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1. Introduction. The theory of invariants of finite groups forms an inter
esting and relatively self-contained nook in the imposing edifice of commuta
tive algebra. Moreover, there are close connections between this subject and 
combinatorics, for two reasons: (a) the highly combinatorial tool of gener
ating functions pervades the study of invariants of finite groups, and (b) 
several direct applications of invariants of finite groups have recently been 
given to combinatorics. Here we give an exposition of the theory of invariants 
of finite groups with emphasis on the connections with combinatorics, which 
assumes a minimal background in commutative algebra and combinatorics 
on the part of the reader. It is hoped that such an exposition will appeal to 
several types of readers, (a) Those who simply wish to see a self-contained 
treatment of an elegant and fascinating subject. This might include coding 
theorists, physicists, and others who are beginning to use invariant theory as a 
tool in their own work, (b) Those who are interested in learning something 
about the revolutionary developments in present-day combinatorics. Until 
recently combinatorics has been regarded as a disparate collection of ad hoc 
tricks, but this picture is slowly changing under a determined effort to unify 
various branches of combinatorics and to understand their relationship with 
other branches of mathematics, (c) Finally, those who would like a relatively 
painless glimpse of certain topics of current interest in commutative algebra, 
such as the theory of Cohen-Macaulay rings and Gorenstein rings. For a 
really adequate understanding of these concepts it would be necessary to 
work in far greater generality and to introduce sophisticated machinery from 
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homological algebra. Thus, while our mundane treatment should not be 
construed as an "introduction to contemporary commutative algebra," it 
should make certain interesting and useful aspects of commutative algebra 
accessible to a wide audience. 

The paper is divided into ten sections. §1 contains the basic definitions and 
classical results about the ring R G of invariants of a finite group G acting on 
the polynomial ring R = C[x{,..., xm]. §2 is devoted to Molien's theorem, 
which gives a simple expression for the dimension of the vector space RG of 
forms of degree n left invariant by G. A common theme throughout this 
paper consists of reading off information about G and RG from the numbers 
dimc RG (or more precisely, from the generating function FG(X) = 
2(dimc RG)\n). In §3 we leave the classical theory and show that the 
elements of RG can be written in a certain explicit canonical form. The 
existence of such a canonical representation is equivalent to the statement 
that RG is a Cohen-Macaulay ring. §4 is devoted to groups G for which RG is 
generated by algebraically independent polynomials, the "groups generated 
by pseudo-reflections." Many of the remarkable properties of these groups 
are obtained by an appeal to Molien's theorem. Such combinatorial objects as 
the marriage theorem, the fundamental theorem of symmetric functions, the 
Stirling numbers of the first kind, and standard Young tableaux make a brief 
appearance. In §5 we present three applications to combinatorial problems 
which a priori seem to have no connection with invariant theory. These 
problems concern (a) the evaluation of certain sums involving roots of unity, 
(b) the "weight enumerator" of a self-dual code over GF(2), and (c) the 
theory of "multipartite partitions" or "vector partitions." The next four 
sections are devoted to the homological aspects of the invariant theory of 
finite groups. The basic object of study is the minimal free resolution of RG 

(as a module over some polynomial ring). We discuss what it means in terms 
of the minimal free resolution for R G to be Cohen-Macaulay, Gorenstein, or 
a complete intersection, and the connection between these properties, the 
internal structure of RG

9 the structure of G, and the generating function 
FG(\). Proofs for the most part are omitted. Included are discussions of such 
recent results as the characterization of Gorenstein RG solely in terms of 
FG(X), and the determination of the canonical module Q(RG). Finally in §10 
we consider the class of monomial groups and use our general theory to 
derive the famous Pólya enumeration theorem for groups acting on the 
domain of a set of functions. 

The following notation is fixed throughout: 
N nonnegative integers, 
P positive integers, 
C complex numbers, 
[n] the set {1, 2 , . . . , n) where n E P, 
T c S T is a subset of 5, allowing T =0 or T = S, 
V © W direct sum of the vector spaces V and W, 
II, Vt direct sum of the vector spaces Vi9 

0>i, • • • ,yj) the vector space spanned b y y l 9 . . . ,yr 

Also throughout this paper V denotes an m-dimensional vector space over 
the complex numbers C, and x, , , • . , xm denotes a basis for V. Let GL(F) 



INVARIANTS OF FINITE GROUPS 477 

denote the group of all invertible linear transformations M: V-*V. Once we 
fix the basis xx, . . . , xm we may identify GL(F) with the multiplicative group 
of all nonsingular m X m matrices with entries in C. Let R be the algebra of 
polynomials in the variables x{,..., xm with coefficients in C, i.e., R = 
C[JCJ, x29..., xm]. Thus the vector space of linear forms in R is just V. The 
action of M G GL( V) on V extends uniquely to an algebra automorphism of 
R, viz., if x denotes the column vector 

and ƒ G R, then (Mf)(x) = /(Mx). For instance, if 

M = 
1 

V2 
and ƒ(*,, x2) = x\ — x 2> 

then 

Mf(xu x2) = 
V2 

(x, + x2) 
V2 

( -* , + x2) X\ i jLX\Xy* 

Many questions in combinatorial theory and other fields can be reduced to 
the problem of finding all polynomials ƒ G R satisfying Mf = ƒ for all M in 
some finite subgroup G c GL(F). Such a polynomial ƒ is called an absolute 
invariant, or simply an invariant, of G. Clearly, the invariants of G form a 
subalgebra of R, which we denote by R G and call the algebra of invariants of 
G. Thus, 

RG = {ƒ G R:Mf = f for all M G G}. 

More generally, let X = ^((7) be the set of irreducible (complex) charac
ters of G. (The number of such characters is equal to the number of 
conjugacy classes in G.) The action of G on R can be decomposed into a 
direct sum of irreducible representations, i.e., R = I i r , where each T is a 
G-invariant subspace of R on which G acts irreducibly. If x £ A", then let i?^ 
denote the direct sum of those T's which correspond to the character x- R* *s 

called an isotypical (or isotypic) component of the action of G on R. Although 
the T's are not uniquely determined, the isotypical components R% are 
unique. Clearly R = I I x e ^ RG- I n particular, RG = i?e

G, where e denotes the 
trivial character. If T is an irreducible component and f E R, then the map 
T->fT given by multiplication by ƒ is clearly a G-module isomorphism. From 
this it follows that RG • i*^ c J^ , i.e., RG is an i?G-module. 

In the special case where x is linear (i.e., x is a homomorphism G -» C — 
{0}), then the condition f B RG is equivalent to M(/) = x(M)f for all 
Af G G. A polynomial ƒ G RG for x linear is called a relative invariant, 
semi-invariant, or X"^nvar^an^ We shall extend this terminology to tf^y 
irreducible character x- Thus ƒ G R is a x-invariant if ƒ G iî^, for any 
X G X(G). Although we will be primarily interested in absolute invariants 
(i.e., ƒ G RG), we will indicate to what extent the theory extends to x~ 
invariants. 
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The fundamental problem of the invariant theory of finite groups is to 
"determine" or "characterize" the algebra RG of invariants. A survey of the 
classical approach to this subject may be found in [Bu, Chapter XVII]. More 
recent work will be quoted in the course of this paper. We also mention the 
survey article by Sloane [SI]. There is considerable overlap between parts of 
this paper and of Sloane's. However, Sloane's emphasis is on applications to 
coding theory while we have a broader point of view. We now quote without 
proof two of the principal classical results concerning invariants of finite 
groups. For this purpose define the degree of G c GL(F) to be m = dim V 
and the order g of G to be the number \G\ of elements of G. 

1.1 THEOREM. If G has degree m, then there exist m, but not m + 1, 
algebraically independent invariants {over C). Equivalently, RG has Krull di
mension m. • 

1.2 THEOREM. Let G have order g and degree m. Then RG is generated as an 
algebra over C by not more than (g^m) homogeneous invariants, of degree not 
exceeding g. • 

A proof of Theorem 1.1 may be found in [Bu, §262]. It follows from the 
work of Hubert that RG is finitely generated, but the more precise Theorem 
1.2 is due to Noether (see [We, pp. 275-276]). Noether in fact showed that RG 

is generated by the (g^m) polynomials (\/g)lLM(=G Mf as ƒ ranges over all 
(gmm) monomials in the variables x„ • . . , xm of degree at most g. 

For many purposes Noether's result gives a satisfactory answer to the 
problem of determining RG. We can ask, however, for more precise infor
mation, viz., a complete description or enumeration, without repetitions, of all 
the invariants. There are two possible approaches to this problem: (a) find a 
canonical form for the elements of R G, or (b) determine all the relationships 
among the generators of RG. We shall discuss both of these approaches 
toward describing R G. 

We conclude this section by supplementing Theorems 1.1 and 1.2 with a 
related result which is easily proved by classical techniques, though an 
explicit statement is difficult to find in the literature. 

1.3 THEOREM. Let x £ ^(G) . Then RG is a finitely-generated RG-module. 
In fact, RG is generated by homogeneous polynomials of degree not exceeding g. 
D 

2. Molien's theorem. To enumerate all the invariants explicitly, it is con
venient and natural to classify invariants by their degrees (as polynomials). 
More precisely, if A: is a field then we define an N-graded k-algebra to be a 
finitely generated A>algebra B (always assumed to be associative, commuta
tive, and with identity), together with a vector space direct sum decomposi
tion 

B =:
 BQ © J9j £B 2>2 ® * * * * 

such that B0 = k and2?f-2̂  C Bi+J. We call Bn the nth homogeneous part of B, 
and an element ƒ E Bn is said to be homogeneous of degree n9 denoted 
d e g / = n. Now note that the polynomial ring R = C[xx,..., xm] has a 
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familiar grading R = R0 © Rx © R2 © • • • , where Rn consists of all homo
geneous polynomials of degree n, in the usual sense. If ƒ G JR„ then Mf G Rn 

for all M G GL(F). It follows that for any subgroup G c GL(F), RG has 
the structure RG = i?0

G © tff © • • • of an N-graded C-algebra given by 
R£ = RG r\ Rn. Hence to determine RG it suffices to determine each RG. 

More generally, if B is an N-graded ^-algebra, then define a Z-graded 
B- module to be a finitely-generated 2?-module A, together with a vector space 
direct sum decomposition 

A = U A,., 
IGZ 

such that Bi&j C Ai+J. The assumption that A is finitely-generated guarantees 
that A = Ui>io A, for some i0 G Z. If we set (RG)n = RG n i?„, then this 
gives i?^7 the structure of a Z-graded R G-module. 

If A = n „ e z Aw is a Z-graded module over the N-graded /^-algebra B9 then 
it follows that dim* A„ < oo since B is finitely-generated as an algebra and A 
is finitely-generated as a 2?-module. The Hubert junction H(A, •): Z -» N of A 
is defined by H(A, ri) = dim^ Aw, and the Hubert series (sometimes called the 
Poincaré series) of A is the formal Laurent series 

F(A,A)= 2 H(A,n)\n. 
« 6 Z 

A theorem of Hilbert, embellished by Serre, implies that F(A, A) is a rational 
function of A. See, e.g., [A-M, Theorem 11.1] or [Sm] for further details. 

When A = RG we call x( l ) _ 1^(^^, A) the Molien series of the pair (G, x) 
and write FG>X(X) = x ( l ) " 1 / r ( ^ , ^)- When x is trivial we call F(RG, A) the 
Molien series of G and write FG(\) = F(RG, A). Note that xO) is just the 
degree of the irreducible representation of G afforded by x- Hence the 
coefficient of A" in FGx(X) is equal to the multiplicity of the character x in the 
action of G on Rn. Clearly we have 

2 x(i)^,xW = (i-Afw 

It is very helpful in analyzing RG to know the Hilbert function H(RG, n\ 
since then we can check whether a tentative listing of invariants is complete. 
Often, moreover, one is only interested in the Hilbert function H(RG, ri) 
itself, and not in the actual elements of (RG)n. A classical theorem of Molien 
[Mo], [Bu, §227], [Bo, p. 110], [SI, Theorem 1] gives an explicit expression for 
the rational function FGx(X) and thereby ties together invariant theory with 
generating functions. 

2.1 THEOREM. Let G be a finite subgroup of GL(F) of order g, and let 
X G X(G). Then the Molien series FGx(X) is given by 

FG«(X) = ! £ G det(/-AM)> « 
where I denotes the identity transformation and x & ^e complex conjugate 
character to x* 
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PROOF. Let W be any finite-dimensional vector space over C, and let H be 
a finite subgroup of GL(W) of order h. Let W% denote the isotypical 
component afforded by x- Thus x(l)~1dimc W" is just the multiplicity of x 
in the action of H on W. From the rudiments of the representation theory of 
finite groups we conclude 

x O ^ d i m c W ^ - i 2 x(M)(trM), (2) 
h M(EH 

where tr denotes trace. 
Now given M E G c GL(K), let pu..., pm be its eigenvalues. Since M 

has finite multiplicative order it follows that there exist m linearly indepen
dent eigenvectorsy l9... 9ym belonging to p„ . . . , pm, respectively. Consider 
the action of G on Rn, the nth homogeneous part of R. The C1"*"̂ "1) distinct 
monomials y ? ' . . ,y%» of degree n are eigenvectors for M (acting on Rn) with 
corresponding eigenvalues pf» . . . p%". Hence for this action of M we have 

t r M = S P i a , . . . p > 
ö,+ • • • +am = n 

Therefore by (2), 

X(l)-lH(RG,n) = ± S X(M) E PV---Pa
m", (3) 

where p1? . . . , pm are the eigenvalues of M acting on F. Since l/det(7 - AM) 
= 1/11(1 - piX) . . . (1 - pwX), the right-hand of (3) is just the coefficient of 
A" in 

7 X 0 ) - 1 2 x (M) /de t ( / -AM) , 

and the proof follows. • 
Molien's theorem breaks down over fields in which g = 0. In fact, the 

entire theory of invariants of finite groups becomes much more complicated 
and much less understood in characteristic /?. For an inkling of the problems 
which can arise, see [A-F]. 

2.2 EXAMPLE. AS a simple first application of Molien's theorem, we prove 
the nonobvious result that each R£ ^0. In the expression (1) for FGx(A), 
exactly one term (corresponding to M = I) has a pole of order m at X = 1, 
while the other terms have a pole of order < m. Hence FGx(\)=£0, so 
R° *0. 

2.3 EXAMPLE. Let G = {ƒ, M, M2, M3}, where M = [_? £]. The Molien 
series of G is given by 

FcW-i 1 . 2 . 1 
(1 - X)2 1 + X2 (1 + X)2 

= ( l + X 4 ) / ( l - * 2 ) 0 - * 4 ) - (4) 

The form of this Molien series suggests that there may be invariants 9X E 
R£, 02 E Rf, r] E Rf9 such that every invariant ƒ E RG can be written 
uniquely in the form p(0l9 0^ + 17 • q(9v 92), where /? and q belong to 
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C[xl9 x2]. More succinctly, we could write this condition as 

RG = c[01? e2] © îj• c[9l9 e2] = c[0„ e2](i © i,) (5) 
the sum © being a vector space direct sum (or a C[9X, 02]-module direct sum). 
Using (4), it is in fact not difficult to show that (5) holds for 0X = x\ + x\9 

I/O = = X\X,2y t\ = = X\X>y AlAT. 

The preceding example raises many theoretical questions. Consider RG for 
any finite subgroup G of GL( V). Suppose we can find algebraically indepen
dent homogeneous invariants 0l9 02,. .. 90m of degrees dl9 d2, ..., dm9 respec
tively (i.e., 0, G RG)9 and a set 171? ry2, . . . , i\t of homogeneous invariants of 
degrees ^ , e29 . . . , et9 respectively (i.e., 7j, G RG)9 such that if S = 
C[Öj, 029..., 0J , then i*G = r^S © i\2S © • • • ®r\tS. It is then clear from 
the definition of FG(X) that 

M*) = ((2 ^) / f l ( l -A«) . (4) 

Mallows and Sloane [M-S] conjectured that the converse statement is true, 
i.e., if FG(X) can be written in the form (6), then we can always find the 
appropriate invariants TJ, and Oj. This conjecture, however, is false, as pointed 
out in [SI, p. 101] and [Sta2, Ex. 3.8]. For instance, let G be the group 
generated by diag(-l , — 1, 1) and diag(l, 1, /), where 12 = — 1. Thus G is 
abelian of order 8, and we have FG(X) = 1/(1 - X2)3. However, RG = 
C[x\, *2> *3]0 © x\x2)> which cannot be expressed in the form C[0{9 0l9 03]9 

The question then arises as to whether there is some way of writing FG(X) in 
the form (6) such that 

RG=UirliC[0{9...90m]9 

where 0j G RG, TJ, G RG
9 and the 0/s are algebraically independent over C. In 

other words, do there exist m algebraically independent homogeneous 
elements 0l9 . . . , 0m G RG such that i?G is a finitely-generated free 
C[0l9 . . . , 0m]-module? This question immediately leads to the subject of 
Cohen-Macaulay rings. 

3. Cohen-Macaulay rings. Let B = B0 © B{ © • • • be an N-graded A>alge-
bra, as defined in the previous section. We denote by dim B the Krull 
dimension of B9 i.e., the maximum number of elements of B which are 
algebraically independent over k. Equivalently, dim B is the order to which 
À = 1 is a pole of the rational function F(B9 X) [Sm, Theorem 5.5]. If 
m = dim B9 then a set 0l9..., 0m of m homogeneous elements of positive 
degree is said to be a homogeneous system of parameters (h.s.o.p.) if B is a 
finitely-generated module over the subalgebra k[0l9..., 0m], This implies 
that 0l9..., 0m are algebraically independent. It is easy to see that 0{9..., 0m 

is an h.s.o.p. if and only if the quotient algebra B/(0V ..., 0m) is a finite 
dimensional vector space over k. A basic result of commutative algebra, 
known as the Noether normalization lemma, implies that an h.s.o.p. for B 
always exists (e.g., [A-M, p. 69], [Z-S, Theorem 25, p. 200]). We now come to 
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another standard result of commutative algebra. 

3.1 PROPOSITION. Let B be as above, and let 9X,..., 9m be an h.s.o.p. for B. 
The following two conditions are equivalent. 

(i) B is a free module {necessarily finitely generated) over k[9x, . . . , 9m]. In 
other words, there exist r j , , . . . , t\t E B (which may be chosen to be homo-
geneous) such that 

* « £ ! , , * [ * „ . . . , 0m]. (7) 

(ii) For every h.s.o.p. \}/x,..., \f/m of B, B is a free k[^x,..., \pm]-module. 
If condition (i) (and therefore (ii)) holds, then the elements t\x,..., v\t of B 

satisfy (7) if and only if their images in B/(9X, — , 9m) form a vector space 
basis for B/(9X,...99J. Q 

A proof that (i) and (ii) are equivalent can be found, e.g., in [Se2, Theorem 
2, p. IV-20] (using somewhat different terminology). The latter part of the 
above proposition is an easy consequence of (i). An N-graded ^-algebra B 
satisfying (i) and (ii) above is said to be a Cohen-Macaulay algebra. Hence the 
question raised at the end of the previous section can be rephrased: Is RG 

Cohen-Macaulay for finite G c GL( V)! The first explicit answer to this 
question appeared in [H-E, Proposition 13], although it was apparently part of 
the folklore of commutative algebra before [H-E] appeared. 

3.2 THEOREM. For any finite G c GL(F), RG is a Cohen-Macaulay algebra. 

PROOF. We first claim that we can write R * RG © U, where U is an 
/^-module. If ƒ e R let $(f) = ( l / g ) 2 ^ e c

 Mf- (* i s t h e so-called Reynolds 
operator) Now <j>2 = <ƒ>, and it follows that we can take {/= {ƒ Ei?:<f)/=0} 
= { ƒ - * ƒ : ƒ E J?}. 

We next claim that R is a finitely-generated i?G-module. This claim is 
equivalent to the classical result that R is integral over RG, i.e., every element 
of R satisfies a monic polynomial with coefficients in RG. (For the equiva
lence of finite generation to integrality, see, e.g., [A-M, Chapter 5].) For the 
sake of completeness we give the standard proof that R is integral over RG. 
Let ƒ e R, and consider the polynomial Pf(t) = ïïMeG(' ~" M(f)). The 
coefficients of Pf(t) are symmetric functions of the M(f)% so elements of 
RG. Moreover Pf(t) is monic, and Pf(f) = 0 since t - ƒ is a factor of Pj(t). 
Hence ƒ is integral over RG, as desired. 

Now let 0X,..., 0m be an h.s.o.p. for RG (existence guaranteed by the 
Noether normalization lemma). Since R G is finite over C[9X,..., 9m] and R is 
finite over RG, it follows that R is finite over C[0„ . • . , 9m], so 9X,..., 9m is 
an h.s.o.p. for R. Since xx,... ,xm is also an h.s.o.p. for R and R is clearly a 
free C[xx,..., xw]-module, it follows from Proposition 3.1 that R is a free 
C[9X9..., 0,J-module. Moreover, it follows from the decomposition R = RG 

0 U that R/(9X, ...,0m) = RG/(9V ..._, 9m) 0 U/(9XU + • • • +9mU). 
Choose a homogeneous C-basis r}x,..., % for R/(9X,..., 9m) such that 
j / j , . . . , % is a C-basis for RG/(9X,..., 9m) and fjt+x,..., % is a C-basis for 
U/(9XU + • • • +9mU). Lift rjj to a homogeneous element TJ, of RG if 
1 < i < / and to a homogeneous element TJ, of U if t + 1 < i < s. By 
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Proposition 3.1 we have R = 11} TJ,C[0I, . . . , 0m], so RG = 
U'i Ï?,C[#I> • • • > 9m]. Hence RG is a free C ^ , . . . , 0J-module, so i?G is 
Cohen-Macaulay. D 

We now wish to give an explicit description of a certain h.s.o.p. \pl9..., \pm 

for RG. We will in fact show directly that R is a free Q ^ , . . . , t//m]-module, 
so it will follow from the proof of Theorem 3.2 (circumventing the use of 
Proposition 3.1) that RG is a free C [ ^ , . . . , ^w]-module. We will require the 
following result from commutative algebra [H-E, p. 1036], [Sm, Proposition 
6.8]. Since a direct, elementary proof is lacking in the literature, we include 
such a proof here. 

3.3 LEMMA. Let B be an N-graded k-algebra of Krull dimension m9 and let 
0,,. • . , 0j be algebraically independent homogeneous elements of B of positive 
degree. Set C = k[0l9..., 0\. Then B is a free C-module if and only if0i+\ is 
not a zero-divisor in B/(0l9 . . . , 0,) for 0 < i < j — 1. Moreover, given that B 
is a free C-module, then B is finitely-generated as a C-module iff = m. 

PROOF. Induction ony. First assume j = 1, and let 0 = 0X. Let W be a 
vector space complement in B of the ideal 0B. The statement that 0 is not a 
zero-divisor in B is equivalent to saying B = W + 0W + 02W + • • • , i.e., B 
is a free &[0]-module (with basis consisting of a A>basis for W). Now assume 
the lemma for y = / - 1. It is clear that B is a free k[0l9..., 07]-module if 
and only if B is a free k[0l9..., 0/_,]-module and B/(0l9..., 0/_1) is a free 
/c[0/]-module. By the induction hypothesis (including the casey = 1), the first 
assertion of the lemma follows. 

Now suppose j = m and let y be a (graded) vector space complement in B 
to the ideal (0l9..., 0m). Hence B = HM Yu9 where u ranges over all mono
mials in 0{9..., 0m. We want to show dim^ Y < oo. Linearly independent 
elements of Y remain linearly independent in D = B/(0l9..., 0W). If dim* Y 
= oo, then D contains a homogeneous element ƒ of positive degree which 
isn't nilpotent. Thus the elements fu are linearly independent in B for all 
i > 0 and all monomials u in 0l9..., 0W, so 0 1 ? . . . , 0m9 f are algebraically 
independent. This contradicts the definition of m as the largest number of 
algebraically independent elements of B. • 

Now choose linear forms ƒ„ . . . , fm G V as follows. Pick ƒ, ¥" 0. Once 
ƒ „ . . . , ƒ have been chosen, pick fi+l not to be in any of the /-dimensional 
subspaces <Af, f l 9 . . . , M^> of V9 where M„ . . . , A/, E G. (Such a choice is 
always possible since V is not a set-theoretic union of finitely many proper 
subspaces.) Let f i l 9 . . . , fi(H be the distinct images of f under G. (Hence if Ht is 
the subgroup of G fixing ƒ•, then at = \G\/\Ht\.) Define ^ = fji2 • • • J^. 
Clearly^ e RG. 

3.4 PROPOSITION, iî (and hence RG) is a finitely-generated free 
C[\pl9... 9 \f/m]-module. 

PROOF (based on a letter from E. Dade to N. Sloane and on a conversation 
with N. Sloane). By Lemma 3.3, it suffices to prove that ip/+1 is not a 
zero-divisor in R/fyi* • • • » ̂ i ) - I n ot l ier words, if 
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where Y, Zj G i*, then Y G ( ^ , . . . , t/'/)- Now the right-hand side of the 
above equality belongs to the prime ideal p = (/1 C i , . . . , fic) of R for any 
( c j , . . . , c,), so therefore some factor on the left-hand side does. But by 
definition we ha,vefi+XJ G £, so \f/i+l £ p. Hence 7 G ( / ,C i , . . . , fic) for every 
( c „ . . . , ct), so F G n ( / i C | , . . . ,4,.) = Oh» • • > *)• D 

Proposition 3.4 shows that there exists an h.s.o.p. \pv . . . , \pm for RG such 
that deg \pf divides g for all i. By raising the ;///s to appropriate powers we get 
an h.s.o.p. for RG whose elements all have degree g. Hence we can always 
write FG(X) in the form PG(X)/(l - Xg)m, where PG(X) is a polynomial with 
nonnegative coefficients. 

An interesting open problem is to determine the least possible degrees of 
the elements of an h.s.o.p. for RG, in terms of the structure of G. For 
instance, if the elements of G (regarded as matrices) all have real entries, then 
there exists an h.s.o.p. 0„ . . . , 0m with deg 0X = 2. This follows from the fact 
that G is equivalent to an orthogonal representation and therefore after a 
suitable change of basis fixes the form jcf + • • • + x\. (In the complex case 
we get the invariant xxxx + • • • + xmxm, but this is not a polynomial in
variant.) Conversely, if G is irreducible and has a nonzero invariant of degree 
2, then G is equivalent to a real orthogonal representation [Sp2, Lemma 
4.2.15]. 

3.5 EXAMPLE. Let G = {1, M, M2}, where M = diag(co, w"1), <o = e2™/3. 
Then JC?, x2 is an h.s.o.p. for RG, corresponding to the decomposition RG = 

XXX2 vL/ .Xi.X | ) . Also xxx2, x\ + x! is a n h.s.o.p., corresponding 
to RG = C[xxx2, x3i + xf](l ®xl). Hence 

F r\ï = * + A2 + X* = 1 +X3 

C U (1-A*)2 ( l - A * ) ( l - \ y 
The greatest common divisor of (1 — X3)2 and (1 — X2)(l — X3) is (1 - X) 
• (1 — X3), so FG(X) can be written with this denominator, viz., FG(X) = 
(1 - X + X2)/(l — XXI — X3). In this form the coefficients of the numerator 
and the factors of the denominator have no direct algebraic significance. 

3.6 EXAMPLE. Let us illustrate Proposition 3.4 with the cyclic group G of 
order 4 acting on V = (xx, x2, x3, x4} by xx -» x2 -» x3 -» x4 -» xx. Choose 
ƒ, = xx + x2 + x3 + x4, f2 = xx + x3, f3 = xx - x3,f4 = xx + x2. We get ^ l 

^ .Xj "T* X2 T X j T .X4, 1̂ 2 ^ v ^ l "*" * '̂3/v*^2 x4/> Y3 = = v^l "~~ x3/ \X2 "~~ *^4^ * 

^4 = C*i + xi)ixi + xzï(x2> + *4)C*i + xd' We cannot replace ip3 by 
(xx — x3)(x2 — x4) since this element is not an invariant. We cannot replace 
f4 by *i> since xx G </2, /3>. 

Proposition 3.4 yields information about the possible values of dt = deg 0, 
in a decomposition RG

 =H'1TJ/C[01, . . . , 0m]. What can be said about the 
numbers et = deg rj,? Assume the TJ/S are labeled so that 0 = ex < e2 

< • • • < er We will confine ourselves here to a determination of er 

3.7 LEMMA. Let o be the linear character of G given by o(M) = (det M)"1 . 
77iefl as rational functions we have 
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^ 0 A ) = (-iA-FG,a(A). 

PROOF. By Molien's theorem, we have 

1 ^ 1 Mi/*)-t 2 
(- l)mAm (de tM) - 1 

2a 8 de t ( / -AM" 

( - 1 ) " V Ô(M) 

g ~ det(Z-AM) 

= (-l)wATc > 0(A). D 

3.8 PROPOSITION. Let RG= n',ij,C[0„ • • • » #m]> where d e ê #. = 4> d e S ^ = 
e„ 0 = ex < e2 < • • • < et. Let ju, be the least degree of a o-invariant, i.e., the 
least degree ofan ƒ G R satisfying Mf = (det M)~ xf for all M E G . Then 

m 

*« = 2 (4 - i) - **• 
i 

PROOF. We have FG(X) = (2V')II(1 - \d-)~\ so 

^(iA) = (-i)m(2^ i +-+ < 4-£ ')n(i-^)_ 1 

= (-lA'"Fc>0(X) 
by Lemma 3.7. Hence dx + • • • + rfm — e, = m + /x. • 

3.9 COROLLARY. W7/A /Ae a W e notation, we have et < 2^(4 ~~ 1)> w#A 
e?wa% if and only if G G SL(F) (i.e., det M = 1 /or a// M e G). • 

REMARK. Our results in this section concerning RG can be extended 
straightforwardly to each RG. The basic result is the following, which is 
equivalent to the statement that RG is a Cohen-Macaulay module. 

3.10 THEOREM. Let 0l9..., 0m be an h.s.o.p.for RG
9 and let x £ X(G). Let 

p h . . . , p^ be homogeneous elements of RG whose images in the quotient module 
Sx = RG/(0xR

G + • • • + 0mRG)form a C-basisfor Sx. Then 

PROOF. In the proof of Theorem 3.2 we obtained R = RG © U. We 
actually have the finer decomposition R = URG. Now argue exactly as in the 
proof of Theorem 3.2, viz., choose a homogeneous C-basis rjx,..., fjs for 
R/(0X,..., 0m) such that each TJ, lies in some Sx. It follows as before that 
RG = l i f t e d , . . . , 0m], where the p/s are those TJ/S belonging to i?^. • 

4. Group generated by pseudo-reflections. In light of Theorem 3.2 it is 
natural to ask under what circumstances does the representation RG = 
II j ï?,C[0,,..., 0m] have a particularly simple or interesting form. In this 
section we discuss the simplest possibility of all, viz., the case when RG = 
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C[0„ . . . , 0m], Equivalently, RG is generated by m elements, which are 
necessarily algebraically independent. The best-known case occurs when G 
consists of all m X m permutation matrices. An invariant is just a symmetric 
function of the x/s, and the "fundamental theorem of symmetric functions" 
states that RG = C[av . . . , an\ where ai is the ith elementary symmetric 
function, given by a,(x) = 'SXJXJ • • • xjt, where the sum is over all integers 
1 < j \ <Ji < • • • <J, < w. In order to state the fundamental result telling 
when RG = C[0 1 ? . . . , 0m]9 we require a definition. If G is a finite subgroup 
of GL( V) and M Œ G, then M is called a pseudo- reflection if precisely one 
eigenvalue of M is not equal to one. 

4.1 THEOREM. Le/ G be a finite subgroup ofGL(V). There exist m algebrai
cally independent {.homogeneous) invariants 0x,...,0m such that RG = 
C[0l9..., 6m] if and only if G is generated by pseudo-reflections. {Such a group 
will be called an /.g.g.r.) 

Theorem 4.1 was proved by Shepard and Todd [S-T], Chevalley [Ch], and 
Serre [SeJ. Shephard and Todd explicitly determined all finite subgroups G 
of GL(F) generated by pseudo-reflections and verified the "if" part of 
Theorem 4.1 by the inelegant method of computing RG explicitly for each of 
these G. (A modern treatment appears in [Coh].) Chevalley found a "theoreti
cal" proof of the "if" part which did not depend on knowing the groups G 
themselves, in the special case that G is generated by reflections (pseudo-re
flections of determinant — 1). Serre observed that Chevalley's proof is valid 
for groups generated by pseudo-reflections. While the "if" part of Theorem 
4.1 has a purely algebraic proof, the proof of the "only if" part given in [S-T] 
has a strong combinatorial flavor so will be reproduced here (in a slightly 
different form). 

4.2 LEMMA. Let G be a finite subgroup of GL( V) of order g, and let r be the 
number of pseudo-reflections in G. Then the Laurent expansion of FG(K) about 
A = 1 begins 

FG(V = £o - *rm + £ o - *rm+l + o(o - \rm+2). 

PROOF. By Theorem 2.1 we have 

fcW = 7 2 det(Z-AM)-1. 

The only term det(7 — AM)"1 in this sum to have a pole of order m at A = 1 
is the term (1 — \)~m corresponding to the identity element M = I of G. If 
det(7 - AM) -1 has a pole of order m — 1 at A = 1, then M is a pseudo-
reflection and det(7 - AM)"1 = 1/(1 - X)m~\l - pA) where p = det M. 
Hence the coefficient of (1 — A)~w+1 in the Laurent expansion of ^(A) is 
(l/g)2 />(l — p)"1, where P ranges over all pseudo-reflections in G and 
p = det P. Now we have (1 - p)"1 H- (1 — p*"1)"1 = 1. Since P is a pseudo-
reflection if and only if P ~x is also, we conclude 
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p i — p p i - p p l - p 1 p 

completing the proof. • 

4.3 COROLLARY. For any finite G c GL(F), let 0 j , . . . , 0m be an h.s.o.p.for 
RG with deg 0, = dt. Let RG = IT, TJ,C[0„ . . . , 0J , say w/tf* ?), homogeneous of 
degree et. Let g = \G\ and let r be the number of pseudo-reflections contained in 
G. Then 

tg = dxd2 • • • dm, 

rt + 2(el + • • • +et) = / ( ^ + • • • +dm - m). 

PROOF. We have 

FG^ = no-x^)^^777^ Ô^f 

+ 0 ( ( l - A ) - m + 2 ) . 

Comparing with Lemma 4.2 completes the proof. • 

4.4 COROLLARY. If RG = C[0j, . . . , 0 J with dt = deg 0,., then g = 
rf,rf2 • • • dm and r = 2 (4 — 1). 

PROOF. Put / = 1 in Corollary 4.3 and note that we must have e{ = 0. Q 

4.5 LEMMA. Let \f/l9.. . , xpn be homogeneous algebraically independent 
polynomials in R = C[xlf. . . , xm]. Let 0 , , . . . , 0m be homogeneous algebrai
cally independent polynomials in R which are polynomials in the xfr/s (so 
0j E C[^,,. . . , t//w]). Then there is a permutation m of 1, 2 , . . . , m such that 
deg ^ < deg 0w(/) for all i E [m], with equality holding for all i if and only if 
C[^, . . . ,^J = Q0! , . . . , 0J. 

FIRST PROOF. Since the i//'s and 0's are algebraically independent, the 
Jacobian determinant det(30//3^) ^ 0. Hence for some 7r we have 

9^1 ' " fym 

and the proof follows (the condition for deg \p{ = deg 0w(/) being clear). • 
SECOND PROOF. Define a bipartite graph T on the vertices 9V ..., 9m9 

*l/v ... 9 \pm as follows: An edge connects 0, and ;//,- if and only if ^ actually 
appears in the polynomial 0, = 0,0//15. • . , ^m). It follows from the algebraic 
independence of the 0's that any k of the 0's are connected to at least k of the 
t//'s. Hence by the "marriage theorem" (e.g., [Ry, p. 48]) there is a permutation 
m such that i//, and 0„(/) are connected, i E [m], and the proof follows. • 

PROOF OF THE "ONLY IF" PART OF THEOREM 4.1 (assuming the validity of 
the "if" part). Assume RG = C[0 1 ? . . . , 0 J with deg 0, = dr Let H be the 
subgroup of G generated by all pseudo-reflections in G. Then by the "if" part, 
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we have RH = C[\pl9..., ipm]. Clearly RG c RH, so each 0, is a polynomial 
in the *//'s. By the previous lemma we may assume the \p9s are labeled so that 
et = deg ^ < dt. Let r be the number of pseudo-reflections in G and therefore 
in H. By Corollary 4.4 we have 

r = 2 ( 4 - l ) = 2 ( e , - l ) . 
Since et < dt we have e, = di9 so again by Corollary 4.4 we have \G\ = \H| 
and hence G = H. • 

There are many other fascinating facts concerning finite groups generated 
by pseudo-reflections (or f.g.g.r.'s). We shall briefly discuss some of them 
here, referring the reader to the literature for further details. First we have the 
generalization of Corollary 4.4 proved by Shepard and Todd [S-T, Theorem 
5.3] by examining all cases, and first proved uniformly by Solomon [SoJ. 

4.6 PROPOSITION. Let G c GL{V) be an f.g.g.r., and let bt be the number of 
elements M EL G with exactly i eigenvalues unequal to one. Suppose RG = 
C[0„ ...,0m] with dt = deg 0t. Then 

m m 

2 bji' = II (1 + « - 1)X). D 

If we put X = 1 in Proposition 4.6 we get g = 7Hdi9 while if we compare 
coefficients of À we get r = 2 (4 — !)• Hence Corollary 4.4 is indeed a special 
case. 

We now turn to the consideration of the modules RG of invariants of an 
f.g.g.r. G relative to a linear character x- A hyperplane % c V is called a 
reflecting hyperplane if some I ¥" P E G (necessarily a pseudo-reflection) fixes 
% pointwise. The subgroup of G fixing % pointwise is a cyclic group C% 

generated by some pseudo-reflection P%. Let ^^x) be the least nonnegative 
integer s for which x(py) = (det P%f. (It is easily seen that Sy{x) depends 
only on x and %9 not on the choice of P% generating Cx.) Let L% = L^x) 
be the linear form which vanishes on %9 i.e., % = {a E V: Lyfjx) = 0}. 
Finally define fx = T[% Ly&°, where the product is over all distinct reflecting 
hyperplanes in V. Note that ƒ is a homogeneous polynomial in R of degree 
^%Scxix)- The following result appears in [Sp2, Theorem 4.34] and [Sta^ 
Theorem 3.1]. The weaker result that R£ is a free /^-module of rank one 
follows immediately from [Sp1? Proposition 2.6]. 

4.7 PROPOSITION. Let G c GL(F) be an f.g.g.r. and let x be a linear 
character of G. Then RG is a free R G-module of rank one generated by ƒ , i.e., 

In the special case x(^0 = (det M)~x, there is an alternative expression for 
fx first described explicitly by Steinberg [Ste]. 

4.8 PROPOSITION. Let G G G L ( F ) be an f.g.g.r. and let o be the linear 
character given by o(M) = (deg My1. Suppose RG = C[0l9..., 9m] and let 
J(0X,..., 0m) = (dOt/dxj), the Jacobian matrix of Qx>..., 9m {with respect to 
xu . . . , xm). Then for some 0 ^ a E C we have afa = det J(0V . . . , 0m). • 

It is interesting to check the above results for the special case where G 
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consists of the m X m permutation matrices. We have already mentioned that 
RG = C[a{9..., am]9 where at is the Zth elementary symmetric function in 
xl9..., xm. Hence by Theorem 4.1 G is generated by pseudo-reflections, viz., 
the transpositions (permutation matrices with exactly two off-diagonal Fs). 
Since deg at = i we have by Corollary 4.4 |G| = 1 • 2 • • • m = ml and 
r = 0 + 1 + • • • + (m — 1) = (J1). If we identify a permutation matrix M = 
(m^) with the permutation vr of {1, 2 , . . . , m] given by ir(i) =j if nty = 1, 
then the number of eigenvalues of M equal to one is the same as the number 
of cycles of TT (when expressed as a product of disjoint cycles). Hence by 
Proposition 4.6 we have 2JL0 *A' = 0 + W + 2X) • • • (1 + (m - 1)A), 
where £, is the number of permutations of {1, 2 , . . . , m) with m — 1 cycles. 
This is a well-known result in combinatorics (e.g., [Com, p. 313]), and in fact 
(— l)m~'èm_l- is the Stirling number s{m9i) of the first kind. Turning to 
Proposition 4.7, the group G has a single nontrivial linear character x> given 
by x(^0 = det Af = (det Af)"1. A x-invariant is the same as an alternating 
polynomial f G R, i.e., / (xw ( 1 ) , . . . , x<ni) = (sgn TT) /^ , . . . , xm) for all IT. 

Proposition 4.7 implies that R% = A(xl5 . . . , xm)RG, where A = 
!!/<ƒ(•*/ "" ^-) is the so-called discriminant. Hence we obtain the well-known 

result that an alternating polynomial is a symmetric polynomial times A. If 
instead of the a,'s we choose the polynomials (l/i)(*i + • • • + - Ô to 
generate RG, then Proposition 4.8 yields the well-known Vandermonde de
terminant 

det(xj-l) = A(xl,...9xm). 

The next result was proved for f.g.g.r.'s by Chevalley [Ch] and Serre [Se!] 
using elementary Galois theory. We prove a more general result using 
Molien's theorem. 

4.9 PROPOSITION. Let 9l9..., 6m be an h.s.o.p.for RG
9 where G is any finite 

subgroup of GL(F) of order g. Set dt = deg 0t and t = dx . . -dm/g. Then the 
action of G on the quotient ring S = R/{0X9..., 0m) is isomorphic to t times 
the regular representation of G. (I.e.9 the multiplicity of x in S is equal to 
'•xO).) 

PROOF. Let Sx be the isotypical component afforded by x of the action of 
G on S. Let H*{ri) equal the multiplicity of x in the action of G on forms of 
degree n in Sx$ so dime S = x(l)2„ Hx{n). It follows from Theorem 3.10 
that 

S jyx(w)X«-I(i-x*)...(l-X*-) S AJjMlMV n>o * g AfGG a e t ( i - A M ) 

Putting X = 1 yields that the multiplicity of x in Sx is given by 

( i / g ) (^, . . . ,4)x( l ) = /-x(l). D 
4.10 COROLLARY. Let G be an fg-g.r. with RG = C [0 j , . . . , 0J . Then the 

action of G on R/(0X9..., 0m) is isomorphic to the regular representation of G. 
D 

The numbers Hx(ri) occurring in the proof of Proposition 4.9 have been 
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studied in more detail for certain groups G, especially the Weyl groups (e.g. 
[B-L]). For the benefit of readers familiar with the representation theory of 
the symmetric group, we state without proof the following unpublished result 
of Lusztig. 

4.11 PROPOSITION. Let G be the group of all m X m permutation matrices, 
and let x be the irreducible character of G corresponding to the partition JU, of m. 
Then Hx{ri) is equal to the number of standard Young tableaux Y {with entries 
1, 2 , . . . , m) of shape /x such that n is equal to the sum of those entries i of Y 

for which i appears in a column to the left of i + 1. • 

Proposition 4.9 suggests the problem of analyzing the action of G on the 
quotient ring T = R/R+, where R° = Rf © Rf © The C-dimension 
of the isotypical component Tx is equal to the minimum number of genera
tors of Rx as an R ^-module. It seems unlikely that there is a nice expression 
for dime Tx or even dimc T. If x is a linear character of G then there is a 
condition [Staj, Theorem 2.3] for din^ Tx = 1 (equivalently, Rx is a free 
i?G-module, necessarily of rank one). 

4.12 PROPOSITION. Let x be a linear character of G, and define fx as 
preceding Proposition 4.7. {Though fx was defined only when G is anf.g.g.r., the 
definition makes sense for any G.) Then Rx is a free RG-module {of rank one) if 
and only if fx G R£, in which case R% =fx-R

G. Q 

For further results on f.g.g.r.'s, we refer the reader to [Bo], [F], [SpJ, [Sp2] 
and to the references given above. In particular [F] is a very readable survey 
paper, and [Sp2, §4.4] applies the theory of f .g.g.r.'s to the computation of the 
invariants of the binary polyhedral groups. 

5. Three applications. We have now developed enough theory to present 
three combinatorial applications. 

5.1 EXAMPLE. Let g be a positive integer, and define 

su)=2|i-<or2> (8) 
where the sum is over all g — 1 complex numbers co satisfying co* = 1 and 
co ^ 1. This is essentially the sum asked for in [He]. We show how S{g) can 
be computed using the invariant theory of finite groups. The right-hand side 
of (8) is reminiscent of a Molien series (1). If we define 

FG (x) = ~z 2 T\ vvTî—^vT ' 
g w (1 — C0A)(1 — COA) 

where co now ranges over all gth roots of unity, then it is clear from Theorem 
2.1 that FG{\) is the Molien series corresponding to the invariants of the 
cyclic group G of order g generated by diag(f, f ~ !), where f is a primitive gth 
root of unity. 

We then have 

S{g) = lim 
A-»l ^ ( X ) - ^ J (9) 

Now G is such a trivial group that FG{\) can be obtained practically by 
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inspection. Setting x = x{ and y = JC2, the invariants of G are clearly linear 
combinations of monomials xagybgxcyc

9 where a, b9 c E N and 0 < c < 
g — 1. Hence 

RG= II jc^c-C[jc*,.y*l. 

(Note that we have found generators of RG as a Qx^j^-module which are 
all powers of a single element xy. For the algebraic significance of this fact, 
see §9.) It follows that 

IT n\ 1 + A2 + X4 + - • + A2*"2 

It is now a straightforward (though somewhat tedious) task to compute 5(g) 
from (9), e.g., by 1'HopitaFs rule. The final result is 5(g) = (g2 — 1)/12. 

The reader may feel that it should be unnecessary to use the sledgehammer 
of invariant theory to crack the walnut of 5(g). One advantage of our 
approach is that it opens several avenues of extension. As a first such 
extension, the reader may wish to investigate on his own the sum 

**(*) = 2 |i-H~2* 
where co8 = 1, w =£ 1, and A: E P. For instance, 

S2(g) = ( g 2 - l ) ( g 2 + l l ) / 2 4 - 3 2 - 5 , 

S3(g) = (g2 - l)(2g4 + 23g2 + 191)/26- 33- 5 • 7, 

S4(g) = (g2 - l)(g2 + H)(3g4 + 10g2 + 227)/2*. 34- 52- 7. 

It can be shown that Sk(g) is an even polynomial of degree 2k and that 

gx cot( g sin~ lx) oo 
2 4*Sft(g)x2* = 1 

2 

5.2 EXAMPLE. Let X be the vector space of dimension n over GF(2) 
consisting of all n-tuples of O's and l's. Let C be a subspace of X of 
dimension /, i.e., an error-correcting code. Suppose that C is self-dual, i.e., 
C = C x , where C x = {v e X: v • w = 0 for all w E C}, the dot product 
v • H> being taken mod 2. (It follows that n = 2/.) Let ^4(r) be the number of 
vectors in C with exactly r ones, and set W(x,y) = 2"^0yl(r)x',*"^r. It is 
known that the hypothesis that C is self-dual implies that 

W((x + y)/V2 , (x - y)/V2 ) - IF(JC^), 

»F(x , -ƒ)= W(x,>0. 0°) 
The first of these identities is a consequence of the well-known MacWiUiams 
identities of coding theory [Me], [SI], while the second is equivalent to the fact 
that every w E C has an even number of ones, since w w = 0. Hence 
W(x,y) is an invariant of the group G generated by (1/V2 )(} _î) and (Ô _?). 
G is a group of order 16, and each of the preceding two generators is a 
pseudo-reflection. Moreover, G contains precisely eight pseudo-reflections. It 
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follows from Theorem 4.1 and Corollary 4.4 that RG = C[0l9 92], where 
deg 0X = 2, deg 62 = 8. With this information at hand, it is not hard to see 
that 0, and 62 may be chosen to be 

0X = X2 + y2y Q2 = xy(x2 _ y2}\ (11) 

Equation (11), originally due to Gleason, together with various genera
lizations and modifications, has recently been applied to various problems in 
coding theory and to the problem of finding a projective plane of order 10. 
See, for example, [M-M-S], [M-S], and the survey paper [SI]. 

5.3 EXAMPLE. Let a = (a„ . . . , a,) G N', and let Pn(a) denote the number 
of ways of writing a as a sum of n vectors in N7, without regard to order. For 
instance, P3(2, 1) = 4, corresponding to (0, 0) + (0, 0) + (2, 1), (0, 0) + (1, 0) 
+ (1, 1), (0, 0) + (0, 1) + (2, 0), (1, 0) + (1, 0) + (0, 1). The theory of the 
numbers Pn(a) belongs to the subject of "multipartite partitions", of which 
[An, Chapter 11] contains a nice survey. (It is customary not to allow 
(0, 0 , . . . , 0) as a part, but this turns out to be irrelevant.) Let Xa = 
Ap . . . \j*i. It is then clear by "inspection" that 

2 2 Pn(«)W= II (1-Afy-1. (12) 

It was Solomon [So2] who first incorporated the theory of multipartite 
partitions into the theory of invariants of finite groups, by interpreting the 
right-hand side of (12) in terms of certain generalized Molien series. 
Solomon's results are considerably more general, but we shall merely extract 
from them what is needed to prove an interesting result about the generating 
function (12). 

Suppose V = Vx © • • • © Vt and that each Vt is invariant under the finite 
group G c GL(F), i.e., Mx G Vt for all M G G and x G Vt. We give V the 
structure of an "N7-graded vector space" by defining deg JC to be the ith unit 
coordinate vector eé in N7 if x G Vr Let xn, xi2,..., xis, be a basis for Vt. 
Then the polynomial ring R = C[xtj: 1 < i < /, 1 < j < sj has an N7-
grading "induced" from V, i.e., R = I I a e N / Ra, where Ra is spanned by all 
monomials Ilij x$ such that at = 2y atj for 1 < i < /. Moreover, the action 
of G on R preserves the N7-grading, so RG has the structure RG = IIa RG of 
an N7-graded algebra, with RG = RG n Ra. It is natural to ask for an 
extension of Molien's theorem which will give an expression for FG(X) = 
2 a (dime RG)Àa. In exactly the way Molien's theorem is proved one obtains 

*b(*)-7 2 II detO-M/,)-1, (13) 

where Mt: V( -* Vt denotes the restriction of M to Vt. 
Now let each st = n, so R = C[x^: 1 < i < /, 1 < j < «]. Let the symmetric 

group &„ of all permutations of [n] act on V by ATX̂  = x ^ . This defines a 
certain group Tn c GL(F) abstractly isomorphic to ®n. It follows from (13) 
that 

Frnw = ^ s no-XiT'.- .o-vr1 . 04) 
"• we©,, c 
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where C ranges over all cycles of 77, and c is the length of C. A well-known 
formula from enumerative combinatorics (e.g., [Ri, p. 68], [Co, pp. 134 and 
247]) implies that 

2 Fr(i(A)f» = e x p 2 7 ( 1 - ^ 1 ' ) _ 1 . . . ( 1 - A ^ ) • 

Writing (1 - X[yl . . . (1 - A/)"1 = 2pG N . A* we get 

1 F r . W r - e x p S l o g O - A f y - 1 

« = 0 0 

= n(i-A^)"1. (is) 

Comparing (12) with (15), we see that 2 a e N / Pn(a)\a is just the generalized 
Molien series for the group r„. 

Ira Gessel has pointed out that a simple direct argument also shows that 
2iP„(a)Aa is the Molien series for Tn. Let a = a{ + • • • + an be a multi
partite partition of a into « parts, and let a, = (a,,, . . . , a/y). Then a little 
thought shows that the elements 2 M e r A/(II/V x$>\ taken over all multipar
tite partitions of a into n parts, form a C-basis for R£\ Hence dimc R£n = 
Pn(ct), as desired. 

Now in general if / > 2, then an N'-graded algebra need not have a system 
of parameters which is homogeneous with respect to the N'-grading (called an 
Nl-h.s.o.p.). However, for the algebra RT» it is easy to check that the 
elementary symmetric functions Btj = aj(xil9..., xa)9 / G [/],; G [n], do form 
an N'-h.s.o.p., with deg 0O = je*. This implies that in the decomposition 
RT» = H*»! %C[^] we can choose each % to be N'-homogeneous, say of 
degree ^ e N'. It follows that 

^(A) = ( i A^)ll 0(1-A/)"1. 

Therefore we conclude: 

5.4 PROPOSITION. We have 

TT (\ - \fit\~x = V QnW*" 

/eV ' --on^ic-.O-V)' 
where Qn(\) is a polynomial with nonnegative integer coefficients. • 

The nonnegativity of the coefficients of Qn(\) was conjectured by Wright 
[Wr] and first proved by Gordon [G] using an intricate combinatorial argu
ment. A relatively simple combinatorial proof has recently been given in 
[G-G, Remark 2.2]. As mentioned above, the invariant theory approach is due 
to Solomon [So2], and the reader is referred there for further aspects of this 
idea. Let us simply mention that an exact analogue of Proposition 5.4 for 
multipartite partitions with distinct parts (corresponding to the product 
11(1 + Afy)) can be obtained by considering the module R^n, where x is the 
alternating character of Tn. 
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Abelian groups. Suppose that in the setup of (13) we have dim Vi? = 1 for all 
/ E [m]. Thus each matrix M G G is diagonal with respect to the basis 
x„ . . . , xm (xt E Vê). It is well known that a finite subgroup of GL(F) can 
be put in diagonal form if and only if it is abelian, so the case dim Vt = I 
corresponds to the study of abelian groups. It is clear that as a vector space 
over C, RG has a basis consisting of all invariant monomials xa = x?1... xp. 
The generalized Molien series (13) is given by FG(X) = S a Aa, where a 
ranges over all elements of Nm for which xa is invariant. Hence knowing 
FG(X) is equivalent to knowing RG. Equation (13) takes the form 

*b(*) = 7 2 l / ( l - e , A 1 ) - - - ( l - a j > (16) 
ô M E G 

where M = diag(e1? . . . , sm). 
It is clear that we can choose an h.s.o.p. for RG of the form 

X\\ *22> • • • 9 *mm> where dt E P. In the decomposition RG = 
n ^ Q x f ' , . . . , x£»]9 we can choose the r//s to be the set of all invariant 
monomials of the form jcf ' . . . x£m such that 0 < fa< dt for i E [m]. In 
particular, we may choose each dt = g. In this case a monomial xa belongs to 
R G if and only if a satisfies the system of congruences 

ô • a = 0 (mod g) 

where ô ranges over all vectors in Zm (or (Z/gZ)w) for which 
diag(f \ . . . , r t e G , i : = ^2,r//g. Hence the study of RG for G abelian is 
essentially equivalent to the study of linear homogeneous congruences. 

5.5 EXAMPLE. Let G be the group of order 3 generated by diag(co, <o2), where 
<o = e^i/\ Then 

1 + ! 
(1 - Xx)(l - A2) (l - «\0(1 - co2A2) 

+ ! 1 
(l - <A)(i - <o\2) J 

- ( I + X ^ + XÎXÎVO-XOO-AI). 

It follows that RG = C[JCJ*, x|](l © ^^2 © x^xj). In terms of congruences, we 
have xflx$2 E RG if and only if ax + 2a2 == 0 (mod 3). 

6. Syzygies. Theorem 3.2 establishes the'existence of a "canonical form" 
^ViPi(^\y • • • > #„) for elements of i?G, from which the Molien series FG(X) can 
be obtained by inspection. (Of course the actual computation of the 0/s and 
r}/$ may be difficult.) We would now like to discuss a second technique for 
"determining" RG and obtaining jFG(X)-the method of syzygies. We begin 
with an informal description of this method. Take any finite set y,, y 2 , . . . , ys 

of homogeneous elements of RG which generate RG as a C-algebra. (By 
Theorem 1.2 or 3.2, such finite generating sets always exist.) If the y/s were 
algebraically independent with deg yt = di9 then we would have FG(\) = 
11(1 — \di)~l. In general, however, various relations will hold among the y/s. 
These relations are called syzygies of the first kind. A version of the Hilbert 

FG{*) = \ 
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basis theorem shows that all syzygies of the first kind are consequences of 
finitely many of them (which we may assume to be homogeneous). Suppose 
S{ = 0, #2 == 0> • • • 9 Sw = 0 is such a homogeneous basis for the syzygies of 
the first kind among the y/s, with deg S, = f. It follows that the tentative 
generating function FG(X) = 11(1 — Xdi)~l must be corrected to FG(X) = (1 — 
2A^)/II(1 ~ Xd') to take into account the duplications caused by the syzygies 
S; = 0. Now, however, the syzygies Sx = 0, S2 = 0 , . . . , Sw = 0 need not 
themselves be independent, and relations among them are called syzygies of 
the second kind. Once again by the Hilbert basis theorem the syzygies of the 
second kind have a finite basis, and these will cause further corrections to 
FG(X)9 resulting in expressions like FG(X) = (1 - 2Xf< + 2X*)/II(1 - A4). 
Continuing this process, we obtain syzygies of higher and higher kinds. The 
Hilbert syzygy theorem [Hi], [Z-S, Chapter VII, §13] states that this process 
will terminate within s steps. Hence FG(X) can be written in the form 

FC(X) - (i - 2 ^ + 2 * * — ± 2**)/no - \% 
where there are at most s summation signs in the numerator. Of course if one 
is merely given FG(X), it is impossible to determine which terms of the 
numerator correspond to which kind of syzygies without analyzing the 
algebra RG in detail. However, knowing FG(X) is a useful guide for 
determining all the syzygies. In general, given R G and a choice of generators 
y„ it is extremely difficult to determine all the syzygies explicitly. A good 
discussion of how one can explicitly determine the invariants and syzygies for 
a given group G may be found in [M-M-S, §IV]. For examples of 
computations involving the ring RG (such as the computation of Molien 
series, sets of generators, syzygies of the first kind, higher order syzygies, and 
the decomposition RG = H^C[Ö„ . . . , 0J)> see [J-BJ, [J-BJ, [Hu], [M-S], 
[M-B-D], [Pa], [SI], [Sp2, Chapter 4], [StrJ, [StrJ, [Str3]. 

6.1 EXAMPLE. Let G be as in Example 2.2. Then RG is generated by 
Yi = x\ + *2> Ï2 = *?*2> a n d Ï3 = x\x2 ~~ x\x2- A basis for the syzygies of 
the first kind consists of the single relation Sx = y2 — y2y2 + 4y2

 = 0. There 
are no higher order syzygies. Since deg y, = 2, deg y2 = 4, deg y3 = 4, and 
deg Sx = 8, we have FG(X) = (1 - X8)/(l - A2)(l - A4)2. 

Our informal description of syzygies may have sufficed to derive FG(X) in 
Example 6.1, but in general we have not made clear precisely what is meant 
by a "sygygy of the kth kind." We therefore give a more formal description of 
the method of syzygies. Let B = B0 © Bx © • • • be an N-graded A>algebra. 
Given a set y,, y 2 , . . . , ys of homogeneous generators for B, with d( = deg y, 
> 0, form new indeterminates yu ... ,ys and let A denote the polynomial 
ring A = k[yv ... ,ys] with an N-grading A0 © Ax © • • • given by deg>>, = 
dj. We define an A -module structure on B by the conditions y J = yJ for all 
ƒ e B. As an ,4-module, B is generated by the single element 1 (since 
y , , . . . , ys generate B as a /c-algebra). Hence B is isomorphic to a quotient 
ring A/1 of A, where ƒ is a homogeneous ideal of A (i.e., I is generated by 
elements homogeneous with respect to the above N-grading). The ideal I 
consists of the syzygies of the first kind. Throughout this paper, A, /, and 
B = A/1 will retain the above meaning (with a few obvious exceptions). 

In the present context, the rigorous formulation of the Hilbert syzygy 
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theorem implies that there is an exact sequence of A -modules, 
Ph P\ PO 

0^Mh~* Mh_{-> >Mx-> M0-> 5 ^ 0 , (17) 
where h < s and each Mi is a finitely-generated free A -module. The exact 
sequence (17) is called a finite free resolution of B (as an A -module). By an 
appropriate choice of the degrees of the free generators of each Mg9 the Af/s 
become Z-graded A -modules (as defined in §1), and the homomorphisms p, 
can be chosen to preserve degree, i.e., will map homogeneous elements of Mt 

of degree d into homogeneous elements of Mt_x of degree d. We will always 
suppose that (17) has been chosen so that each p, preserves degree. Suppose 
that Aft has a basis consisting of r, elements of degrees dw d2i9..., dri9 

respectively. It is a simple consequence of (17) that the Hubert series F{By X) 
is given by 

F(B, X) = 2( - i ) ' 2 ** 
/=0 j=\ 

n o - x«> !. (is) 
Hence F(B, X) can be computed once (17) is known. 

The homomorphisms p, in (17) may be regarded as specifying the syzygies 
of the /th kind. The kernel of ft.j is the module of syzygies of the ith kind, for 
1 < i < h. We may think of constructing (17) by finding, M0, Ml9..., Mh in 
turn. Once we have found Mt and p„ pick any set of homogeneous generators 
for ker p, and let a basis for Mi+i map onto these generators. If at each stage 
we choose a minimal set of generators for ker p„ then (17) is called a minimal 
free resolution of B (as an ^(-module). A minimal free resolution (17) of B is 
unique, in the sense that if 

is another one, with Mh¥=0 and Nj ^ 0, then h = j and there are degree-pre
serving A -module isomorphisms Mt^Nt such that the following diagram 
commutes: 

Ph Pl , , PO 

0 -> Mh -+ Mh_x -» 

0 _> Nh % Nh_x -> > Nt -i> N0 -4 5 -*0. 

In particular, the minimum number of generators of Mt and the degrees dM of 
these generators are uniquely determined in a minimal free resolution. The 
minimum number of generators (or rank) of Mt is called the ith Betti number 
of B (as an ^-module) and is denoted P?(B). If we have chosen 
Yi> Ï2> • • • > ys

 t o ^ e a minimal set of generators for B (as a A>algebra), then it 
turns out that fit

A(B) (and in fact the degrees dM) depend only on B, not on 
the choice of y/s. We write fit(B) for pf(B) when yl9..., ys is minimal. It is 
an interesting and difficult problem to compute the Betti numbers fié(B) in 
general, and A(* c ) i n particular. Note that since B is generated as an 
A -module by the single element 1, we always have p0(B) = 1. A good check 
of one's computations is the fact that 2,(-1)73,(5) = 0 unless B is a 

M, 

4-
* i 

—» 

<*l 

M0 

4-
Âo 

- » 

<»o 

B 

4-
B 
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polynomial ring (i.e., unless there exist algebraically independent generators 
Yi, • • • > y,). 

The least integer h for which (17) exists (equivalently, the greatest integer h 
for which /3^(B) =£ 0) is called the homological dimension of B (as an 
v4-module), denoted hdA(B). As before we write hd B when yl9..., ys is 
minimal. A standard result of commutative algebra (e.g., [Sej, Chapter IV]) 
implies that if m = dim B and B = A/1 as above with A = k[y{9...9ys]9 

then 

s — m < hd^ B < s. 

The latter inequality is just the Hilbert syzygy theorem. Moreover, hd^ B = 
s - m if and only if B is Cohen-Macaulay [Se2, Chapter IV]. Hence from 
Theorems 1.1 and 3.2 we conclude the following. 

6.2 THEOREM. Let G be a finite subgroup of GL(F), /e/ 4̂ = C[yv . . . 9ys]9 

and let RG = A/1 as above. Then 

hdA(RG) = s- m. D 

Note that Theorem 4.1 may be reformulated as follows: hd RG = 0 if and 
only if G is generated by pseudo-reflections. 

Once we have chosen (homogeneous) bases for the M/s in (17), we may 
represent pj (j > 1) as an r X s matrix, where r = rank Mj and s = 
rank Mj_l9 thinking of the elements of Mi as row-vectors of length equal to 
rank A/,. The entries of the matrix p, will be homogeneous elements of A. It is 
easy to see that the resolution (17) is minimal if and only if all the entries of 
each pj have positive degree (allowing the element 0 as an entry). Equiva
lently, no entry of any pj can be a nonzero element of k. 

Suppose we wish to compute the minimal free resolution of some RG (with 
respect to a choice of generators yl9..., ys). As mentioned previously, it is 
usually best first to compute FG(X) (by Molien's theorem or otherwise) and 
compare with (18). This will give a useful guide to the degrees d^ of the 
generators of the modules A/,. Unfortunately there may be cancellation 
between various terms in the numerator of (18) so that we cannot unequivo
cally deduce the dj/s from FG(\). In certain very special cases there is no 
cancellation. Two such results (not the most general possible) will now be 
stated without proof. For a deeper understanding of what lies behind these 
results, including an explicit description of the actual resolutions, see [Wah]. 

6.3 PROPOSITION. Suppose that the Cohen-Macaulay N-graded k-algebra B is 
generated by elements y{9..., ym+p all of the same degree e9 and that 
F(B9 X) = (1 + pXe)(l - Xeym. (Thus by Lemma 4.2, we have (1 + p)g = 
em when B = RG) Then in the minimal free resolution (17) of B (with respect 
to y„ . . . , ym+p), we have that h = p and that the module Mtfor i E [p] has a 
basis consisting of i(^+l) elements of degree e(i + 1). • 

6.4 PROPOSITION. Suppose that the N-graded k-algebra B is a Cohen-
Macaulay integral domain generated by elements yl9..., ym+ all of the same 
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degree e, and that F(B, X) = (1 + pXe + X2e)(l - Xe)~m. (Thus by Theorem 
4.2, we have (2 + p)g = em when B = RG.) Then in the minimal free resolution 
(17) of B (with respect to y„ . . . , ym+p)9 we have that h =p and that the 
module Mtfor i e [p — 1] has a basis consisting of 

P + l W + 1 / 

elements of degree e(i + 1), while Mp is generated by one element of degree 
e(p + 2). U 

We now give some examples of minimal free resolutions and computation 
of Betti numbers. 

6.5 EXAMPLE. Let G9 y„ y2, y3 be as in Example 6.1. Then A = C[yl9y2,y3] 
with degj>, = 2, deg y2 = 4, deg^3 = 4, and the results of Example 6.1 yield 
the minimal free resolution 

Q^A > A->RG->0. 

The map p, is represented by the 1 X 1 matrix [y\ — y\y2 + by?\. The unique 
element in any basis for M0 = A has degree 0 (as is the case for any B) and 
for M, = A has degree 8 (the degree of y\ - y\y2 + 4y2 in A). Hence (18) 
yields 

(1 - X2)(l - X4)2 

which is exactly what we obtained in Example 6.1, essentially by the same 
reasoning though not quite so formally. We also see that hd RG = 1, 
/i0(R

G)^l9^(RG) = h 
6.6 EXAMPLE. This example should illustrate the difficulties in computing 

syzygies even for very small groups. Let G be the group of order 2 and degree 
3 generated by diag(-l , — 1, —1). Pick for generators of RG the elements 
Ji — *?> Ï2 = xh Ï3 = *3> ?4 = *ix2> Ï5 — x\x3> Ï6 = xixy ^^s *s a minimal 
set of generators all of degree 2. The Molien series is given by 

^(A)=i[(i-x)~3 + (i + xr3] 

= (1 + 3X2)(1 - X2)""3. 

Hence Proposition 6.3 applies, so we know that hd RG = 3 and that Mx is 
generated by 6 elements of degree 4, M2 is generated by 8 elements of degree 
6, and M3 is generated by 3 elements of degree 8. (Note that 1 - 6 + 8 - 3 
= 0.) Even with this useful information it is not easy to compute the minimal 
free resolution by brute force. The resolution turns out to be 

0->A*$A**A*2>A-*Ra->0 
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where 
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6.7 EXAMPLE, (a) Let G be the group of order 2 and degree 4 generated by 
diag(-l , - 1, - 1, - l).Then 

Fc (A) = \ [(1 - A)"4 + (1 + A)"4] = (1 + 6A2 + A4)(l - A2)'4. 

Moreover, R G is minimally generated by the ten monomials xtXj with 1 < i < 
j < 4. It follows from Proposition 6.4 that the Betti numbers of RG (with 
respect to the above generators) are given by (/?0, fll9 . . . , fa) = 
(1, 20, 64, 90, 64, 20, 1). For the algebraic significance of the symmetry fa = 
&_,,see§8. 

(b) Another group to which Proposition 6.4 applies is the group G of order 
3 and degree 3 generated by diag (<o, <o, <o) where <o = e27r//3. In this case 
FG(X) = (1 + 7A3 + A6)(l - A 3 ) " 3 and (jB0, . . . , fi7) -
(1, 27, 105, 189, 189, 105, 27, 1). 

REMARK. Our discussion of minimal free resolutions of RG applies equally 
well to the modules RG. The A -module structure of RG gives RG the structure 
of an A -module, and we can define the minimal free resolution of RG (as an 
,4-module) exactly as we did for RG. Similarly the numbers fa(RG) and 
hd RG can be defined. It follows from Theorem 3.7 and [Se2, Qiapter IV] 
that Theorem 6.2 extends to: 

hdA(RG) = s - m. 

7. The canonical module. Let A be a finitely-generated free (right) module 
over the polynomial ring A = k[yx,... fys]. Let A* = Hom^(A, A), the set 
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of all A -module homomorphisms A-*A. We regard <f> as acting on the right. 
Then A* has a natural A -module structure, given by u(<f> + <J>') = u<j> + u<f>' 
and w(<J>/) = (u4>)f (= (uf)<j>), where u E A, <J> E A*, <J>' E A*, ƒ e A. If 
t* i , . . . , K/ is a basis for A, then A* is a free ^4-module with basis wf,. . . , uf 
given by 

Jl 10, 1*7. 

(Since we have defined A* to act on the right, ju/ju,f stands for the homomor-
phism i»f: A-*A evaluated at ty.) Let Ax and A2 be finitely-generated free 
A -modules, and let p: A! -» A2 be an A -module homomorphism. Thus once 
we have fixed bases tij, . . . , ty of Aj and t>„ . . • , vq of A2, we can represent p 
as an / X q matrix (operating on the right on row vectors of length /) with 
entries in A. We then have a homomorphism p*: AJ -» A f given by w(<J>p*) = 
(wp)<£, where <J> E A | and u E AP The matrix of p* with respect to the bases 
vf,..., t> * and wf,. . . , «f is just the transpose of the matrix of p. 

Now suppose that 2? is a Cohen-Macaulay N-graded A>algebra, and let (17) 
be a minimal free resolution of B (with respect to some choice yv . . . , ys of 
homogeneous generators, so A = C[yly... ,ys]). We may then "dualize" the 
entire resolution (17) by applying the operation (functor) *. If we assume for 
the present that yl9..., ys are not algebraically independent, i.e., B =£A> 
then Hom^(5, A) = 0, so we obtain 

pf ot 

0 - * M £ - > M f - > - • • ~»MA*-*0 (19) 
It is clear that (19) is a complex (i.e., p^iP* = 0, since (ftft-i)* = p*_iP*X but 
in general there is no reason to suppose that (19) is exact. However, it follows 
from a theorem of homological algebra (e.g., [I, §2.3]) that because B is 
Cohen-Macaulay, the complex (19) is exact except at Af£. Hence if we let 
ÜA{B) denote the cokernel of p£ (i.e., ÜA(B) = JMJf/p^JMy.j)), then the 
complex 

0-*MJ^A/f-»--- PXMÏ->ÜA(B)-±Q (20) 

is actually a minimal free resolution of the A -module tiA(B). The A -module 
tiA{B) is called the canonical module of B. (In the case B = A, we simply set 
QA(A) = A, although a uniform definition of &A(B) could be given.) See 
[H-K] for a general discussion of canonical modules. 

Although (20) a priori defines tiA(B) only as an A -module, it is easy to see 
that if B = A/I then I is the annihilator of tiA(B). It follows that we may 
regard tiA (B) as a i?-module. A theorem of homological algebra (e.g., [H-K, 
Satz 5.2]) implies that the 5-module structure of ^ ( 5 ) depends only on the 
structure of B as a ring, not the choice yl9..., ys of generators defining A. 
Hence we write S2(E) for ÜA (B) regarded as a J9-module. 

The last nonvanishing Betti number /?ƒ_„, (2?) is equal to the minimal 
number of generators of tiA(B) as an A -module and hence also as a 5-
module. It follows that fis

A_m(B) depends only on B, not on A, and is called 
the type of B, denoted type B. This is an important numerical invariant of a 
Cohen-Macaulay N-graded /c-algebra B. 
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There is also an "internal" definition of S2(5) which does not involve 
homological considerations. Let 0„ . . . , 6m be an h.s.o.p. for B9 and set 
T = k[0{9..., 0m]9 so B = IIÎ ViTîoY some homogeneous ^ E B. Since 5 is 
a free T-module of rank t9 we have already seen that Homr(J3, T) is also a 
free T-module of rank /, with basis rjf, . . . , rj* given by î .ijf = fy. We now 
make Homr(2?, T) into a 5-module by defining #(<!>ƒ) = (gf)<t> for ƒ E B> 
<j> E Homr(2?, T), and g E 5. It turns out that with this 5-module structure, 
HomT(B9 T) is isomorphic to the canonical module Q(B) [H-K, Kor. 5.14]. It 
is by no means a priori evident that the 5-module structure on Hom r(5, T) 
is independent of the choice of an h.s.o.p., and it would be interesting to find 
a nonhomological proof of this fact. There is also an "internal" definition of 
the integer type B which is a simple consequence of the formulas ti(B) s 
Hom r(£, T) and HomT/T+(B/T+9 T/T+) ss (T/T+) ® HomT(B9 T)9 

where T+ is the ideal of T generated by 0l9...9 0m. Namely, set S = 
B/(0l9..., 0m). Thus S is a finite-dimensional vector space with basis 
consisting of (the images of) i j j , . . . , t\r The socle of S9 denoted soc S9 is by 
definition the ideal of S annihilated by all ƒ E B of positive degree. It is then 
true that 

type B = dim* soc S. (21) 

We can now state the fundamental theorem which determines ti(RG). This 
result is implicit in the work of Watanabe [WatJ, [Wat2] and was explicitly 
proved by D. Eisenbud (unpublished). 

7.1 THEOREM. Let G be a finite subgroup of GL(F), and let o be the linear 
character of G given by o(M) = (det M)"1 . Then ti(RG) s RG. 

Although the proof of Theorem 7.1 is beyond the scope of this paper, we 
can give a simple "combinatorial" motivation for this result. An easy argu
ment (see [Sta2, equation (12)]) shows that when B is a Cohen-Macaulay 
N-graded /:-algebra of KruU dimension m, then S2(J8) has a natural Z-grading 
which satisfies 

F(ti(B)9 X) = (-l)m\«F(B9 l/X) (22) 

(as rational functions) for some q E Z. If we compare (22) with Lemma 3.7, 
this certainly suggests that ti(RG) s RG. 

7.2 EXAMPLE. Let G be the group of degree 2 and order 3 generated by 
diag(co, co) where <o = e2™'3. Hence RG = C[x3

9y
3

9 x^9 xy2] = C[JC3,>>3](1 0 
x*y © xy2). We will compute Ü(RG) in three different ways. 

(a) According to Theorem 7.1, Q(RG) = {ƒ E R: /(cox, coy) = co/(x,y)} m 

Thus ti(RG) has a C-basis consisting of all monomials xyb with a + b = 1 
(mod 3). It follows that Q(RG) is the i?G-submodule of R generated by x and 
y. We may write this as Ü(RG) = xRG + yRG = C[x\y3](x ®y® xY). 
Note that since Q(RG) has two generators, we have type RG = 2. The ring 
S = RG/(x3

9y
3) has a C-basis consisting of 1, x*y9 xy2. The socle of S has 

the basis x^9 xy2
9 so indeed din^ soc S = type RG. 

(b) Letting y, = x3, y2 = y3
9 y3 = x^ , y4 = xy2

9 so A = C{yx,y2,yvy& 
the minimal free resolution of RG is 
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0-^A2 > A3 >A-+RG-+0. 
yi ys - ^4 
y A, y\ ~ ^ 3 ] y\yA-yl 

yxyi-yiy* 

Note that the "last" module has rank equal to 2 = type RG. Dualizing, we 
obtain the resolution 

0->A — > A\ > ^A2-*ti(RG)->0. 
[y\y4-y3y2y3-y4yiy2-y3y4] r yi 

y* 
[~y* 

— » 
y A ] 
y\ 

~y* J 

Hence ti(RG) s A2/'J, where J is the submodule of A2 generated by (y2,yù> 
{y^y\\ a n d (""̂ 4> - ƒ3). If we identify (1, 0) with x and (0, 1) with y, we 
obtain an isomorphism 2(R G) s i?a

G. 
(c) Let T = C[x3,y3]. Then S2(#G) s Hom r(#G , T). As a T-module, 

Homr(JR
G, 3T) has the basis 1*, y*, 17* where y = xy2 and 77 = x*y. The 

#G-module structure of Hom r(iîG, T) is given by 

1*1 = 1*, l*y = 7)*x3y3, 1*1] = y*x3y3, 
y*\ = y*? y*y = \*^ y*^ _ «q*^3, 

77*1 = | j* ? T/*y = Y*^3, 17*17 = 1*. 

(For instance, let us compute 17*7. We have 1TJ*Y = yrç* = 0 = ly*j>3, y77*y 
= y V = OV)*?* = (x^)i*y3 = wn*y3 = >>3 = yy*y3> nn*y = Ow)*?* -
(x3y3)-q* = ITJ**3/3 = 0 = Tjy*y3. Thus >7*y = fy*y3 for all ƒ G l?G, so r/*y 
= y*73.) Hence as an JR

G-module, Homr(i?G, T) is generated by y* and 77* 
subject to the relations y*y = 77*77, y*77 = TJ**3, 7j*y = y*>>3, which agrees 
with (b) above upon identifying (1, 0) with y* and (0, 1) with 77*. 

REMARK. The definition and basic properties of Si(RG) extend without 
difficulty to ti(R G). The details are left to the reader. We simply remark that 
Theorem 7.1 extends to Ü(RG) » RG

a. 

8. Gorenstein rings. The Cohen-Macaulay N-graded fc-algebra B is said to 
be Gorenstein if type 5 = 1. Equivalently (since the annihilator of S2(J5) is ƒ), 
B is Gorenstein if and only if Q(B) » B (as 5-modules). Hence the resolution 
(20) is a minimal free resolution of B. Since minimal free resolutions are 
unique, it follows that (17) and (20) coincide, in the sense that with the 
correct choice of bases for the modules Mt and A/,*, the matrices p, and 
P*-i+\ are identical, 1 < 1 < h. We therefore say that the minimal free 
resolution of B is "self-dual." In particular, rank Mi = rank Mj}L/, so we 
obtain the result that if B is Gorenstein, then 

tf (B) = # . , ( * ) , Q<i<h = s-m. (23) 

Note that since 1 = p£ (£), the condition ptf (B) = pf (B) is equivalent to 
our definition of Gorenstein, so the case i = 0 of (23) implies its validity for 
all 1 (assuming B is Cohen-Macaulay). 

Since one can construct the Hubert series F(B, X) from a finite free 
resolution of B via (18), one might suspect that the self-duality of (17) when B 
is Gorenstein would lead to a condition on F(B, X). Indeed, an easy argu
ment (see [Sta2, Theorem 4.1] for details) shows that when B is Gorenstein of 
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Krull dimension m, we have 

F(B, l/X) = (-l)mXlF(B,X) (24) 

(as rational functions) for some / E Z. (In fact, (24) is a special case of (22).) 
Equation (24) may be restated in terms of the decomposition B = 
II', i\ik[0x,..., 0m] as follows. Let dt = deg 9t and et = deg TJ,, with 0 = ex < 
e2 < • • • < e,. Then 

Ç- + *?,+ !_/ = £„ 1 < / < t. 

Equivalently, the polynomial 
m t 

P(X)-F(2U)II(l-X«)-2*« 
l * 

satisfies P(X) = \€>P(l/X). In [Sta2, Theorem 5.5], it was shown that the 
necessary condition (24) for B to be Gorenstein is also sufficient, under the 
assumption that B is a Cohen-Macaulay domain. 

Now consider the case B = RG, where G is a finite subgroup of GL(F). 
Since RG is a Cohen-Macaulay domain, it follows that (24) is equivalent to 
RG being Gorenstein. If we express FG(X) by Molien's theorem (Theorem 2.1) 
and expand both sides of (24) in a Laurent expansion about À = 1, then 
analogously to Lemma 4.2 we obtain that / = m + r, where m = dim V and r 
is the number of pseudo-reflections in G. In [Stat, Corollary 2.4] another 
condition was given for RG to be Gorenstein, based on the fact that Theorem 
7.1 implies that RG is Gorenstein if and only if RG = fa- RG for some fa E R, 
where o = det"1. These results are summarized by the next theorem. 

8.1 THEOREM. Let G be a finite subgroup of GL(F). Let o be the character 
o(M) = (det M)~l. Let %x, . . . , %v be a reflecting hyperplane in V, and 
define the linear form L% E R by % = {a E V: Lc^a) = 0}. Let c% be the 
order of the (cyclic) subgroup of G which fixes % pointwise, and define 
fx = J[cKL^~x the product being over all reflecting hyperplanes % in V. (This 
definition agrees with the one preceding Proposition 4.7 when x — det"*1.) Then 
the following three conditions are equivalent. 

(i) RG is Gorenstein. 

("\ Xr y 1 = y det Af 
W Mec M ' - XM) M% det(7 - XM) ' 

where r is the number of pseudo-reflections in G. 
(iii) fa E RG (in which case we have RG =fa-R

G). • 

8.2 COROLLARY (WATANABE [Wat,]). If G c SL(F) (i.e., det M = 1 for all 
M E G), then RG is Gorenstein. 

PROOF. If G C SL(F), then r = 0 and (ii) clearly holds. (This corollary also 
follows immediately from Theorem 7.1.) • 

8.3 COROLLARY (WATANABE [Wat2]). If r = 0 and RG is Gorenstein, then 
G cSL(F) . 

PROOF. We know that (ii) holds with r = 0. Set X = 0 to obtain g = 
2 ^ e G det Af. Since each det M is a root of unity, we must have det Af = 1. 
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(One can also give a proof using part (iii) of Theorem 8.1, since we have 

8.4 EXAMPLE. Let G be the group of degree 3 and order 6 generated by 
diag(co, - co2, - 1), where co = e2™/3. By Corollary 8.2, RG is Gorenstein. 
Writing x = xl9y = x29 z = x39 a. minimal set of generators for RG consists 
of y, = x3, y2 = y6

9 y3 = z2, y4 = y3z, y5 = xyz, y6 = xy\ y7 = xY. Hence 
hd R G = 7 — 3 = 4. By a process of trial and error, the syzygies of the first 
kind are computed to be y\ - y2y3, y^ - y3y7, y\ - y2y7 yf - Y,Y6, y4y5 -
73Ï6» Ï4Y6 ~ Ï2Ï5' Ï4Ï7 - Ï5Ï6' ïóï? - YiÏ2> Y5Y7 ~ YiY* Hence /?,(/?G) = 9. 
Since A(ü c ) = P4-i(R

G) and /?0 - ft + fi2 - /?3 + /?4 = 0, it follows that 
fio = 1> /*! = 9, /?2 = 16, fi3 = 9, /î4 = 1. One could also obtain this result 
from a suitable modification of Proposition 6.4. 

It is instructive to derive Corollary 8.2 when G is abelian directly from (21). 
Assume G is diagonal, so we have an h.s.o.p. of the form jtf1, x2

2,..., xjfr. If 
G c SL(F), it follows that x^"xx^~x ...x^~l E RG. From this it is clear 
that the socle of RG/{x*\ . . . , xffc) is spanned as a vector space by 
x^~]x^~l . . . x%-\ Hence by (21), type RG = 1, so RG is Gorenstein. 

9. Complete intersections. There is a condition on RG stronger than being 
Gorenstein which implies that the minimal free resolution of RG has a simple 
explicit form. This is the condition of being a "complete intersection" and is 
defined as follows. Let yl9..., y5 be homogeneous generators of positive 
degree for the N-graded algebra B, so B = A/I where A = k[yl9... 9ys] 
and y is the image ofyt. A simple result of commutative algebra (e.g., [Se2, p. 
Ill-11, Proposition 6]) implies that 

m > s - pf (B). (25) 

Note that /3f (B) is the minimal number of generators of the ideal /. Hence 
(25) states that in order to reduce the Krull dimension of A from s to m, we 
must divide out by at least s - m elements. If equality holds in (25), then we 
say that B is a complete intersection. It is not hard to show that the property of 
being a complete intersection does not depend on the choice of A (i.e., on 
y,, . . . , ys) and thus is a property of B alone. 

Now let p0: A -» B be the canonical surjection and let zl9..., z^ be a 
minimal set of generators for ker p0, so /? = (1?(B). Define a sequence 

Pfi p3 Pi P\ Po 

0->Mfi-> >M3-*M2-*Ml-+Mo^>B-+09 (26) 

where Mg is a free ^4-module of rank (f) with basis {S: S c [ ] 8 ] and card 
S = 1} (so in particular M0 s A). The maps p,: Mt -» Mt_x f or 1 < 1 < ft are 
defined by 

1 

ft({öi, • • •, a,}) = 2 ( " iy*lzj{al9..., âJ9..., a,}, 
7=1 

where a, < • • • < at and ^ denotes that a, is missing. It is easily checked by 
direct calculation that (26) is a complex (i.e., ftp,., = 0), called the Koszul 
complex of B with respect to the generators z„ . . . , z$ of I. By definition the 
entries of the matrices p, are 0 or ± zy, so if (26) is a resolution it is minimal. 
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By the definition of a complete intersection, a necessary condition for (26) to 
be exact is that B is a complete intersection. It follows from standard 
properties of the Koszul complex (e.g., [Se2, Chapter IV(A)]) that the 
converse is true. 

9.1 PROPOSITION. B is a complete intersection if and only if the Koszul 
complex (26) is the minimal free resolution of B. • 

Note that Proposition 9.1 immediately implies that if B is a complete 
intersection, then hd^ (B) = /? = s — dim B, so B is Cohen-Macaulay. We 
then see from Proposition 9.1 that type B = 1, so B is in fact Gorenstein. 
Examples of Gorenstein rings RG which are not complete intersections are 
given in Examples 6.7 and 8.4. 

As a further corollary, we can explicitly compute the Hilbert series of the 
complete intersection B. In order for the maps p, in (26) to be degree-preser
ving, the basis elements S of Mi must satisfy 

deg S = 2 ep 

where el9..., efi are the degrees of the syzygies of the first kind, i.e., 
ej = deg Zj. Hence from (18) we obtain, with dt = deg yi9 

F(B, X) = V / — J\card S^deg S 

SCZ[J3] 
11(1 - X « ) - 1 

I I ( i - x e ) 
1 

II(i - x V -
1 

(27) 

(For a direct proof of (27) avoiding Proposition 9.1, see [Stoj, Corollary 3.3].) 
We thus obtain a necessary (but not sufficient) condition for B to be a 
complete intersection-it must be possible to write F (B, X) in the form (27). In 
particular, when F(B, X) is reduced to lowest terms, then every zero of the 
numerator must be a root of unity. 

9.2 EXAMPLE. Let G be the group of degree 3 and order 12 generated by 
1), where 

6 
f = e2™'6. Then Rc 

is diag(-l , f, r) and diag(-l , 1, 
minimally generated by y, = x\, y2 = x%, y3 = *3, y4 = x^x^ y5 = x}x2xy 

The syzygies are y2Y3 "~ il a n d Y1Y4 ~~ Ys- Since there ares — m = 5 — 3 = 2 
syzygies, it follows that RG is a complete intersection. The minimal free 
resolution is given by 

0-+A 
l - z 2 Z l ] [S] 

Rl >0, 

where zx=y2y3-yl and z2 = ylyA-yj. Since deg y, = 2, deg y2 = 
deg y3 = 6, deg y4 = 4, deg y5 = 3, deg z, = 12, deg z2 = 6, it follows that 

( i - * ) 0 - x ° ) . 
( 1 - X 2 ) ( 1 - * « ) 2 ( 1 - A * X 1 - X 3 ) 

Since G is a diagonal group, we can just as easily write down the generalized 
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Molien séries (16), viz., 

Fc(A) = 
(1 - X2X2X3

2)(1 - *2%6) 

(1 - X2)(l - Xf)(l - X3
6)(l - X2X2)(1 - ^ M ) 

9.3 EXAMPLE. AS a somewhat more complicated example, let G be the 
group of degree 4 and order 32 generated by diag (i, - /, 1, 1), diag 
(1, 1, i, - /), and diag ( - 1 , 1, 1, - 1). The generators are yx = x\9 y2 = x\9 

— x3, 
where A = Q^y,, 
Y3 = *3> Y4 = *i> Ys = *?*i> Y6 = X\X2x3x^ y7 = jf**. j ^ RG = A/j 

. , j>7]. The ideal ƒ is generated by zx — y\— y^i^i— yi 
y5y7. Since 7 - 4 = 3, it follows that RG is a complete 

intersection. The minimal free resolution is 
~ ^ J ^ *3 = ^6 

0-»v4 
[2, -Z2Z3] 0 

* 3 

* 2 

* 3 

0 
- * 1 

^ 
- * 2 
- 2 , 

0 

A* -> 
z ' 
*2 1 

L 2 3 J 

i?( •0, 

and the Molien series is 

FG(V = 
(1 - X8)3 (1 + X4)3 

(1 - X4)7 (1 - X4)4 

The generalized Molien series (16) is 

(1 + X2X|)(1 + X2X4
2)(1 + X,X2X3X4) 

* " * ( * ) - (1 - X4)(l - X4)(l - X3
4)(l - X4) 

The simplest type of complete intersection (except for the "degenerate" 
case of a polynomial ring) is the case s — m = 1. This condition can only 
hold (assuming B is not a polynomial ring) when yl9..., ys are chosen to be 
minimal generators of B and therefore is equivalent to fix(B) = 1 (or 
hd B = 1). In other words, there must be a unique minimal syzygy (up to 
scalar multiples) among the minimal generators of B. If B satisfies this 
condition it is called a hypersurface. A particularly nice structure arises when 
we can choose the generators yl9..., ys (s = m + 1) so that the unique 
minimal syzygy has the form y/ = P(yl9 . . . , ys) where t > 2 and P is a 
polynomial in yl9..., ys. In this case yl9..., •/,_, is an h.s.o.p. and B = 
C[Yi> • • • > Y,-i] • (1 © Y, © 7s + * ' * ©Y/"1)- This was the situation in Ex
ample 5.1. 

We now have a hierarchy of conditions, 
polynomial ring => hypersurface => complete intersection 

=> Gorenstein => Cohen-Macaulay. 

We have given necessary and sufficient conditions on G for the first, 
fourth, or fifth condition to hold for RG. No such characterizations are 
known for hypersurfaces or complete intersections, and this remains one of 
the outstanding gaps in the invariant theory of finite groups. Along these lines 
we present the following conjecture, admittedly made on the basis of very 
flimsy evidence. 
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CONJECTURE. If RG is a complete intersection, then H' c G c H, where H 
is an f.g.g.r. and H ' is the commutator subgroup of H. 

There are two known classes of finite groups G c GL( V) for which R G is a 
complete intersection. First we give the result implicit in [M-B-D] (see [Hu] 
for a clearer treatment). I am grateful to Cary Huffman for checking that this 
result is consistent with the above conjecture. 

9.4 PROPOSITION. Let m = dim V = 2 and suppose that G is a finite subgroup 
of SL(F). Then RG is a complete intersection. • 

In [Sta,] a characterization was given of those f.g.g.r.'s G c GL(K) for 
which RH is a complete intersection, where H = G n SL(F). We will merely 
state a special case of this characterization here. The motivation comes from 
the case where G consists of ail m X m permutation matrices. Then RH is 
generated by all symmetric and alternating polynomials ƒ (xl9 . . . , xm) E R. 
We have pointed out following Proposition 4.8 that every alternating 
polynomial is a product of a symmetric polynomial with the discriminant 
A = I I ^ O , - Xj). Hence RH is generated by the elementary symmetric 
functions ax, . . . , am together with A, subject to the syzygy A2 = 
P(ax, . . . , am) for some polynomial P. Hence RH is a hypersurface, and in 
facttf" = C[a 1 , . . . , a , J ( l©A) . 

9.5 PROPOSITION. Suppose H = G n SL(F), w/œre G c GL(K) is an 
fg'g-f- If the index [G : H] is a prime power, then RH is a complete 
intersection. If [G : H] is a prime p, then RH is a hypersurface', indeed, if 
RG = C[0X,..., 0m] and r] = fx for the character x = det (as defined preceding 
Proposition 4.7), then RH = C[0„ . . . , 0J(1 © r? 0 TJ2 0 • • • 0 T) '"1) . • 

10. Monomial groups. In Example 5.3 we considered the situation where 
V = Vx © • • • © K, and M (V) = K, for all MEG. More generally we 
could consider the situation where each MEG permutes the i^'s, i.e., for 
each MEG there is a permutation m = mM of [/] such that M(VÉ) = V^y 
For simplicity's sake we will consider only the case where each dim Vt = 1 
(so / = m). If in this case x( is a nonzero element of Vi9 then the matrix of M 
with respect to the basis JC„ . . . , xm of V is a monomial matrix, i.e., a matrix 
with one nonzero entry in every row and column. A group G of monomial 
matrices is called a monomial group. The map M-*mM defines a homomor-
phism from G to the group %m of all permutations of [m]. 

Suppose G c GL( V) is a monomial group (with respect to the basis 
x{,.. •, xm). If M E G, then let C be a cycle of the permutation TTM, SO 
C = (flj, . . . , # , ) where { t^ , . . . , « /} c [m] and ^ ( a , ) = a/+1 (1 < i < 
/ - 1), tfM(fl/) = «i. It follows that there are nonzero complex numbers 
a } , . . . , a7 such that A / ^ ) = otixai+i (1 < i < / — 1) and M(xa) = a/Xai. 
Define the complex number yM(C) by yM(C) = axa2...«/, and define 

\c\ - /. 
If ƒ = .xpxf2... x ^ is a monomial, then the (y/?e of ƒ is defined to be the 

sequence a = (a„ cr2,... ) where exactly a, of the ny's are equal to i. Let Ra 

be the subspace of R = C[x„ . . . , xm] spanned by all monomials of type a. 
Clearly a monomial matrix M transforms a monomial of type a into a scalar 
multiple of another such monomial. Hence MRa = Ra, so RG = H a R£ 
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where R? = RG n Ra. (Note that the decomposition Ua RG only gives RG 

the structure of a graded vector space and not a graded algebra, since R„R? 
is not in general contained in any RG.) It is natural to ask at this point for an 
analogue of Molien's theorem which tells us the integers diniç RG. More 
concretely, we seek a formula for the generating function LG(X) in infinitely 
many variables À = (Xl9 \2,... ) defined by 

MA) » 2 (dime ^ ^ 

where a = (ol9 a 2 , . . . ) ranges over all possible types and where \ a = 
XflX2

2 . . . . We do not expect as simple a formula for L(G, À) as (13), since 
the grading 11^ R„ is not "induced" from a grading of V. 

10.1 THEOREM. Let G c GL(F) be a finite monomial group {with respect to 
a basis xl9... 9xm of V) of order g. Then 

M*) = 7 2 II(i + YW(C)\1CI + M < W + YW(c)3xfi +•••), 
Ö AfeG C 

w/zere C ranges over all cycles of <nM. 

PROOF. If M E G9 then let C1? C 2 , . . . , Cs be the cycles of mM. As 
mentioned above, each such cycle C has the form C = (a„ . . . , at) where 
flW(tf/) = 4+1 (1 < / < / - 1) and *nM(aù = a^ Moreover, M(xa) = «lxa+i 

(1 < i < / — 1) and M(xrt/) = atxax9 with yM(C) = axa2 . . . a/. Now consider 
the vector space Ra in iî spanned by all monomials of a given type a. The 
matrix Ma of Af acting on Ra with respect to this basis of monomials is a 
monomial matrix. To compute its trace we need only consider monomials 
u E Ra for which M(u) = au for some « E C . (Only these monomials will 
give rise to nonzero entries on the main diagonal of Ma.) Such a monomial 
has the form 

u = n ( n *,)" 

for some /, E N. We then have Mu = [II/=1 7M(Q' ' ] M - Hence 

t r J I / , - 2 Û Y„(C,)'', 
/ = i 

where the sum ranges over all sequences (tl9 tl9..., (,) such that among a 
collection of |C,| /,'s, \C2\ t2% . . . , \CS\ ts's9 there are precisely ox l's, a2 

2's, This is precisely the coefficient of XflX2
2... in the expansion of 

fi (1 + YM(C, )XP + yM{C,)2^ + . . . ) , 
1=1 

and the proof follows from (2). • 
Although Theorem 10.1 is apparently new, it is actually a very minor 

extension of the well-known Theorem 10.3 below. Moreover, the techniques 
of Solomon [So2] also lead quickly to the statement and proof of Theorem 
10.1. 

10.2 EXAMPLE. The group G = {1, M, M2, M3} of Example 2.2 is 
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monomial. The four terms of LG(X) are 
1 0 

I = 

M = 

M2 = 

0 1 : (1 + A, + A2 + A3 + • • • ) , 

0 1 
- 1 0 
- 1 0 
0 - 1 

: (1 - \\ + \l - Af + • • • ), 

: (1 - A, + A2 - A3 + • • • f 

M 3 _ - 1 
0 

: (1 - A? + A| - A| + • • • ). 

Thus we have 

M A ) = i [ ( l + A , + A 2 + A3 + - - - ) 2 

+ (1 - A, + A2 f + 2(1 - A? + Af -
00 00 

= i + 2 *2, + 2 *22, + 2 W 
i = l i = l Ki<J 

ƒ==ƒ (mod 2) 

>] 
(28) 

It is easily seen that the term X2/ in (28) corresponds to the invariant 
xf + jcf', the term Xj{ corresponds to xfxf, while the term \A, corresponds 
to x[x{ + x{xl

2 if i and/ are even, and to x[x{ — x{x2 if / and/ are odd. 
A special class of monomial groups are the permutation groups, i.e., 

subgroups of the group of all m X m permutation matrices. In this case the 
homomorphism M ->mM is one-to-one. If 5* is the set of all functions ƒ: 
[m] -> N, then M induces a permutation <$ -» 3F, also denoted M, by the rule 
(Af/)(/) = /OM(0)- We can identify a function ƒ: [m]-»N with the 
monomial x / = JC{(1) . . . x^m). Under this identification, the usual action of 
Moni? = C[xv . . . , xm] satisfiesM(xf) = xM~ïf. 

Call two functions/, g, e % equivalent (denoted ƒ ~ g) if ƒ = Mg for some 
MEG. Clearly, this defines an equivalence relation; the equivalence classes 
are called patterns. If ƒ and g are equivalent, then the set (including 
repetitions) of values ƒ ( 1 ) , . . . , f(m) is identical to the set g ( l ) , . . . , g(m). In 
other words x / and xg have the same type, as defined in our discussion of 
monomial groups. Thus we can speak of the type of a pattern. A fundamental 
question of enumeration asks for the number of patterns of a given type a. If 
£ is a pattern of type a, then 8E = 2 / e £ : x

/ is an invariant of G belonging to 
Rf and it is easily seen that the 8E'$ form a basis for R„ as E ranges over all 
patterns of type a. Hence Theorem 10.1 tells us the number of patterns of 
type a, as follows. 

10.3 THEOREM (PÓLYA). Let G be a permutation group of degree m and order 
g. Let d{&) be the number of patterns of mappings f : [m] -> N of type a. Define 

Then a 

Fc(» = l 2 n ( l + A [ c l + A2
cl + A3

cl + - - . ) , 
S MŒG C 

where C ranges over all cycles of the permutation irM. • 
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Readers familiar with Pólya's enumeration theorem have doubtlessly recog
nized before now that Theorem 10.3 is just a restatement of this famous result 
and that Theorem 10.1 is a straightforward generalization. Pólya's theorem, 
originally given by Pólya in [P], has been discussed in many places, of which 
[dB], [Com], [Ri] are a sample. In particular, Redfield [Re] is now realized to 
have anticipated Pólya's theorem prior to Pólya. 
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