 3). From this and a, =ri we
can determine r and i, and then get Py, ---»p; from (43) as before. O

We can compute the eigenvectors of UDJ. in an inductive way, as described
by the next result.

4.6. Proposition. Let E j(ri) denote the eigenspace of UDJ. belonging to the
eigenvalue ri. Then

E;(0) =kerD;:={f € KP;: Df =0}
(44) 1
=(UP,_))" = {f €KP;: (f,Ug)=0forall ge KPj_l}.
Moreover, E j(ri) =UE —i(0) for 1 < i < j. In particular, the eigenvector
belonging to the largest eigenvalue jr (or the unique positive eigenvector, up to
scalar multiplication) is given by 3 . p, (X)X, where e(x) is as in (15).

Proof. Since U is injective, ker UD; = kerD;. Now for f € KP,,
(f Ug)=0 forgeKP,_,
©(Df,g)=0 forallgeKP,_

1

This proves (44).
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Let f €E, (0). Then

UDU'f)=riU'f + U"'Df (by Corollary 2.4(a))
= riU'f.
Hence U'Ej_,.(O) C Ej(ri). But (since U is injective) dim UiEj._l,(O) =
dimEj_l.(O) = Apj_i, while by (43) dimEj(ri) <Ap;_;. (Actually, it fol-
lows from (43) that dim E j(ri) = Apj_,. since UDj 1s selfadjoint.) Hence
E;(ri) = UiEj_l.(O) , as desired. O

For Young’s lattice we can be even more explicit about the eigenvectors of
UDj. . We use notation and terminology from [M] throughout.

4.7. Proposition. Let xl denote the irreducible character of the symmetric
group Sj. corresponding to the partition A of j. Then for any partition u of j,
the vector

1
(43) X, = dwh

ARy
is an eigenvector for UDJ: KY, — KY, belonging to the eigenvalue m,(u) (the
number of parts of u equal to 1). Moreover, the X p 's give a complete set of
orthogonal eigenvectors for UD,.

Proof. We use the “representation” of Young’s lattice discussed after the proof
of Theorem 2.5. An eigenvector of UD; belonging to the eigenvalue i then
corresponds to a symmetric function f of degree j satisfying

0 .
pl'BTIf_lf'

ml(ﬂ)p;"z(/l) ..

But the power sum symmetric function p,=p

- clearly satisfies

0
pla_plp” = ml(#)P,,
Now by [M, (7.8)], )
pﬂ = ;X (,U)SA.

Since A € Yj corresponds to the Schur function s, , it follows that UDjX y =
m ()X L as desired. Completeness and orthogonality follow from the fact that
the b, >s with u F k form a basis for all symmetric functions of degree k (over
a field of characteristic 0) [M, (2.12)], and that the p,’s are orthogonal with
respect to the scalar product defined by (s, ,sﬂ) =0, p M, (4.7)]. O

Note. One could also give a more straightforward but less elegant proof of
Proposition 4.7 by using known properties of the characters of S ;o show di-
rectly that the X .S satisfy the conditions necessary to deduce from Proposition
4.6 that they are eigenvectors of UD,.
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Since UD I’z K YJ - K YJ. has multiple eigenvalues, the eigenvectors X P of
(45) are not unique. In other words, we cannot determine the character values
xl(,u) directly from UDJ. . This suggests the problem of finding additional self-
adjoint operators commuting with UD : for which the X u ’s are unique simulta-
neous eigenvectors. Once again the theory of symmetric functions provides a so-
lution. Given i € P, define continuous linear transformations U (i): KY - KY
as follows: If A €Y, then

l)ﬂ. Z ht(u ,1) ’ /1 Z ht/l z/)

where u ranges over all partitions such that A C 4 and A — u is a border strip
of length i [M, pp. 31-32], and v ranges over all partitions such that v C 4
and A—v is a border strip of length i. Moreover, the height ht(6) of a border
strip 0 is, following [M], one less than the number of rows it occupies. Clearly
U(i) and D(i) are adjoint with respect to the pairing ( , ).

4.8. Proposition. The transformations U(i)D(i), i > 1, pairwise commute.
The vector X P of (45) is an eigenvector for U (i)D(i) j with eigenvalue im (u),
where m(u) is the number of parts of u equal to i. Hence (since u is deter-
mined by the m(u) ’s) the vectors X, for u v j are the unique simultaneous

eigenvectors for U(z)D( );, 1<i< j

Proof. We represent elements of K Yj by symmetric functions of degree j, as
in the proof of Proposition 4.7. It follows from [M, Example 11, pp. 31-32]
that U(i) corresponds to multiplication by p,, and from [M, Example 3(c),
p. 44] that D(i) corresponds to the operator i0/0p,. Hence the U(i)D(i)’s
commute. Moreover, from the proof of Proposition 4.7 we have that X , cor-
responds to p,. Since

;i ap =—p, =im(W)p,,

the proof follows. O

Equation (43) suggests the problem of computing the characteristic polyno-
mials of other linear transformations K P, — KP defined by power series in U

and D . Define a continuous endomorphism ¢ € End(I?P) to be balanced if
for all j > 0 the image a(KPj) of KPJ is contained in KPJ.. Clearly a word
w € {U,D}" is balanced if and only if it contains the same number of U’s
and D’s. Moreover, if a power series f(U,D) =3 c,w defines a balanced
endomorphism of KP, then we do not change the endomorphism by delet-

ing all terms ¢, w in f(U,D) for which w is not balanced. (For instance,
DU? — UDU — rU is balanced, so DU? — UDU - rU = 0.) Hence we can

assume a balanced endomorphism f (U, D) is an (infinite) linear combination
of balanced words.
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4.9. Proposition. Let s(n,k) and S(n, k) denote Stirling numbers of the first
and second kinds, respectively. Then

(46) (UD)" Zr" ~S(n, kU
(47) U'D" = Zn:r"_ks(n,k)(UD)k
k=0
(48) = UD(UD — r)(UD = 2r)---(UD — (n— 1)r).

Proof. Equation (46) is an immediate consequence of [C, Exercise 2, p. 220].
It is also easy to prove by induction on 7, using Corollary 2.4(a) and the
recurrence [C, Theorem A, p. 208; St6, (23), p. 33]

S(n+1,k)=kS(n.k)+Sn,k—1).

(47) and (48) are then immediate consequences of standard properties of Stir-
ling numbers [C, equation 5c, p. 213; St6, p. 35]. O

4.10. Lemma. Let f(U, D) be a power series over K which defines a balanced
endomorphism of KP. Then f(U,D) can be expressed as a power series in
UD over K, i.e,

(49) f(U,D)=>a,UD)" a,€K.

n>0
Proof. When we use Corollary 2.4(a) to write f(U,D) in the form (37), we
do not alter the property of being balanced. Hence we can write

f(U,D)=>"bU'D", b,eK.

n>0
Using (47) we can then write f(U, D) in the form (49). O

4.11. Corollary. Let P be a differential poset. Then

(a) The algebra of all power series f(U,D) over K which define balanced
endomorphisms of KP is commutative.

(b) If f(U,D) isasin (a), then f is selfadjoint with respect to the pairing
(), ie, (f(U,D)u,v)={(u,f(U,DW) forall ue KP, veKP.

Proof. (a) Immediate from (49).
(b) The word UD , and hence (UD)" , is clearly selfadjoint, so by the linearity
and continuity of taking adjoints the series (49) is also selfadjoint. [

Corollary 4.11(b) has the following combinatorial significance. Let 1, ,1,,

,1,, be a sequence of the symbols < and > with n <’s and n >’s. Let
x,y € P for some n (where P is of course a differential poset). Then the
number of Hasse walks

X =Xl X Xy X, =V



946 R. P. STANLEY

is equal to the number

Y =Yoh ViV Vo = X

4.12. Proposition. Let P be an r-differential poset with p, = #P , and let
f(U,D) be a power series over K which defines a balanced endomorphism of
KP. Write

(50) f(U,D) Zb (UD)"
and define
(51) a, =) b,(r)",

or equivalently,
1
a,t _ _Ci_ tz
(52) Z_—i! = (rz,dz>e

Then the characteristic polynomial of the linear transformation f(U,D): KP,
— KP; is given by

J
Ap,-,
(53) Chf(U,D), =]](A—a)>"".
i=0
Moreover, the space E j(rz' ) of Proposition 4.6 is an eigenspace for the eigenvalue

«Q, .

Proof. Let A: V — V be any linear transformation on a finite-dimensional K-
vector space V', and let f(A4) be a formal power series over K which defines
a linear transformation V' — V. If Ch4 = [[(A — «;), then Chf(4) =
[T(A2 — f(«,)). Hence (53) follows from (50), (51), and (43). Moreover, if a
vector v € V satisfies Av = av, then f(4)v = f(a)v. Hence the statement
about E. (rl) follows.
To show (52) it suffices by linearity and continuity to assume f(U,D) =

(UD)", so a;, = (r i)" . But it is routine to see that

(e ) ey e

and the proof follows after setting z=1. O

] I

4.13. Example. Suppose f(U,D) = U"D". Then by the previous proposi-
tion and (48), we get
J
. . Ap,
Ch(U"D"), =[[A-r"ii=1)---(i—n+ 1))
1=0
Note that the eigenvalue O has multiplicity p, — p,_,, so rank(U"D") , =
p,_, since U "D" is selfadjoint. This is consistent with the observation that
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rank(U"D"); = rank(D"); since U" is injective, and rank(D"); = p,_; since
D" is surjective.

Our last topic of this section will be the computation of the spectrum (eigen-
values of the adjacency matrix) of certain graphs associated with differential
posets. For any locally finite poset Q, define the Hasse graph #(Q) to be the
(undirected) graph with vertex set Q, and with x,y € Q joined by an edge
if x covers y or y covers x. Let A(G) denote the adjacency matrix of G
[B-C-L; C-D-S] and write

Ch G = Ch A(G) = det(AI — A(G)).

Regarding r as fixed, define for 1 <a<b—-1the (b-a+2)x(b-a+2)
tridiagonal matrix

r0 ar 0 0 T
1 0 (a+Dr 0
0 1 0
Mab = ’
0 br
L 1 0

and write Cab = Ch Mab

4.14. Theorem. Let P be an r-differential poset with p, = #P,, and let 0 <
i<j. Then

(54) Ch# (P, ;) (HCA”/ ) ( ]"[ CA"'WH,,,).

b=j—i+l

Proof. Regard i and j as fixed throughout. Set

Let A denote the adjacency matrix of Z(P i J]) Let v € KP[,. N and write
(uniquely)

V=040, Y, v, €KP,.
Then A acts on the vector space KP, [, gl by
Av =Dv, , +(Uv,+ Dv, ,) + (Uv,_, + Dv, ;)

(55) i+1
+(Uv,_,+Dv) + Uvj_l .

LetO0#ve€ KP and Du=0,where i<s<j.Let T =[1,,7,,...,T;

Jj— s+l]

be an eigenvector of M, jos = M. s belonging to the eigenvalue . We claim
that the element
(56) Ew,T)=tv+1,0v+--+1,_ U0



948 R. P. STANLEY

is an eigenvector of 4 belonging to «. For using (55), we have

N

AE(W,T)=(U+D)tw+1,0v+--+7,_ U "oy +1,_, DU~

j—s Jj— s+1
=17,U0v+ 12(U2v +rv) + 13(U v + 2rUv)
+- 4T (Uj_s +(j-s— l)rUj_s_zv)

+T, s)rv’

Jj= s+1(
using Corollary 2.4(a) and Dv = 0. Rearranging yields

AE(v,T) = 1yrv + (1, + 2rty)Uv + (7, + 3rt4)U2v

. Jj—s—1
(57) +"'+(Tj_s_1+(J—S)"Tj_s+1)U v
j—s
"’T,—sU V.
Now M, J._ST = aT means that
rt, = at,, T, 21Ty =at,, ... T =at .

Thus (57) becomes AE(v,T)=aE(v,T), proving the claim.

Similarly let v € KP, and Dv = 0, where 0 < s </, and let T =
[7,.7,, T, 1+l] be an eigenvector of M,_ s = M. s belonging to
a. Then analogous reasoning (which we omlt) shows that the element
(58) Ew, T)=t U v+0,U " ot vr,_, U0

J—i+1

is an eigenvector of 4 belonging to «.

We now claim the following two facts.

(a) The matrices M, are diagonalizable so they have b —a + 2 linearly
independent eigenvectors. (In fact, M, has distinct eigenvalues.)

(b) Denote by é’ a complete set of linearly independent eigenvectors of
M. ,for 0<s < j. Given Te &, ,let E(v,T) denote the corresponding
elgenvector (56) or (58) of 4 (where 0#veKP and Dv = 0). Let &
be a basis for {v € KP.: Dv = 0}. Then all the elgenvectors E(v, T) where
0<s<j,veR, and T € & , form a complete set of p, + p D,
linearly independent eigenvectors of A.

To prove (a), G. Strang has pointed out to me that the diagonal matrix
1/2
)"

has the property that DMabD_l is symmetric. Hence M, is diagonalizable.
(It follows from the theory of tridiagonal matrices that in fact M , has distinct
eigenvalues; see [M-M, Chapter 111.3.7.1].)

To show (b), let V, = {v € KP,: Dv = 0}. Since D is surjective, we have
dim V= Ap . We claim that

1+l

2,172 b—a—1

D = diag[! , (ar)""*  (a(a + 1)r?) a(@a+1)---br

(59) KP. =V ®UV,_ & --eUV, (vector space direct sum).
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(59) is trivial for s = 0. Assuming for s — 1, by (44) we have
KP =V o U(KP_,)
s—1
=V,eUWV,_ UV _,+---+U V)
=VX@UVS_1@...@UXVO'

since U is injective. Thus (59) is proved.

Now a straightforward argument shows that if 7 = [Ty oo Tyt ,0]" and
M,T =aT,then' T=0. For 0<s < and v E B, asabove let W(v s)
denote the span of the projections onto KP, (with respect to the scalar prod-
uct ( , ) on KB, ;;) of the vectors E(v, T) where T € & . Thus by (56),
(58), and the ﬁrst sentence of this paragraph, we have that W (v s) is spanned

by vectors U’ v where v € V.. By (59) the subspaces W, (v s) are linearly
independent. Hence if W (v ,s) denotes the span of the vectors E(w,T) them-
selves, then the subspaces W (v ,s) are linearly independent. Thus to complete
the proof of (b), we need to show that for fixed 0 < s < j and v € V., the
vectors E(v,T) are linearly independent (where 7' ranges over &), and that
we have found a total of #P 11near1y independent eigenvectors.

Since v ;é 0, U is lnjCCthC and U maps KP, to KP, we have that the

s—l

a+1”?
vectors U’ v,U ,U’™v (for 0 < s < j) are linearly independent.
Since the vectors T e &, are linearly independent by definition, it follows
from the definition (56) and (58) of E(v,T) that the vectors E(v,T), where
T e gs , are linearly independent. Hence the vectors E(v,T) for 0 < s < j,
v E % , T e gs , are linearly independent eigenvectors for A.

Now #% = Ap_ (since D: KP, — KP,_, is surjective), and

4 = { —i+1, O <s< z ,
J—s+1, I<s<j.
Thus we have found a total of
J
d_(RBYHE) = p,+ b+ + b,
s=0
linearly independent eigenvectors of A, completing the proof of (b).

If T belongs to the eigenvalue o of M. s (for 0<s<j), then E(v,T)
also belongs to the eigenvalue a of A. Thus the eigenvector T leads to a
total of dim V| = Ap_ occurrences of the eigenvalue a of 4. (We cannot
say that o has multlpllclty Ap_, since it can happen that another eigenvalue
o' of some different M » could equal «.) Hence each s contributes a factor

(ChM.. _)*” 1o Ch#(P ', ;1) and (54) follows. O

$*,J—5
For small values of j —i we have the following more explicit formulas for
Ch# (P[, ’ j]) , obtained by computing each C.. s
AP

Ch%( [ J])
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J
ChZ(F -1 J]) =% H(lz - "S)ApH )

s=1

J
02— A TR - r2s = DA,

Ch#Z (P o2) =
s=2
Ch%( s j]) AP] (12 _ r)Ap,—n (13 _ 3r/1)Apj_2
J
-H(,l4 —3r(s - 1),12 + rzs(s _ 2))Apj—s ’
5s=3

: (,1“ — 6ra> +3r%)%7

H(z —2r(2s — 3)A° + 312 (P = 3s + AP
It is easy to see that
_Jb-a+2, ifa=b (mod2),
l.ankM"”_{b—a+l ifa# b (mod 2).

It then follows from Theorem 4.14 that the adjacency matrix 4 of #(P,
satisfies

[i J])

2, +p; 3+ +p,,), ifi=j (mod2),
z(pj_1+pj_3+"'+p,)’ lflif(mOdz)

Note that the proof of Theorem 4.14 determines not only the eigenvalues
of A, but also the eigenvectors (assuming we know the eigenvectors of M,
and a basis & for V. = {v € KP,: Kv = 0}). In particular, let T =
P SIS S +l] be the unique (up to scalar multiplication) nonnegative
eigenvector of M., J (i.e., the eigenvector belonging to the largest eigenvalue
of M, ). Then the unique nonnegative eigenvector of A4 is given by

i+1,j
Z s 1+IZ

x€P;

rank 4 = {

Remark. For this remark we assume familiarity with the Brauer algebra %f =

Mf(x) as defined in [H-W]. Mf is a complex semisimple algebra with a filtration
of two-sided ideals

Mf=9/f(0) 3%(2)3--0% (2 [f—+2]) = (0).

2
Let é?’f(s) = %/%}(25). In particular, @f(l) = (CSf , the group algebra of
the symmetric group S - There is also a natural inclusion @’f_l(s) ca@ f(s).

Let Y denote Young’s lattice. What we wish to note here is that the graph
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%(Y[J_zs+l g7 is just the “Brattelli diagram” of the pair é’l_l(s) C é’l(s). (If
Jj iseven and s = (j + 2)/2, then we set Y[_1 = Y[0 1 .) See, for instance,
[G-H-J], where the significance of the eigenvalues and eigenvectors of Brattelli
diagrams is briefly discussed.

5. FIBONACCI DIFFERENTIAL POSETS

An obvious problem at this point is to produce further examples of differen-
tial posets. Let us first note the following result, whose proof is routine and will
be omitted.

5.1. Propesition. Suppose P is an r-differential poset and Q is an s-differen-
tial poset. Then P x Q is an (r + s)-differential poset. O

We will call a differential poset P irreducible if it cannot be written as a
product P, x P, of differential posets P,. To classify the differential posets it
of course suffices to find all irreducible ones. The purpose of this section is to
describe and analyze a certain irreducible r-differential poset, denoted Z(r),
which has some interesting properties.

Let 4, be an alphabet of r+1 letters. We will regard the letters as consisting
of the number 1 with r different “colors,” denoted 1,,1,,...,1 , together
with the number 2. Thus 4, = {1,,1,,...,1,,2}. Let A’ denote the free
monoid generated by 4, , i.e., A: consists of all finite words a,a,---a, (in-
cluding the empty word &) of elements of 4, .

5.2. Definition. Let r € P. Define a poset Z(r) as follows. As a set, Z(r)
coincides with A:. If w e Z(r), then define w’ to be covered by w in Z(r)
if either:

(a) w' is obtained from w by changinga 2 to some 1 ; » provided that the
only letters to the left of this 2 are also 2’s, or
(b) w’ is obtained from w by deleting the first letter of the form 1.

This defines the cover relations in Z(r), and hence by transitivity a partial
ordering of Z(r). We call Z(r) the Fibonacci r-differential poset. [

Thus if w =2’ , then w covers the rj elements
(60) C (w)={2"1,27"7":0<i<j-1,1<m<r}
and is covered by the r(j + 1) elements
(61) Ctw)={2"1,27"0<i<j, 1<m<r},
while if w =21 (v forsome v € Z(r), then w covers the rj+ 1 elements
(62) C (w)={2"1,2""""Lv:0<i<j-1, 1<m<ryu{2v},
and is covered by the r(j + 1) + 1 elements
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5.3. Theorem. Z(r) is an irreducible r-differential poset, with rank-generating
function

(64) F(Z(r),a)=(1-rq—q")

Proof. Tt is easy to see that (D1) is satisfied, with the rank p(w) of w € Z(r)
given by the sum of its letters (ignoring the subscripts on the 1°s). From this
it is easy to deduce (64). The above expressions (60)-(63) for C (w) and
C*(w) show that (D3) is satisfied; it remains to show (D2) and irreducibility.

If u and u' are two unequal elements which cover a common element w ,
then by (61) and (63) we must have one of the following two situations (where
y and v denote arbitrary elements of Z(r)):

@w=2y, u=212", ' =2"12"y (a<b),

) w=210v, u=21 2"Lv, u =2""v.
In both cases it is easily seen that ¥ and #' determine w . Thus for any u and
u', we have |C~(u)Nn C~(«')] < 1. Now in case (a) there is a unique element
w =2 y which covers both u and u'; while in case (b) there is a unique
element w' = 2/*'1,v covering both u and ' . Hence

-1

(65) ICTwnC W) =1=|CTwynC W) =1.

By similar reasoning the converse to (65) is shown. Thus we have proved (D2).

Now note that the element 2 of Z(r) covers exactly r elements, while all
other elements 1,1, of Z(r) of rank 2 cover exactly one element. Suppose
Z(r) = P x Q, where |[P| > 1 and |Q| > 1. Then P and Q both have a
O, and if P has ¢ elements X,,...,X, covering O (1 <c<r-1) then
Q has r —c elements y,,...,y,__  covering O. Thus r > 2. But then each
element (x,,y,) of PxQ hasrank 2 and covers the two elements (5 Y ,) and

(x;, 5) . This gives a contradiction unless r =2 and ¢ =1, so assume r = 2.
If P and Q are differential with P x Q = Z(2), then P and @ must be
1-differential. Any 1-differential poset has a O, a unique element X, covering
5, and two elements x, and x; covering x, (by (D3)). By (D2), there is a
unique element y, covering both x, and x; , and then by (D2) elements x,
covering Xx,, and xg covering x;. Hence F(P,q)=1+q+ 2q2 + 3q3 + -
and F(Q.q)=14+q+2¢"+3¢°+---. Thus F(P x Q)= F(P,q)F(Q,q) =
1+2q+5q2+10q3+~ -+ . But Z(2) has 12 elements of rank 3, a contradiction.
This completes the proof. O

Note. The above proof shows that if r # 2 then Z(r) # PxQ for any nontrivial
P, Q. However, when r = 2 we have shown only that Z(2) # P x Q for
differential posets P and Q. With a little more work we could in fact show
Z(2) # P x Q for any nontrivial P, Q, but there is no need to do so here.

It follows from (64) that #Z(1), = F the (n + 1)st Fibonacci number

n+l1°?
(defined by F, = F, =1, F,,, = F, +F,_ | if n > 2). This explains
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our terminology “Fibonacci differential poset.” More generally, the rank sizes
z,(r) =#Z(r), satisfy the recurrence

Zo () =rz,(r+z,_(r), n>1,

zy(r) =1, z,(r)y=r.

We can ask what additional properties Z(r) has besides those given by The-
orem 5.3. Some of these properties are summed up in the following result.

5.4. Proposition. Let r € P. The following two conditions on a poset P are
equivalent.

(a) P is an r-differential lattice (necessarily modular) such that every com-
plemented interval has length < 2,
(b) P is isomorphic to Z(r).

Proof. We first show that Z(r) is a lattice, which will then be modular by
Proposition 1.3 and Theorem 5.3. By, e.g., [St6, Proposition 3.3.1], it suffices
to show that (i) any two elements of Z(r) have an upper bound, and (ii) any
two elements of Z(r) have a greatest lower bound (or meet). Let x,y € Z(r).
Let / be the larger of the lengths (= number of letters) of x and y. Then
it is easily seen that 2! (i.e., the word 22---2, with [/ 2’sin all) is an upper
bound of x and y. This proves (ii).

We will show that x A y exists by induction on p(x) + p(y). This is clear
for p(x)+p(y) =0, since OAO = O. Assume true for p(x)+ p(y) < k, and
let p(x)+ p(y)=k.If x and y are comparable, then x A y is the lesser of
x and y, so assume x and y are incomparable. If x = 1,v then x covers
the unique element v. Hence x Ay = v A y. Thus we may assume x = 2u,
y =2v. We claim that (2u) A (2v) = 2(u Av). It is easily seen that

(66) u<v e <2

Hence 2(u Av) <2u and 2(uAv) <2v,1.e., 2(uAv) is a lower bound of 2u
and 2v. If z = 2Z', then by (66) we have z' < uAv,so z <2uAv). If
z=1,z" and z < 2s for some s € Z(r), then it is easily seen that z’ <s, so
27/ < 2s. Thus since 1,2’ < 2u and 1,z < 2v, weget 1,z <2z’ <2u and
liz' <2z <2v. Hence 2z  is a lower bound for 2u and 2v, so by what we
have just shown 1z’ < 22" < 2(u Av). Therefore (2u) A (2v) = 2(u Av) as
claimed, so Z(r) is a modular lattice.

Now in a locally finite modular lattice, an interval [x, y] is complemented
if and only if p is the join of elements covering x (see [Bi, Theorem 14, p.
16 and Theorem 6, p. 88]). Thus to show that every complemented interval
of Z(r) haslength < 2, it suffices to show that for any x € Z(r), thereisa y
which covers every element of Z(r) which covers x. But one sees easily from
the definition of Z(r) that y = 2x. Hence (b) = (a).

We will show that (a) => (b) by proving by induction on » thatif P satisfies
(a) then the rank-selected subposet P[o ) = {x € P: p(x) < n} is uniquely
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determined (up to isomorphism). Clearly P[o 0] 1s unique—it consists of the

single element O. Assume that P{o 1] is uniquely determined. Let x € P

n—=27
and let C*(x) be the set of elements covering x . Since every complemented
interval has length < 2, there must be an element x’ € P which covers every
element of C*(x). These elements x’ must be distinct, for if x' = y’ but
x # y, then x’ would cover two elements which do not cover a third element,
contradicting modularity. After these elements x' are adjoined to P, every
element y € P,_, will cover as many elements as it has elements covering
it. Thus by (D3) we must adjoin r elements y,,y,,...,y, covering y. If
y.z€ P and y # z, then again by modularity y, # z ;- Thus P is uniquely
determined, so by induction (a) = (b). O

Note that from the above proof we get another proof that F(Z(r),q) =
(1-rq— qz)_l . For we obtained one element x’ € P for each element x €

P _,,and r elements y, ,...,y, € P, foreach element y € P,_, . Hence

n 1

#P =r(#P,_|) + (#P _,),

which together with the initial conditions #F, = 1 and #P, = r immediately
yields (64).

There is a characterization of the r-differential posets Y’ similar to Propo-
sition 5.4.

5.5. Propesition. Let r € P. The following two conditions on a poset P are
equivalent.

(a) P is an r-differential distributive lattice,
(b) P is isomorphicto Y'.

Proof. Corollary 1.4 asserts that (b) = (a). It is stated without proof in [St2, p.
267] for r =1 and (in a more general context) in [St3, p. 225] that (a) = (b).
A proof appears in [St6, solution to Exercise 3.22(a), p. 180]. O

If P is a locally finite poset with O, then for x € P let e(x) = e(P,x)
denote the number of maximal chains of the interval [a,x]. Young’s lattice
Y (and hence Y' by a simple argument) has the property that for any partition
A €Y, the number e(1) has a simple explicit formula. Namely, e(4) is the
number of standard Young tableaux of shape A (usually denoted f * or £)
and so is given by the Frame-Robinson-Thrall hook length formula [M, Example
1.5.2, pp. 43 and 53; St2, Proposition 17.1]. A similar result holds for Z(r).
To prove this result for Z(r), we will consider a certain poset Fib(r) related to
Z(r). First define a partial ordering on the alphabet 4, = {1,,1,,...,1,,2}
by the condition that 1, <2 for all i (and no other inequalities a < b ).

5.6. Definition. Let r € P. Define a poset Fib(r) as follows. As a set, Fib(r)
coincides with A: Mu=aa,-- a; and v = b\b, - b, are two words in A: ,
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then define u <v if j <k and a, < b, for 1 <i < j. The poset Fib(r) is
called the r-Fibonacci lattice. O

With r =1, Fib(1) is the “Fibonacci lattice” discussed in [St3, §4]. Fib(1)
is a distributive lattice, while it is not difficult to see that for r > 2 Fib(r) is
Jjoin-distributive but not distributive. This means that every interval [x, y] for
which y is a join of the elements of [x, y] covering x is a boolean algebra.
See [E] or [St6, Exercises 3.19-3.20] for further information on join-distributive
lattices (in the dual form of “meet-distributive lattices™).

As discussed in [St3], if x € Fib(1) then the interval [a,x] is isomorphic
to the lattice J(T,) of order ideals of a certain “dual tree” (as defined in [St6,
p. 294]) T, . It follows from [Stl, §22] that

e(Fib(1),x) = (#T,)!/ T[] #V,).
y€ETy

where V, = {z€T,:z>y}. Itis shown in [St3, Proposition 6], that the mul-
tiset of numbers e(x), for x € Fib(1),, coincides with the multiset of products
[1;cs i, where S ranges over all subsets of {1,2,...,n—1} containing no two
consecutive integers.

Now consider x € Fib(r). A maximal chain 0= Xy <X <--<Xx, =X
in the interval [5,x] becomes a maximal chain O = Xy <X < -<X,=X
of the interval [5 ,X] of Fib(1), where y denotes the word y with each 1,
changed to 1,. Let #(w) denote the number of 2’s in the word w . Then there
are exactly r'™) maximal chains O = X, < x; <---<Xx,=x of the interval
[a,x] of Fib(r) such that 0= Xy, < X, <--- <X, =X is a specified chain in
Fib(1), since each 2 in x will at some point when moving down the chain be
convertedto 1,, 1 <i<r. It follows that

(67) e(Fib(r), x) = r'™e(Fib(1), x) = O #1,)1/ T] #7,).
y€ET,

We now come to the connection between the posets Z(r) and Fib(r) which
yields a simple formula for e(Z(r),x).

5.7. Proposition. The “identity” map ¢: Fib(r) — Z(r) (defined by ¢(x) = x)
is a rank-preserving bijection which preserves the function e, i.e.,

e(Fib(r),x) = e(Z(r),x), forallxe A .

Proof. Clearly ¢ is a bijection, and it is easy to see that it is rank-preserving.
Now the function e(Z(r), x) is uniquely determined by the conditions

e(Z(r),0)=1, eZ(r),x)= Y. eZ(r).y), ifx>0,
yeC~(x)
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where C™(x) is computed in Z(r). Hence to show that e(Fib(r),x) =
e(Z(r),x) forall x € A, it suffices to show that

e(Fib(r),0) =1,
(68) e(Fib(r),x)= > e(Fib(r),y), ifx>0,
yeC—(x)

where C~ (x) is computed in Z(r) (not in Fib(r), where (68) is obvious).

Of course e(Fib(r),0) = 1 is trivial. We show the second equality of (68)
first for the case r = 1. We will write 4, = {1,2} instead of {1,,2}, and
e(y) instead of e(Fib(1),y).

Suppose x = 2/1v € Z(1). We need to show

(69) 272 ) + e(2).

II'M\

We remarked above that [O x] = J(T,) fora certain dual tree T, . Specifically,
T, is defined by the conditions that (a) if j = 0, then the root O has the unique
dual subtree T, , and (b) if j > 0, then O has the two dual subtrees T, and
T,,..,, - Now since [O,x] = J(T,), the number of maximal chains e(x) in
the interval [5,x] is equal to the number of linear extensions e(7,) of the
poset 7, [St6, p. 110]. Suppose P is a finite poset, and Q is a subset of
P satisfying the condition that for any y € P — Q, either (a) y < z for all
zeQ,(b) y>z forall z€ Q,or(c) y isincomparableto z forall z€ Q.
Then e(P) is unchanged by “dualizing Q ” inside P, i.e., e(P) = e(P'), where
P’ is the poset with the same elements and same relations as P, except that if
y,z€Q and y< z in P,then y >z in P’ . Consider the case of P = T,,
where x = 2/1v € Z(1). Choose Q = T,, where y = lv. The poset P’ has

j+ 1 maximal elements z,, Zis and

(70) P)—Ze -z,)

Now in each P’ — z; choose a new Ql = (P - z;)N Q. Then dualizing Q,
inside P’ — z ylelds the poset (P’ — )' =P-z,and e(P P -z J=elP-z).
But the posets P — z, are given by T, where y = 2712y for 1<i<,
and y = 2’v. Hence (69) follows from (70).

There remains the case x = 2/ . But this is even easier than the case x =
2/1v, since we do not need to dualize a subset of 7 . (In other words, the

subsets T, of T, where y = 2'7'12’7", are just T, with one of its maximal
elements removed.) Hence

2j:i 112/1

and the proof for r =1 is complete.
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Now let r be arbitrary. We will show that
(71) e(Z(r),x) =r'e(z(1), %),

in the notation of (67). Since e(Z(1),x) = e(Fib(1), x), it then follows from
(67) that e(Z(r),x) = e(Fib(r),x). The proof of (71) is similar to that of
(67). If 0 = X, < X, <--- < Xx, = x is a maximal chain of the interval
[5,x] of Z(r), then 0= X, < X, <--- < X, =X is a maximal chain of the
interval [0, x] of Z(1). Conversely, there are exactly ') maximal chains of
the interval [5 ,x] of Z(r) which correspond to a specified maximal chain of
the interval [5,)?] of Z(1), since each 2 appearing in x will at some point
when moving down the chain be converted to 1,, 1 < i < r. There are r

choices for each 2; hence 2'™) choices in all, as claimed. O

We could have shown that

e(Z(r), x) = 'Y #T,) / [T#v,)

YET
directly by induction on p(x), but we wanted to point out the connection be-
tween Z(r) and Fib(r). One reason for doing so is that in [St3, p. 228]
it is asked (implicitly) if it is just a coincidence that a(0 — n), as well as
a(0 — n — 0), is the same for both Y and Fib(1). We now have an explana-
tion for this “coincidence,” namely, the connection between Fib(1) and Z(1)
given by Proposition 5.7, together with the fact that Z(1) is a 1-differential
poset.

It is natural to ask whether Fib(r) and Z(r) share additional properties
besides the values of a(0 — n) and a(0 — n — 0). Not surprisingly, Fib(r)
does not possess most of the enumerative properties of r-differential posets. For
instance, the number d(n) of Hasse walks from O of length n do not agree
for Fib(r) and Z(r).

6. OPEN PROBLEMS

An obvious question at this point is the following.

Problem 1. Classify all r-differential posets.

D. Wagner has described a very general method for constructing differential
posets which make it unlikely that Problem 1 has a reasonable answer. The
following special case of Wagner’s construction suffices to show that for each r
there are infinitely many irreducible r-differential posets. Let P be a graded
poset of rank n. Define the reflection extension P* of P to be the poset of

rank #n + 1 which coincides with P for ranks < n (i.e., P[g = P, in the
notation of §4), and has an element x* € Pntl for each x € P,_, with the
cover relations x* covers y € P, if y covers x € P,_,. (This construction is

closely related to the “fundamental construction” of [G-H-J].) Define E, (P) to
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be the poset obtained from P* by adjoining r additional elements above each
element x € P,. If P satisfies (D1), (D2) for elements x and y of rank < n,
and (D3) for elements x of rank < n, then we call P a partial r-differential
poset of rank n . It is then easily seen that E (P) is a partial r-differential poset
of rank n + 1. There follows:

6.1. Proposition. Let P be a partial r-differential poset of rank n. Let
Q = EX(P) = lim E/(P),
j—oo

where Erj(P) = Er(Erj_l(P)). Then Q is an r-differential poset with Q[O =
P.

If we pick P = Y[’O . in Proposition 6.1 (where Y is Young’s lattice), then
E:’°(P) can be seen to be an irreducible r-differential poset; and we obtain
nonisomorphic posets for different values of n (with a few exceptions for small
n). If we start with P equal to a single point, then E°(P) = Z(r).

In view of the seemingly wide variety of differential posets, we should perhaps
replace Problem 1 by the following less precise question.

Problem 2. Find “interesting” examples of r-differential posets. For instance,
are there examples with characterizations similar to those in Propositions 5.4
and 5.5? Are there any irreducible differential /attices besides Y and Z(r)?
Another class of problems (numbers 3-5) is concerned with extending prop-
erties of Young’s lattice to arbitrary differential posets P . For instance, let 0 =
a,<a, <a,<---<a, bepositive integers, and let a(P;n,n+a,, ... ,n+a,)
be the number of chains x; < x; < --- < x, in P for which p(x;) =n+a,
0 <i < k. Itis known [St6, Exercise 4.21(a); Bu, Lemma 6.3] that there is a

rational function R(q) (depending on q;,q,, ... ,q, ) such that

Y aYin.n+ap,....n+a)q" =R(@F(Y.q).

n>0
Problem 3. Let P be an r-differential poset. Is there a rational function R(q)
(depending on q;,q,,...,a, and P) such that

Y a(Pin,n+a,,...,n+a)q" =R()F(P q)?

n>0

MacMahon’s famous generating function [St2, Corollary 18.2] (with an ob-
vious misprint) for k-rowed plane partitions may be written as follows:

(x))+-+p(xi) i\ — min(/ k)
(72) S =TI -4 ,
i>1
where k € N is fixed, and the sum runs over all k-element multichains 0 <
Xg<x, < <x, in Y.
Problem 4. Is there a “nice” formula for the left-hand side of (72) when P is

an arbitrary r-differential poset? In particular, does it equal R(q)F (P, q)k for
some rational function R(g) (depending on P and k)?



DIFFERENTIAL POSETS 959

Problem 5. Let P be an r-differential poset, and let x € P, . Is it always true
that for some integer 0 < m(x) < n which is determined by x is some “simple”
way, we have that e(x) = r’"(x)eo(x) where ¢,(x)|(n!)? More specifically, can
we define in a simple way positive integers 4, (x),h,(x), ..., h,(x) such that

e(x) = rm(x)n!/ﬁh,.(x)?
1

(For the posets Y' we can always take m = 0; for Z(r), m is equal to the
number ¢(x) of 2’sin x by (67) and Proposition 5.7.)
Finally we mention five miscellaneous problems.

Problem 6. Fix r € P. What is the greatest (respectively, least) number a(n)
of elements of rank n that an r-differential poset can have? It seems plausible
that the extreme values are achieved by Z(r) and Y’ respectively. Along the
same lines, given that p ;= #Pj for some j, what is the smallest (respectively,
largest) cardinality of P .7 Do we always have piy S+ D, ? Do we
always have pj,, > p,, except when r=1 and j=07?
Problem 7. What is the automorphism group Aut Z(r) of the lattice Z(r)?

Regarding Problem 7, clearly the symmetric group S, acts on Z(r) by per-
muting the letters 1,,1,,...,1 . However, Z(1) has (at least) an additional
automorphism «, defined by

w(vll) =22, w(2)=vll, w(w)=w, otherwise.
We suspect that Problem 7 should not be too difficult.

Problem 8. Fix r € P. Is there a “natural” sequence %, C &, C --- of semisim-
ple algebras &/, (over C, say) whose relationship to Z(r) is analogous to the
relationship between the group algebras CS; C CS, C --- of the symmetric
groups S, and Young’s lattice? More precisely, we would have dim.&/, = r"n!,
and the irreducible representations p, of %, would be indexed by elements
X € Z(r),. Moreover, dimp_= e(x), and the restriction of p(x) to &_,
decomposes as

(73) Plu = Xy
veC—(x)

(Condition (73) is equivalent to saying that the bipartite graph Z(r),_, , is
the Brattelli diagram of the pair &/, | C &/, .) The existence of abstract alge-
bras &/, with the desired properties is easy to see; in fact, it follows from the
“fundamental construction” of [G-H-J] that &/, | = (End, %) EB%,,’ , where
End% B &, is defined by a certain embedding &, | C &, corresponding to
the Brattelli diagram Z(r) What is wanted is a “natural” combinatorial
definition of &/ .

Problem 9. Characterize in some reasonable way those bipartite graphs which
are isomorphic to a rank-selected subposet PJ_l ¥ of some r-differential poset

n—1.,n"
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P . (The axioms (D1)-(D3), as well as Theorem 4.14, lead to some necessary
conditions.)

Problem 10. Suppose that P and Q are r-differential posets and that for some
{1?;? we have Pj_1 L= Qj_1 g Is it true that P[o,j] = Q[o,/]? (See Corollary
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