FACTORORIZATION OF PERMUTATIONS INTO n-CYCLES*

Richard P. STANLEY

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 29 March 1980
Revised 24 November 1980

Using the character theory of the symmetric group \(S_n \), an explicit formula is derived for the number \(g_k(\pi) \) of ways of writing a permutation \(\pi \in S_n \) as a product of \(k \) \(n \)-cycles. From this the asymptotic expansion for \(g_k(\pi) \) is derived, provided that when \(k = 2 \), \(\pi \) has \(O(\log n) \) fixed points. In particular, there follows a conjecture of Walkup that if \(\pi \in S_n \) is an even permutation with no fixed point, then \(\lim_{n \to \infty} g_2(\pi_n)/(n-2)! = 2 \).

1. Introduction

Let \(\pi \) be an element of the symmetric group \(S_n \) of all permutations of an \(n \)-element set. Let \(g_k(\pi) \) be the number of \(k \)-tuples \((\sigma_1, \ldots, \sigma_k) \) of cycles \(\sigma_i \) of length \(n \) such that \(\pi = \sigma_1 \cdots \sigma_k \). Thus \(g_k(\pi) = 0 \) if either
(a) \(\pi \) is an odd permutation and \(n \) is an odd integer, or
(b) \(\pi \) is odd, \(n \) is even, and \(k \) is even, or
(c) \(\pi \) is even, \(n \) is even, and \(k \) is odd.

Husemoller [6, Proposition 4] attributes to Gleason the result that \(g_2(\pi) > 0 \) for any even \(\pi \). The function \(g_2(\pi) \) was subsequently considered in [1, 2, 9]. In particular, Walkup [9, p. 316] conjectured that \(\lim_{n \to \infty} g_2(\pi_n)/(n-2)! = 2 \) where \(\pi_1, \pi_2, \ldots \) is any sequence of even permutations without fixed points, with \(\pi_n \in S_n \). We will use the character theory of \(S_n \) to derive an explicit expression for \(g_k(\pi) \) from which Walkup's conjecture can be deduced. More generally, we can write down the entire asymptotic expansion of the function \(g_k(\pi) \) for fixed \(k \) (provided the number of fixed points of \(\pi \) remains small when \(k = 2 \)). The technique of character theory was also used in [1, Section 3], and some special cases of our results overlap with this paper. In [2, Corollary 4.8] an explicit expression for \(g_2(\pi) \) is derived, which is simpler than ours, and which can also be used to prove Walkup's conjecture. I am grateful to the referee for calling my attention to [2].

* Partially supported by the National Science Foundation and Bell Telephone Laboratories, Murray Hill, NJ.

0012-365X/81/0000-0000/$02.75 © 1981 North-Holland
2. Character theory

We first review the results from character theory that we will need. Let G be any finite group and $\mathbb{C}G$ its group algebra over \mathbb{C}. If C_i, $1 \leq i \leq t$, is a conjugacy class of G, then let $K_i = \sum_{g \in C_i} g$ be the corresponding element of $\mathbb{C}G$. If χ^1, \ldots, χ^t are the irreducible (ordinary) characters of G with $\deg \chi^i = f^i$, then the elements

$$F_i = \frac{f^i}{|G|} \sum_{i=1}^t \chi^i K_i, \quad 1 \leq j \leq t,$$

are a set of orthogonal idempotents in the center of $\mathbb{C}G$, where χ^i denotes χ^i evaluated at any element of C_i. Inverting (1) yields

$$K_i = |C_i| \sum_{i=1}^t \frac{\chi^i}{f^i} F_i,$$

where $|C_i|$ is the number of elements of the class C_i. See, e.g., [3, Section 236]. Since the F_i's are orthogonal idempotents, we have for any integer $k \geq 1$,

$$K_i^k = |C_i|^k \sum_{i=1}^t \left(\frac{\chi^i}{f^i}\right)^k F_i = |C_i|^k \sum_{i=1}^t \left(\frac{\chi^i}{f^i}\right)^k \frac{f^i}{|G|} \sum_{i=1}^t \chi^i K_i$$

$$= \frac{|C_i|^k}{|G|} \sum_{i=1}^t K_i \sum_{i=1}^t \left(\frac{\chi^i}{f^i}\right)^k f^i \chi^i.$$

Now let $G = \mathfrak{S}_n$. A partition of n may be regarded as a sequence $\rho = \langle a_1, \ldots, a_n \rangle$ of non-negative integers such that $\sum ia_i = n$. We then write $\rho \rightarrow n$. We also write $\rho = (1^{a_1}, 2^{a_2}, \ldots, n^{a_n})$ where terms i^{a_i} with $a_i = 0$ are omitted and where exponents $a_i = 1$ are omitted. For instance, $\langle 0, 1, 0, 0, 2 \rangle = (2, 5^2)$ is a partition of 12. For later convenience we also write $(1^n - 1, 1)$ for the partition $(1^n) = (n, 0, \ldots, 0)$, and we set $\lambda_i = (1^i, n-i)$ for $0 \leq i \leq n-1$. If $\rho = (a_1, \ldots, a_n) \rightarrow n$, then the set of elements of \mathfrak{S}_n with a_i cycles of length i forms a conjugacy class C_ρ of \mathfrak{S}_n. The class $C_{(n)}$ of n-cycles is abbreviated C_n, so $|C_n| = (n-1)!$. If $\phi : \mathfrak{S}_n \rightarrow \mathbb{C}$ is constant on conjugacy classes and if $\pi \in C_\rho$, then we write interchangeably $\phi(\pi)$ or $\phi(\rho)$ or $\phi(C_\rho)$. Note in particular that $g_k(\pi)$ has this property, so $g_k(\rho)$ denotes $g_k(\pi)$ for any $\pi \in C_\rho$. Recall that for each partition λ of n there is a natural way of associating an irreducible character χ^λ of \mathfrak{S}_n [5, Chapter 7; 7, Chapter 5]. In particular, the partition $\lambda = (n)$ corresponds to the trivial character $\chi^n = 1$ for all $\rho \rightarrow n$.

We next state two crucial lemmas involving the characters χ^λ. A proof of Lemma 2.1 is an immediate consequence of the 'graphical method' for determining the characters of \mathfrak{S}_n [5, Chapter 7.4; 7, Chapter 5.3; 8, Chapter 4]. See [5, p. 205; 8, Lemma 4.11] in particular. A proof of Lemma 2.2 essentially appears in [7, p. 139].
Lemma 2.1. Let $0 \leq i \leq n-1$ and $\lambda
rightarrow n$. Then

$$\chi_n^\lambda = \begin{cases} \frac{(-1)^i}{i!} \lambda = \lambda_i = (1^i, n-i), \\ 0, \quad \text{otherwise,} \end{cases}$$

where χ_n^λ is the value of the character χ^λ at any element of C_n.

Lemma 2.2. Let $0 \leq i \leq n-1$ and $\rho = \langle a_1, a_2, \ldots, a_n \rangle \nrightarrow n$. Then

$$\chi_n^\rho = \sum \binom{a_1 - 1}{r_1} \binom{a_2}{r_2} \binom{a_3}{r_3} \cdots \binom{a_i}{r_i} \frac{(-1)^i}{r_1 \cdots r_i},$$

where the sum is over all partitions $\langle r_1, r_2, \ldots, r_i \rangle$ of i. In particular, $\deg \chi_n^\lambda = f^\lambda = \binom{n-1}{i}.$

3. A formula for $g_k(\pi)$

It is now easy to give a formula for $g_k(\pi)$.

Theorem 3.1. Let $\rho = \langle a_1, \ldots, a_n \rangle \nrightarrow n$. Then

$$g_k(\rho) = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^{n-1} \binom{a_1 - 1}{r_1} \binom{a_2}{r_2} \binom{a_3}{r_3} \cdots \binom{a_i}{r_i} \frac{(-1)^i}{r_1 \cdots r_i},$$

where $\langle r_1, \ldots, r_i \rangle$ ranges over all solutions in non-negative integers to $\sum j_{r_i} = i$.

Proof. As above, let C_n denote the class of n-cycles in S_n and $K_n = \sum_{\pi \in C_n} \pi \in C \otimes S_n$. By definition of $C \otimes S_n$, we have

$$K_n^k = \sum_{\rho \nrightarrow n} g_k(\rho) K_\rho.$$

Hence by (3) and the fact that the characters of S_n are real, there follows

$$g_k(\rho) = \frac{(n-1)!^k}{n!} \sum_{\mu \nrightarrow n} \binom{\chi_n^\mu}{f^\mu} \chi_n^\mu.$$

Then by Lemma 2.1,

$$g_k(\rho) = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^{n-1} \binom{\chi_n^\mu}{f^\mu} \chi_n^\mu = \frac{(n-1)!^{k-1}}{n} \sum_{i=0}^{n-1} \binom{-1}{f^\mu} \chi_n^\mu.$$

Substituting the values χ_n^λ and f^λ from Lemma 2.2 completes the proof.
Some special cases of Theorem 3.1 are particularly simple. Putting \(\rho = (1^n) \) yields

\[
g_k(1^n) = \frac{(n-1)!k^{-1}}{n} \sum_{i=0}^{n-1} (-1)^{k} \binom{n-1}{i}^{-(k-2)},
\]

(4)

the number of ways of writing the identity permutation in \(S_n \) as a product of \(k \) \(n \)-cycles. When \(k = 3 \), the sum (4) can be evaluated [4, (2.1); 1. Section 3(ii)]. Namely,

\[
g_3(1^n) = \begin{cases}
0, & n \text{ even,} \\
2(n-1)!^2/(n+1), & n \text{ odd.}
\end{cases}
\]

A more combinatorial proof of (5) is essentially given in [1, Corollary 2.2]. It is also clear that \((n-1)!g_k(C_n) = g_{k+1}(1^n)\), since \(\pi_1 \cdots \pi_k \in C_n \) if and only if there is a (unique) \(\pi_{k+1} \in C_n \) satisfying \(\pi_1 \cdots \pi_k \pi_{k+1} = \varepsilon \). Hence

\[
g_k(C_n) = \frac{(n-1)!k^{-1}}{n} \sum_{i=0}^{n-1} (-1)^{i(k+1)} \binom{n-1}{i}^{-(k-1)},
\]

\[
g_2(C_n) = 2(n-1)!/(n+1), \quad n \text{ odd.} \quad (6)
\]

This same formula is obtained by setting \(\rho = (n) \) in Theorem 3.1. More generally, we have

\[
g_k(1^{n-1}, j) = \frac{(n-1)!k^{-1}}{n} \sum_{i=0}^{n-1} \binom{n-1-j}{i}(-1)^{(n-j-1)} \binom{n-j-1}{i-j} \binom{n-1}{i}^{-(k-1)},
\]

for \(2 \leq j \leq n \), where we set \(\binom{n-j-1}{i} = 0 \) if \(i < j \).

As a further special case, if \(n = mj + 1 \), then from Theorem 3.1 we obtain

\[
g_k(1, j^m) = \frac{(n-1)!k^{-1}}{n} \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} \binom{n-1}{ij}^{-(k-1)}.
\]

In particular, when \(m = 1 \) we get \(g_k(1, n-1) = 2(n-1)!/n \). Walkup [9, Theorem 1] gives a combinatorial proof that \(ng_2(1^n, 2^n, \ldots, n^n) = g_2(1^{a_1+1}, 2^{a_2}, \ldots, n^{a_n}) \). Thus from \(g_2(1, n-1) = 2(n-1)!/n \) we get another proof of (6). In effect, we have another proof of the identity [4, (2.1)]. Some other explicit values of \(g_2(\rho) \) appear in [1, Corollary 2.2; 2, Example 4.9] and can be deduced from Theorem 3.1 using the appropriate binomial coefficient identity.
4. Asymptotics

We now derive an asymptotic expansion for \(g_k(\rho) \), where \(\rho = (a_1, a_2, \ldots, a_n) \). When \(k = 2 \), it will be necessary to assume that \(a_1 \) is not too large. First we dispose of the easy case \(k \geq 3 \).

Theorem 4.1. Fix \(k \geq 3 \). Let \(\rho = (a_1, a_2, \ldots, a_n) \). If \((n-1)k + a_2 + a_4 + \cdots \) is odd, then \(g_k(\rho) = 0 \). If \((n-1)k + a_2 + a_4 + \cdots \) is even, then for any fixed \(j \geq 0 \) we have

\[
g_k(\rho) = \frac{2(n-1)!^{k-1}}{n} \left[\sum_{i=0}^{l} \frac{(-1)^i \chi_{\rho}^i}{(n-1)^{k-1}} + O(n^{-(i+1)(k-2)}) \right],
\]

uniformly in \(a_1, a_2, \ldots, a_n \) and \(n = \sum i a_i \).

Proof. The assertion for \((n-1)k + a_2 + a_4 + \cdots \) odd is equivalent to (a)–(c) of Section 4. Hence assume \((n-1)k + a_2 + a_4 + \cdots \) is even. Since the partitions \(\lambda_i \) and \(\lambda_{n-i-1} \) are conjugate, we have e.g. by [7, p. 711] that \(\chi_{\rho}^i = (-1)^i a_2 + a_4 + \cdots \chi_{\rho}^{\lambda_{n-i-1}} \). Thus if we set \(T_i = (-1)^i \chi_{\rho}^i / (\binom{n}{i})^{k-1} \), then \(T_i = T_{n-i-1} \). Hence

\[
g_k(\rho) = \begin{cases} \frac{2(n-1)!^{k-1}}{n} \sum_{i=0}^{\lfloor (n-2)/2 \rfloor} T_i, & \text{if } n \text{ is even,} \\ \frac{2(n-1)!^{k-1}}{n} \left(\sum_{i=0}^{\lfloor (n-2)/2 \rfloor} T_i + \frac{1}{2} T_{(n-1)/2} \right), & \text{if } n \text{ is odd.} \end{cases}
\]

Thus

\[
\left| \frac{ng_k(\rho)}{2(n-1)!^{k-1}} - \sum_{i=0}^{\lfloor n/2 \rfloor} T_i \right| \leq \sum_{i=\lfloor n/2 \rfloor}^{\lfloor n/2 \rfloor} |T_i| \leq \sum_{i=\lfloor n/2 \rfloor}^{\lfloor n/2 \rfloor} \left| \frac{\chi_{\rho}^i}{(n-1)^{k-1}} \right| \leq \sum_{i=\lfloor n/2 \rfloor}^{\lfloor n/2 \rfloor} \frac{n a_i}{(n-1)^{k-1}} \leq \sum_{i=\lfloor n/2 \rfloor}^{\lfloor n/2 \rfloor} \frac{1}{(n-1)^{k-2}} \left(\frac{n}{i+1} \right) + \frac{n}{(n-1)^{k-2}} = O(n^{-(i+1)(k-2)}).
\]

This completes the proof.

Using Lemma 2.2, we can give the asymptotic expansion of \(g_k(\rho) \) as a function of \(a_1, a_2, \ldots, a_n \). We expect the \((n-1)!^k \) products \(\pi_1 \pi_2 \cdots \pi_k \) to be approximately equidistributed through the \(\frac{1}{2} n! \) allowable elements of \(\mathcal{E}_n \). Indeed.
Theorem 4.1. say for $j = 2$, asserts that when $k \geq 3$,

$$\frac{\binom{n}{k} g_k(\rho)}{(n-1)!^k} = 1 + \frac{\binom{a_1 - 1}{2}}{(n-1)^{k-1}} + \frac{a_2}{(n-1)^{k-1}} + O(n^{-3(k-2)}).$$

When $k = 2$, we need a more delicate estimate than $\binom{n}{j} \leq (\binom{n}{2}^{-1})$. If $F(x) = \sum_{i=0}^n f_i x^i$ and $G(x) = \sum_{i=0}^n g_i x^i$ are power series with real coefficients, write $F(x) \geq G(x)$ if $f_i \geq g_i$ for all $i \geq 0$.

Lemma 4.2. If $F(x) \geq 0$, then

$$\frac{F(x)(1+x^j)}{1-x} \geq \frac{F(x)(1+x^{j+1})}{1-x}$$

for all $j \geq 0$.

Proof. We have

$$\frac{F(x)(1+x^j)}{1-x} - \frac{F(x)(1+x^{j+1})}{1-x} = x^j F(x) \geq 0,$$

as desired.

Lemma 4.3. Let $\rho = (a_1, \ldots, a_n) \vdash n$, and let $0 \leq i \leq \lfloor n/2 \rfloor$. Then

$$|\chi^\rho_i| \leq 2a_i \left(\frac{n/2}{[i/2]}\right).$$

Proof. According to Lemma 2.2, we have

$$\sum_{i=0}^{n-1} \chi^\rho_i x^i = (1+x)^{a_i-1}(1-x^2)^{a_2}(1+x^3)^{a_3} \cdots (1-(-1)^n x^n)^{a_n}.$$

Hence

$$\sum_{i=0}^{n-1} |\chi^\rho_i| x^i \leq \frac{(1+x)^{a_1}(1+x^2)^{a_2} \cdots (1+x^n)^{a_n}}{1-x}.$$

By successive applications of Lemma 4.2, we obtain

$$\sum_{i=0}^{n-1} |\chi^\rho_i| x^i \leq \frac{(1+x)^{a_1}(1+x^2)^{a_2+\ldots+a_n}}{1-x} \leq \frac{2a_1(1+x^2)^{\lfloor n/2 \rfloor}}{1-x}.$$

Since $\binom{n/2}{j} \leq \binom{n/2}{i}$ when $j \leq \lfloor n/2 \rfloor$, the proof follows.

Theorem 4.3. Let $\rho = (a_1, a_2, \ldots, a_n) \vdash n$. If $a_1 + a_4 + \cdots$ is odd (i.e., if ρ is odd), then $g_2(\rho) = 0$. If $a_1 + a_4 + \cdots$ is even (i.e., if ρ is even), then for any fixed $j \geq 0$ we
have
\[
\zeta_2(\rho) = \frac{2(n-1)!}{n} \left[\sum_{i=0}^{\frac{n}{2}} \frac{\chi_i^\lambda}{(n-1)^i} + O(2^an^{-(i+1)/2}) \right]
\]
uniformly in \(a_1, a_2, \ldots, a_n\) and \(n = \sum ia_i\).

Proof. As in Theorem 4.1, we may assume \(a_3 + a_4 + \cdots\) is even. Setting \(T_i = \chi_i^\lambda/(\binom{n}{i})\), then as in (7) we obtain
\[
\left| \frac{n\zeta_2(\rho)}{2(n-1)!} - \sum_{i=0}^{\frac{n}{2}} T_i \right| \leq \frac{n}{\sum_{i=0}^{\frac{n}{2}} \frac{\chi_i^\lambda}{(n-1)^i}}.
\]
Thus by Lemma 4.3,
\[
\left| \frac{n\zeta_2(\rho)}{2(n-1)!} - \sum_{i=0}^{\frac{n}{2}} T_i \right| \leq \sum_{i=\frac{n}{2}+1}^{\frac{n}{2}} \frac{2^\lambda i \binom{n}{i}}{\binom{n}{i}}.
\]
(9)

Denote the left-hand side of (9) by \(E_i\), and let \(t_i = \binom{n}{i}/(\binom{n}{i})\). Then \(t_i = O(n^{-(i+1)/2})\) for \(i = j + 1, j + 2, j + 3, j + 4\) and \([n/2]\). Hence
\[
E_i \leq 2^\lambda n \sum_{i=\frac{n}{2}+1}^{\frac{n}{2}+5} t_i + O(2^\lambda n^{-(i+1)/2}).
\]
(10)

We claim that \(t_i \geq t_{i+2}\) provided \(0 \leq i \leq [n/2] - 2\). We will prove only the case \(n = 2m, i = 2k - 1\) here. The three remaining cases are handled similarly. When \(n = 2m\) and \(i = 2k - 1\), we have by direct calculation
\[
t_i - t_{i+2} = \frac{2m!(2k-1)!(2m-2k-2)!(2m^2-(6k+2)m+4k^2-1)}{(k-1)!(m-k+1)!(2m-1)!}.
\]
The largest root of the equation \(2x^2 -(6k+2)x + 4k^2 - 1 = 0\) is given by
\[
x = \frac{1}{2}(3k + 1 + \sqrt{k^2 + 6k + 3}) < \frac{1}{2}(3k + 1 + k + 3) = 2k + 2.
\]
Hence if \(m > 2k + 1\), then \(2m^2 -(6k+2)m + 4k^2 - 1 > 0\). Since \(m > 2k + 1\) is equivalent to \(i < \frac{1}{2} n - 2\), the claim is proved.

It follows from (9) and the inequality \(t_i \geq t_{i+2}\) that
\[
E_i \leq 2^\lambda n^2 (t_{i+5} + t_{i+6}) + O(2^\lambda n^{-(i+1)/2}) = O(2^\lambda n^{-(i+1)/2}),
\]
completing the proof.
Thus for instance taking $j = 2$ in Theorem 4.3, we obtain that for even p,

$$g_2(p) = \frac{2(n-1)!}{n} \left[1 + \frac{a_1 - 1}{n-1} + \frac{(a_1 - 1) - a_2}{(n-1)^2} + O(2^{a_1 n^{-3/2}}) \right].$$

Since $a_1 = O(n)$, it follows that if $a_1 = 0$ (or in fact $a_1 = O(\log n)$), then $g_2(p)/(n-2)! \to 2$ as $n \to \infty$, which is Walkup's conjecture [9, p. 316]. In fact, it suffices to assume only $a_1 = O(\log n)$. For assume $a_1 = O(\log n)$ for all n. Take $j > 2B(\log 2) - 1$ in Theorem 4.3 to obtain

$$g_2(p) = \frac{2(n-1)!}{n} \left[\sum_{i=0}^{\infty} \frac{\lambda^i}{(n-1)_i} + o(1) \right] = \frac{2(n-1)!}{n} [1 + o(1)],$$

By a more careful analysis, Kleitman has shown (private communication) that $g_2(p)$ has the asymptotic expansion

$$g_2(p) \sim \frac{2(n-1)!}{n} \sum_{i=0}^{\infty} \frac{\lambda^i}{(n-1)_i}$$

provided only $a_1 = o(n)$. The key step is an improved version of Lemma 4.3, but we will not enter into the details here.

References