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I. Introduction

1. Definitions
A partition A of a non-negative integer n can be regarded as a decreasing sequence
of positive integers,
A=A 21>0 (1)

satisfying £A, = n. We say that A has r parts. Becausc of the linear nature of the
array (1), we also refer to 1 as a linear partition of n. Similarly a partition of »n into
distinct parts may be regarded as a strictly decreasing array of positive integers,

A >Ay>-> >0, 2

satisfying £A4; = n. Such a partition is called a strict partition of n.

We denote partitions in three ways:

(i) A — n signifies that 1 is a partition of n (a notation due to Philip Hall [35]);

(ii) A = (%,,A,,...) signifies that the parts of A are 4, > 4, > ...,

(i) A = 1712"2...> signifies that exactly r; parts of 4 are equal to i

It is natural to extend these concepts to more general arrays of integers. A
general theory along these lines has been developed by Stanley [59], but we will
be concerned here with the special case known as plane partitions. The theory of
plane partitions forms one of the most beautiful branches of combinatorial theory,
with applications to such diverse topics as ballot problems, symmetric functions,
and the representation theory of the symmetric group. This paper is devoted to
giving a survey, not intended to be completely comprehensive, of the theory of
plane partitions, including a selection of proofs large enough to impart the flavor

of the subject.
A plane partition 7 of n is an array of non-negative integers,

Ny Ny Nya
a3 - (3)

Hy1 Nap

for which Zn;; = n and the rows and columns are in decreasing order:

Ny = Nt 1y)s Hij = Myjs)s foralli,j > 1.

The non-zero entries n;; > 0 are called the parts of . If there are 4; parts in the
ith row of x, so that for some r,

112/122"'2/1,.>/1r+1=0,

then we call the partition A, > 1, > --+ > A, of theintegerp = A, + 4, + -+ 4+ 4,
the shape of m, denoted by A. We also say that = has r rows and p parts. Similarly
if 4! is the number of parts in the ith column of 7, then for some ¢,

A=Az > A, =0

The partition A; > A5 > --- > A, of p is the conjugate partition to A [6, Ch. 19.2],
denoted 1’, and we say that « has ¢ columns.
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If the non-zero entries of n are strictly decreasing in each row, we say that 7z is
row-strict, Column-strict is similarly defined. If x is both row-strict and column-
strict, we say that z is row and column-strict.

II. Symmetric functions

2. The four basic symmetric functions

The wide variety of results known about plane partitions can be unified greatly
by appealing to the theory of symmetric functions. We use a method involving
elementary linear algebra, due to Philip Hall [35]. Let 4, denote the set of all
homogeneous symmetric functions of degree n in the infinitely many indeterminates
X{,X,,...,with coefficients in the field Q of rational numbers. We regard elements
of A, merely as formal expressions. A, has the structure of a vector space over Q.
We can also make the A4,’s into a graded algebra,

A=A0@A1®A2®...,

by defining multiplication to be ordinary power series multiplication. We are
interested in studying various bases for the vector space A,.
If A — n, define

k, = Zx{x. .., )

where the summation sign indicates that we are to form all distinct monomials in
the x;’s with exponents A,,4,,... (in some order). The k,’s are known as the
monomial symmetric functions. It is easily seen that the k,’s form a basis for 4, as
A runs over all partitions of n. Thus 4, has dimension p(n), the number of partitions
of n. For an introduction to the function p(n), see Hardy and Wright [6, Ch. 19].
If we wish to specialize certain values of x;, we indicate this by notation such as

ky1(x1, X2, X3) = X1 X5 + X X3 + X5X;3

k"(x,xl,x3,. ) = x" + xZn + x3n IR — X"/(l _ X")
(here k, denotes k, where 4 = (1,0,0,...) = {n')). We also use x and y to denote
the vectors (x;,X;,...) and (¥, ya,...), 80 ky(x) = Ex{'x*... and k,(y) =
Tyftyda ... The x;’s and y;’s are to be regarded as independent indeterminates.

Any basis which can be obtained from k; via a matrix with integral coeflicients
and determinant +1 is called an integral basis. We now consider two important
integral bases. Define
h,= 3% k;,

ey
hy="hyh,,.... (5)
The h,’s are the complete homogeneous symmetric functions. Also define
ay = K¢gny = EX1X5 ... X,
a, =a,a;,.... (6)

The a,’s are the elementary symmetric functions. It is easily seen that /1, and a, are
bases for 4,.. Because of (5) and (6), we say that the bases h, and a, are multiplicative.
The fact that a, is a basis for A, is equivalent to the basic theorem that every
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symmetric function can be uniquely expressed as a polynomial in the elementary
symmetric functions. A simple induction argument shows that we can express the
k,’s as integral linear combinations of the h,’s or a,’s, so h, and a, are integral
bases.

In analogy to a, we define a fourth basis s; by

s, =k, = Zx1

n

S3=S3,81, (7

The s,’s are the power sum symmetric functions. Although s, is a multiplicative
basis, it is not integral, e.g., k; ; = (s} — s,). Soon we will determine the deter-

minant of the transformation k;, — s;.

3. Relations among the symmetric functions

Some basic relations among the symmetric functions can be expressed in terms
of linear transformations among the various bases. Define linear transformations

(or matrices) ¢ and 0 by
¢k, — by
0:a; = h,. (8)

Note that since a, and h, are multiplicative, 0 preserves multiplication and is
therefore an automorphism of the algebra A.

The basic properties of ¢ and 0 are:

3.1. PROPOSITION. ¢ is symmetric.

3.2. PROPOSITION. 0% = 1.
3.3. ProposITION. The s,’s are eigenvectors for 0; indeed,

Os, = (=17, ifAmn,  A=(R,....4).

The key to proving these relations lies in observing that we have the generating
functions

[T =xp)~t = ZO bt %)
i=1 n=

(L+xt) =Y a" (10)
i=1 n=0

It follows from (9) that

M a-xp) =113 hoit=73 5 kho)

ij=1 i=1m=0 n=0 Arn

which we abbreviate to

[T = xp)™ = ;kz(x)hz(J’)~ (11)

Now suppose

h}.(y) = Z (p}.uky(y)’ k).(x) = Z lp/l.vhv(x)a
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where Yy = ¢~ 1. Then from (11) we get

o0

H (1 - xiyj)—l = Z(;(/)A;Ll//).v) k,L(J’)hv(x)- (12)

i,j=1 TRy
Since the left-hand side of (11) is symmetric in the x;’s and y;’s, we also have
H (1 - xiyj)_l = z ki (y)hs(x). (13)
iL,j=1 A
Since the distinct products k,(y)h,(x) are linearly independent, we see from com-
paring (12) and (13) that
Y i =06, (6= Kronecker delta).
A

Since ', ¢,.;, = §8,,, we have ¢,, = ¢,;, so ¢ is symmetric.
Similarly we prove 62 = 1 using the relation

(5 a5 ne] -1 "

The details are omitted. The identity arising from (14), viz.,

Z (— 1)rarhn—r = (sOn’
r=0

is thus equivalent to 0% = 1.

To prove Proposition 3.3, we need to find a generating function for the s,’s.
We have

log Y hy"=log [T —x2)~!
n=0 i=1
©
=Y log(l — x;)~!
i=1
|
— o xmym
i=1 mgl ’HXl
— i _1_S tm. (15)
m=1M "
Similarly,
© ® 1
log Z antn = Z —Sm(_t)m' (16)
n=0 m=1M

Applying 0 to (15) and comparing with (16), we see that 0s, = (—1)"s,, so Pro-
position 3.3 follows from the multiplicative properties of 0 and s,. [J

4. An inner product

We now impose additional structure on the vector space A4, by defining an inner
product. Any linear transformation w:A, — A, defines an inner product by the
rule

(k)" wku) = 5lu' (17)
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This inner product will be non-degenerate if w is non-singular; symmetric if ©
is symmetric; positive definite if @ is positive definite, etc. We take w = ¢, so we
now have an inner product on A4, given by

(ky, h) = 0, (18)
It follows from Proposition 3.1 that
(£ 8)=@&1) (19)

forall f, ge A,.
Recall that two bases b, and ¢, are dual if

(b/l’ C”) = 5}.;1
for all 4, 4 — n. Thus h, and k, are dual. A basis b, is self-dual (or orthonormal) if

(bl’ bu) = (S/lu

for all 4, it — n.

4.1. LemMA. The bases b;, c; are dual if and only if

o

Y byx)e,(y) = ITa- x,-yj)'l.
pl

i,j=1

Proof: Define linear transformations w and ¢ by w:b;, — h;, e, — k;. The
statement that b, and c, are dual is equivalent to wé* = 1 (* denotes transpose).
Equivalently, w*& = 1, or

Z (")lvé).u = (5vu' (20)
)

Thus
H(l - xiyj)—l = Zh;{x)k,f,y)
)

= 3[Soub) [£ 2uc)

= Z (Z U)).vé).u) bv(x)c;t(y)'
w2
Since the functions b(x)c,(y) are all linearly independent, the proof follows from
(20). O

4.2. ProprosITION. The s,’s are an orthogonal basis for A,,. Specifically,

(57,8, =0, if A # pu,
(53,8, = 1"r 122,00,

where 1 = {1712, ..

Remark : We denote the number n!/(s,, s,) by ¢* (the usual notation is h,, which
has obvious disadvantages here). The number ¢* is equal to the number of elements
in the symmetric group S, of degree n in the conjugacy class corresponding to
the partition A[8, 5.2; 1]. Clearly then ) ,_, ¢* = n!
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Proof: In the same way that (15) was derived, we get

o0

1
logII(1 —xy)~t= Y — Sm(X)5(1)- 21

m=1

It is well-known (see Riordan [11, p. 68]) that

t t
emg+§+§+”.=2wwngwwwu”
A

where 2 = {12723 ... 3. Since the s,(x)’s and s,(y)’s are multiplicative, we get
from (21),

I(1 — x;p)~ " =D s,(x)s,(0)/17r, 1272050
7

It follows from Lemma 4.1 that the basis s,/ /1"r,12"r,!... is self-dual, and the
proof follows. []

Since the bases h,, k, are dual and s, is orthogonal, it follows that the determinant
of the transformation k, — s;isgiven by [ [,._, (s, s)'? = [, (1"r 1272, 1.0 )12
It is not difficult to see that this product is equal to either of [],,., (r;!ry!...) or
[, (172" ..). This last product is simply the product of all the parts of all the
partitions of n. (One can also evaluate this determinant by showing that with a
suitable ordering of the A’s, the matrix defined by k, — s, is in triangular form
with the terms r,!r,!... on the main diagonal.)

Since there exists an orthogonal basis for 4, (over the field Q), viz, s,, such that
(s,,5;) > 0, we immediately have :

4.3 COROLLARY. ¢ is positive definite, i.e., (f,f) = 0, with equality if and only if
S=0,forallfeA,.

Indeed, if f = Za,s,, then (f,f) = Zaz(1"r 12721, . ..).

4.4 COROLLARY. 0 is an isometry, i.e., (1, g) = (0f, 0g).

Proof: s, is an orthogonal basis, and 0s, = +s, by Proposition 3.3. [

III. Schur functions

5. The combinatorial definition
We now consider a fifth basis ¢, (also denoted {1}) for the space 4,,. The functions
¢, are known as the Schur functions (or S-functions) and have many remarkable
properties. The term “Schur function” is due to Littlewood—-Richardson [44], who
give in this paper a systematic account of their properties. Littlewood and Richard-
son named them in honor of the pioneering work of Schur’s doctoral dissertation
[56].

We will give six basic expressions for the Schur functions, viz., the classical
definition in terms of a generalized Vandermonde determinant, the expansion of
e, in terms of the four bases k,, h;, a,,s;, and a characterization in terms of the
inner product (18). These six expressions will tie together the theory of symmetric
functions, plane partitions, and the representation theory of the symmetric group.
(For some further combinatorial ramifications of Schur functions, see Read [52]).
It is interesting to realize that the Schur functions were considered (under a
different terminology, e.g., bialternants) long before the theory of plane partitions
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or group representation theory was born. The classical results on Schur functions
can be found in Muir [10], in the chapters on “Alternants”.

In order to keep sight of the theory of plane partitions, we will adopt as our
basic definition of Schur functions one involving plane partitions. If z is a plane
partition, define

M(m) = xPx% ..., (22)

where a; parts of © are equal to i. Thus M(r) is a monomial whose degree is equal
to the number of parts of =.

5.1. DEFINITION. Let A be a partition of n. Define the Schur function associated
with 4, denoted ¢, or {1}, to be the formal expression

e, =, M(m),

where the sum is over all column-strict plane partitions n of shape A.
Thus e, is a homogeneous function of degree n in the x;’s. Our next object is to
prove the remarkable fact that the e,’s are symmetric functions,

6. The correspondence of Knuth
Our goal in this section is to prove that the e,’s are symmetric functions. This fact
follows easily from a combinatorial construction due to Knuth [39] (Knuth also
discusses this construction in [7, § 5.2.4]) which generalizes a construction due to
Robinson [53, no. 1,§ 5] (given in a rather vague form) and Schensted [55]. Knuth’s
theorem is the following.

6.1. THEOREM. There exists a one-to-one correspondence, denoted A % (m, o),
between matrices A = (a;;) of non-negative integers (i, j > 1) with finitely many non-
zero entries, and ordered pairs (r, o) of column-strict plane partitions of the same
shape. In this correspondence,

i occurs in m exactly Y a;; times
j

Jjoccurs in o exactly " a;; times.
i
Proof: We will describe the correspondence A4 % (r, 0), leaving the reader to
verify the desired properties (the most crucial being invertibility). Complete details
are given by Knuth [39].
Regard A as a “generalized permutation”

Iy iy 0y ...,
jl j2 j3 e jm (23)

where (i) i; 2 i, > ... =i, (ii) if i, = i; and r < s, then j, > j,, and (iii) for each
pair (i, ), there are exactly a;; values of r for which (i,, j,) = (i, ). It is easily seen
that each matrix A determines a unique such array (23), and conversely.

We now build up ¢ out of the i,’s and = out of the j,’s inductively as follows.
Define o, to be the one element array i, and =, to be the array j,. Suppose now
g, and 7, are defined. These will be column-strict plane partitions of the same
shape whose parts consist of i, i,,...,i, and j;,j,,...,Jj,, respectively. We now
“insert” j, ., into =, by the following procedure. We put j, ., in the first row of =,
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in the space immediately following the right-most occurrence of an element > Jet1-
(If there is no such element put j,, , at the beginning of the row.) If some element k
already occupies this space, then k is “bumped™ down to the second row, where
it is inserted in the same manner as j, ., possibly bumping another element to
the third row. This bumping process is continued until some element is finally
inserted at the end of a row without replacing another element. This gives the
array 7, , ;. To obtain o, , insert i, into o, so that the array obtained has the
same shape as 7, , ;.

This process is continued until the array (23) is exhausted, resultinginz = =«
o = 0,,. This is the desired correspondence. [

Example: Let

m?

1 0 2
A=1(0 2 0
1 0 0
The array (23) is given by
32211 1
1 22 3 3 1.
The plane partitions n,,...,7s = 7 and 0,,...,04 = o are as follows:
; o;
1 3
2 3
1 2
2 2 32
1 2
32 3 2
2 2
1 1
33 32
2 2 2 1
1 1
3 3 1 321
2 2 2 1
1 1

6.2. THEOREM (Littlewood [8, p. 191]). e, is a symmetric function.

Proof: (Bender and Knuth [18]). Let (1, 15,...) be a fixed vector of non-
negative integers, with finitely many non-zero entries. Consider the generating
function x'x3*. .., where the sum is over all matrices A = (a;;) of non-negative
integers with row sums Zi a; = u;, and where v,,v,,... are the column sums

;a;; = v;. It is easily seen that this generating function is given by

Ixyxy=h,h,...=h, (24)

1 a2

where y is the partition with parts u;.
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By Theorem 6.1 and (24), we also have h, = Zx{'x3*.. ., where the sum now is
over all ordered pairs (, o) of column-strict plane partitions of the same shape
such that 7 contains y; parts equal to i and ¢ contains v; parts equal to i. Hence if
we define K, to be the number of column-strict plane partitions of shape 4 and
; parts equal to i, there follows

h, = K;.e;. (25)
7

Since the h,’s are linearly independent, the matrix (K,,), where A, u — n, can be
inverted to express e, in terms of the h,’s, so ¢, is a symmetric function. []

7. Kosta’s theorem and the orthonormality of the Schur functions
We have seen in (25) that
h;_t = Z K).;Lel’ (26)
p)

where K, is the number of column-strict plane partitions of shape A and any
fixed set of parts occurring with multiplicities g1, #t5,... On the other hand, it
follows from Definition 5.1 (once it is known that e, is symmetric) that

= Z K)mku‘ (27)
n

The appearance of the same coefficients K, in (26) and (27) is Kosta’s theorem
[41] (see also Muir [10, 4, pp. 145-146], Littlewood [8, 6.4; 6]). In [41] Kosta
constructs tables of the coefficients K, and of the inverse matrix H,,. He extends
this table in [42], where he also gives a more unified account of his work. The
following restatement of Kosta’s theorem is due to Philip Hall [35].

7.1, THEOREM. For A — n, the e,’s form an orthonormal integral basis for A,.

Proof: (26) expresses the integral basis h, as an integral combination of ¢,’s,
while (27) shows that e, is an integral combination of the integral basis k,. Hence
e, is an integral basis. Moreover (26) and (27) state that the linear transformations
h, — e, and k, — e, are inverse transposes of one another, which is precisely the
condition for orthonormality of the ¢,’s. [

Philip Hall [35] points out that Theorem 7.1 characterizes the Schur functions
up to sign and order, since any two orthonormal integral bases for A4, can be
transformed into one another by an integral orthogonal matrix, which must
therefore be a signed permutation matrix. From the standpoint of linear algebra,
there exists an integral orthonormal basis for A4, if and only if there exists an

integral matrix o such that
wpw* = 1.

We then say that ¢ is integrally equivalent (or Z-equivalent) to the identity. It is an
important unsolved problem to determine in general which integral matrices are
integrally equivalent to the identity. [3, § 73].

Note that unlike the orthogonal basis s,, the basis ¢, is not multiplicative. In
fact, Farahat [27] has shown that each e, is irreducible.

As an immediate consequence of Lemma 4.1 we have:

7.2. CoroLLARY. (Littlewood {8, p. 103], Knuth [39]). We have

Z";.(x)ez(}’) = Il — xiyj)—l' |

A
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This corrollary can also be proved directly from Knuth’s theorem (Theorem
6.1), as follows. By Theorem 6.1,

o

;el(x)e;(y) = IT Gy ©28)

A4 i,j=1

where the sum is over all matrices A = (a;;) of non-negative integers, with finitely
many non-zero entries. But the right-hand side of (28) is equal to

Y Cey)® =T = xp)~h

1a;;=0

.:8

1

i,J

8. Further properties of Knuth’s correspondence
We will discuss some further properties of Knuth’s correspondence 4 % (z, 0),
some of which lead to interesting identities involving Schur functions and are of
great importance to the enumeration of plane partitions. In general, the proofs
will be omitted, but references to them will be given.

8.1. ProrosiTiON. (Knuth [39]). If A% (0,n), then 4* 5 (n,0), where A*
denotes the transpose of 4. []

8.2. CoroLLARY. (Knuth [39]). There exists a one-to-one correspondence
between symmetric matrices A = (a;) of non-negative integers (i,j > 1) with finitely
many non-zero entries, and column-strict plane partitions n. In this correspondence,
i occurs in w exactly Z ag; times.

Proof: If A is symmetrlc and A % (o, 7), then by Proposition 8.1, ¢ = . Thus
A — 7 achieves the desired correspondence. []

The next corollary was first obtained by Littlewood [8, p. 238] by group-
theoretic means (the essence of his proof actually appears on pp. 92-94), while the
combinatorial method we are pursuing is due to Bender and Knuth [18].

8.3. COROLLARY.

ey =100 ~x) ' [T — xx)~ 1.
A i<j
Proof: By Corollary 8.2,
o
2en= [ xiv, (29)
4 A Q=1
where the sum is over all symmetric matrices 4 = (a;;) of non-negative integers
with finitely many non-zero entries. But the right-hand side of (29) is equal to

solps) -3

A Ni=j i<j i<j
- (12 51 £ o]
i a;i=0 i<jaij=0
=[[0=x)7 ' [TU —xxp)~ . O
i i<j

84 ProrosITION. (Schutzenberger [57], Knuth [39]). If 4 is symmetric and
A% (0,0), then the number of columns of o of odd length is equal to the trace
of A. [
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As a corollary, we can modify the proof of Corollary 8.3 by summing over sym-
metric matrices A of trace 0 to obtain the expansion

Ye, =10 —xx)"" (30)

i<j

where y ranges over all partitions whose shape has no columns of odd length. The
expansion (30) was first obtained by Littlewood [8,p.238]. He also obtains the
conjugate result

Zev=n(1 —xH)7H]] (1 = xx)7h, (31)

i<j

where v ranges over all partitions whose shape has no rows of odd length. It would
be interesting to relate (31) to some property of Knuth’s correspondence.

The next proposition gives an interpretation for the number of rows and number
of columns of = (or o) if 4% (r,0), in terms of the “‘generalized permutation’
(23) to which A corresponds. Some applications of this result will be given in
Section 17.

8.5. PROPOSITION. (Schensted [55], Knuth [39]) If A4 % (7'c, o') and A Corresponds

to the “generalized permutation” (23), then the number of rows of  (or o) is equal

to the length of the longest strictly increasing subsequence of the sequence j,,
Jase--sjm»> While the number of columns of = (or o) is equal to the length of the
longest decreasing (not necessarily strictly) subsequence of j,,j,,...,Jj.. O

For example, in the example following Theorem 6.1 the sequence j;,j,,. - »jm
is given by 1,2,2, 3,3, 1. The longest strictly increasing subsequence is 1,2,3,s0 7
has three rows. The longest decreasing subsequenceis 2,2, 1 0r 3,3, 1,s07 has three
columns.

9. The dual correspondence
By modifying the “bumping process” of Knuth’s correspondence A £ (n, 0),
we obtain another correspondence, called by Knuth the “dual correspondence,”
which has important applications to Schur functions and plane partitions.

9.1. TueoreM {Knuth [39]). There exists a one-to-one correspondence, denoted
A B (n, 6), between 0-1 matrices A = (a;) (i,j = 1) with finitely many Us, and
ordered pairs (n, 6) of column-strict plane partitions of conjugate shape. In this
correspondence,

i occurs in m exactly Y. aj; times
i

joceurs in o exactly Y a;; times.
i

Proof: The correspondence K* is defined identically to K, except that rather
than inserting an element j in the space immediately following the right-most
occurrence of an element >j, we insert j following the right-most occurrence of an
element >j. (If there is no such element, put j at the beginning of the row.) At the
end we have a pair (n*, o) of plane partitions of the same shape such that 7* is
row-strict and ¢ is column-strict, so we take n to be the transpose of n*. [
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Example: Let

110
A= [0 0 1
1 0 1
The array (23) is given by
332 11
31 3 21
The plane partitions #n%,...,n¥ = n* and g,,...,065 = o are as follows:
9 o;
3 3
3 1 33
31 3 3
3 2
32 3 3
3 1 2 1
3 21 3 31
31 2 1,
SO 7 is
33
2 1
1

In exactly the same way that Corollary 7.2 was derived from (28), we obtain:
9.2. COrOLLARY. (Littlewood [8, p. 103], Knuth [39]). We have

Y ex(x)ex(y) = H I+ xy;). O
F

From Corollary 9.2 we can deduce the effect of the linear transformation 0
on the e,’s. Note that since e, is an orthonormal basis and 0 an isometry, the basis
0Oe, must also be orthonormal. The next result shows in fact that 0 merely permutes
the e,’s.

9.3. CorROLLARY. (P. Hall [35]) Oe, = e,..

Proof: Regard 0 as acting on symmetric functions in the variables y; only, so
symmetric functions in the variables x; are left invariant by 0. Then

Zey(x)(Oe,(y)) = 0Zey(x)ey(y)
= 0Zk,(x)h,(y), by Lemma 4.1
= Zk;(x)(0h,(»))
= Zk;(x)a,(y)

Ze,(x)e;(y), by Corollary 9.2.
Hence Oe;, = ¢,,.. O
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Although we have attributed the above corollary to Philip Hall, be actually
only restated a classical result, due to Naegelbasch [47] and Kosta [40], that if
e, =Y, H,h,thene, =, H,.a,(see also Muir [10, 3, pp. 144-148, 154-156)).
Naegelbasch and Kosta prove this result using the classical definition of the
Schur functions, to be discussed in the next section. A method for computing the
matrix H,, (the inverse matrix to K;,,), called the Jacobi-Trudi identity, will be
given in Section 11.

In view of Proposition 8.1, which states that A* o) il A5 (o,m), it is
natural to consider the effect of transposing A on the correspondence A £ (=, 0).
Unfortunately no result analogous to Proposition 8.1 is known, and it is also un-
known what the range of K* is when A is symmetric. There are three formulas of
Littlewood [8, p. 238, nos. (11.9; 1), (11.9; 3), (11.9; 5)] which suggest some result
along these lines exists. For instance, one of Littlewood’s results states that

[Ta—x)TT = xx) = Y a,e;, (32)
7

i<j

where the coefficient o, is given by

0, ifd X
a)' = nTr
(= 1)o+nr2,

if A is a self-conjugate partition of n of rank r.
Here the rank of a partition is the number of elements on the main diagonal of its
shape (or the size of its “Durfee square” [6, p. 281]). No combinatorial proof of (32)
is known. The identity (32) may be regarded as the “inverse” of Corollary 8.3, and
thus as the column-strict plane partition analog of Euler’s formula [6, Thm. 353]
for inverting the ordinary partition function p(n),

1/ pmx" = 3, (= 1)'x/2mEn+ 1),

n=0 n=-—o

10. The classical definition of the Schur functions
We are now in a position to give the classical definition of the Schur functions,
apparently due to Jacobi [37], though the terminology “Schur functions” did not
come until Schur [56] tied them in with the characters of the symmetric group

(see Section 12). We will then give a remarkably simple proof of the equivalence
of the classical expression with our Definition 5.1.

Recall the definition of the Vandermonde determinant A(x,, X5, ..., X,),

ey Ay

A(xl’x?,""’xn)= |x;l_‘| (S,t= 15"'9”)5 (33)

where || stands for the determinant of the matrix (f,,). It is well-known that

Axy,. .o x) =[] = x)). (34)

i<j
The function A(x,,...,X,) is alternating, since interchanging any two variables
changes the sign of the function. It is natural to consider determinants analogous
to (33) with the exponents n — ¢ replaced by an arbitrary partition A of n, viz,,
Ay = A, = > A, > 0 (further terms are superfluous since 4,4, = 4,42 =--=0
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if A = n). Since such a determinant will equal O unless all the 4,’s are distinct, we
are led to consider the determinant

|xcdetn=r| (s,t=1,...,n) (35)

where Ay + A, + -+ + A, = n. Here the exponents A, + n — ¢t are all distinct.
The determinant (35) is again an alternating function of x,,..

setting x; = x; (i # j) results in 0, so (35) is divisible by A(x,, .
function

.»X,. Moreover,
.., X,). Consider the

B T (36)
Since (36) is the quotient of two alternating functions, it is a symmetric function of
Xy,..., X, and is clearly of degree A; + -+ + A, = n. Thus (36) can be “‘extended”
to a unique symmetric function in 4, which “agrees” with (36) in those terms in-

volving just x,,..., x,. We now come to the surprising result that this symmetric
function is just the Schur function e,.

10.1. THEOREM. e,(X,,...,X,) = [xXF"71/|xt~].

Proof: In [8, p. 68], Littlewood gives an argument which proves the theorem
for the coefficients of x;x,...x, (he proves the entire theorem by other means).
We give a straightforward generalization of his argument. Essentially the same
argument was given by Bender and Knuth [18].

According to (26), h, = Y, K,,e,. Applying 6 to both sides, we get from Corol-
lary 9.3 that

= Z K;.ey.
A
Since the matrix (K,,) is invertible, it suffices to prove

ay = 3 Klxg " Axg .
A

Equivalently, we need to show that the coefficient of x}1*n~ x4z +n=2
expansion of a,|xi ™| is equal to K.

Consider the process of multiplying |x; ™| with a, = a, a,,...., by multiplying
by each a,,,q,,,... in succession. Since |x;™'| is alternating dnd each a,, is sym-
metric, each partial product |x{™'|a,,a uz Gy, is alternating. Hence the coefficient
of any term x¥ ... x of |x}~|a,,q,, . .. a,, 1S zero unless the i;’s are all distinct. On
the other hand, each term of the symmetric function g; is of the form x,, x,,, ... X,,
my < m, < --+ < my, and when this is multiplied by a term x} ... x;» with distinct
exponents, either the order of the exponents is preserved or else two exponents
become equal.

It follows that if we have a term x¥ ... xi of |x"~ ’Iaul s+ -+ 4y, With a non-zero
coeflicient, then it was obtained from terms x{ ...xJ» of Ix" ’Ia“1 s Gy, DY
multiplying by appropriate terms of a,, , such that the relative order of the numbers

iy,...,1, is the same as that of j,,...,j,. In particular, the only non-zero con-
tributions to the coefficient of x}* """ 'x§2*"~2 . x* in a,|x""'| are obtained by

considering the process of multlplymg a, by the term x}"'x4372 ... x,
Hence the coefficient of x%1+"~1x42 22 .. x}in a,|x"" is equal to the number
of ways of “building” the term x}*"~ 1,  xM from the term x1TixB72,x

n=1
of |x{ ™| by successively multiplying by some term of a,, , then of a,, ..., in such a

.. X in the
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way that at no stage are any two exponents equal. Given such a choice of terms from
each a, , define a column-strict plane partition 7 as follows: the term j appears in
the kth column of 7 if and only if the variable x, appears in the term chosen from
a;. It is easily seen that = is a uniquely defined column-strict plane partition of
shape 4 and y; parts equal to j. Moreover, any such 7 corresponds to a choice of
terms from each a, . Hence the coefficient in question is equal to the number of such
7, which by definition is just K,,. []

Note that this proof implicitly includes a proof of the fact that the e,’s, as
defined by Definition 5.1, are symmetric functions, since the order in which we
multiply by the a,’s can be arbitrary.

11. The Jacobi-Trudi identity

We now turn to the problem of expressing the e s in terms of the h,’s ; or equivalent-
ly, of inverting the matrix K,,- This result was first obtained by Jacobi [37] in
1841 and later simplified by his student Trudi [62] in 1864. Subsequently a
combinatorial proof was given by Bender and Knuth [18], but we will give Trudi’s
proof, based on the classical expression Theorem 10.1.

11.1. THeoreM. Let A be a partition into r non-zero parts

Az lyzo =24 >0
Then
e, = |y, —sedl (s,t=12,...,1)
(with the convention hy = 1,h_,, = 0 if m > 0).

Since h, is a multiplicative basis, each term of the above determinant is of the
form =+ h,, and we get the expansion of ¢, in terms of h,,.
Example: Take r = 1, 4, = n. Then

ey = |1y = hy,

a result which is evident from the definition of ¢,. Similarly il r = 2,4, = qa, Jy = b,
then

ha ha+ 1
hb—- 1 hb

Proof of Theorem 11.1: The following identities are readily verified :

= hohy — hasihy—y.

ea,b =

BofX1s X e e esXns Y1) — (X105 X250 s Xy V2)
=1 = Y- 1(X15 X2, -, X, V1, V2) (37)
P15 Xy v vy Xns X t)
= B(X1, Xg0 v s X F X tHm— 1(X 15 Xas ooy Xy Xt p)- (38)

The idea of the proof is to factor the product [ [;<;(x; — x;) out of the determinant
[x}*7~1. Thus in |x**"~7, subtract the first row (s = 1) from every subsequent
row (s > 1), and remove the factor (x;, — x,) from the sth row (s > 1). Thus the
(s, t) entry for s > 1 becomes

Artn— -
(xst+" F - x}fﬁ-" ’)/(xs - xl) = h).,+n—l—1(x1’xs)'
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Now subtract the second row (s = 2) from every subsequent row (s > 2), and
remove the factor (x, — x,) from the sth row (s > 2). Thus the (s, t) entry for
s > 2 becomes

(M tmmr—1(x1, %) — Basmei— (X0, X2)/(xg — X3).

By (37) this is equal to h, ,,_,_,(x;, X,, ;). Continuing in this way, we finally
obtain '

2t = TT 06 = xMhg e mmemst 1(Xns X250+ X)) (39)
i<j
In the determinant of (39), reverse the order of the rows and interchange rows with
columns, giving

|x§t+"_t' = H (xi - xj)'hl.,—s+:(x1 ser s Xport 1)' (40)
i<j
Equation (40) is an alternative form of the Jacobi-Trudi identity, differing from the
desired result in that the h;’s are not in the full set of variables x,,..., x,.
Now add x, times the n — 1st column (¢t = n — 1) to the last column (¢t = n),
then x; times the column ¢ = n — 2 to the column ¢t = n — 1, continuing to x,
times the first column (¢ = 1) to the second column. By (38), (40) becomes

e}.(xl sy xn) = |hls~s+r(xl LR | xn—t+2)]’ (41)

with the understanding that any variables x; with i > n are to be ignored.

Now add x; times the column ¢ = 1 — 1 to the column ¢ = n, then x, times the
column ¢t = n — 2 to the column ¢t = n — 1, up to x, times the column ¢t = 2 to
the column ¢ = 3. Once again the number of variables appearing in each h; is
increased by 1 (unless this number is already n). Continuing in this way, we finally
obtain the n x n determinant |k, _ . |1, which has the form

|h).5—s+t!'i *

1 *| = hyegadi. O

Asan immediate corollary of the Jacobi-Trudi identity and Corollary 9.3, we get
the classical form of the Naegelbasch—Kosta theorem, of which Corollary 9.3 is the
“combinatorial” form.

11.2. COROLLARY. Let A be a partition with largest part A, = q. Then

e, = la; s (s, t=1,2,...,q9). O

12, Skew plane partitions and the multiplication of Schur functions

The concept of plane partitions can be generalized to “skew plane partitions”,
leading to a new class of symmetric functions related to taking a product of Schur
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functions, and to a generalization of the Jacobi-Trudi identity. Let 4 and p be
partitions such that

==z >0

py = pp = e 20

W< 4 fori=1,2,...,r (42)

Define a skew plane partition, of shape 2/, to be a plane partition of shape A from
which the shape u has been “removed.” For instance, if 4 =(5,5,3,1) and

i = (2,1,1,0) then the array

w W
—_— N W
NN W
—

4 . 43)

is a skew plane partition of 23 of shape 2/u. The obvious definition is made for
“column-strict skew plane partition,” etc. In analogy to our original combinatorial
definition of e, (Definition 5.1), if is a skew plane partition, define

M(r) = x{'x%*...,

where a; parts of 7 are equal to i. Thus for the array 7 of (43), M(r) = X3X3X5%4.
12.1. DEFINITION. Let A and p be partitions satisfying (42). Define

Cop = Z M(m),

where the sum is over all column-strict skew plane partitions 7 of shape A

We state without proof the basic result on the functions e¢,,,, generalizing the
Jacobi-Trudi identity.

12.2. PROPOSITION. €;, = Ay, —y~s+:- O

In the form given by Proposition 12.2, the functions e, were investigated by
Naecgelbasch [47] and Aitken [15], [16]. The connection with plane partitions was
first pointed out by Littlewood [8, p. 109] (see also Robinson [12], § 2.5]). Since
the right-hand side of Proposition 12.2 is a symmetric function, we have the
following generalization of Theorem 6.2.

12.3 COROLLARY. ¢, is a symmetric function. []

It is thus natural to ask how e, may be expressed in terms of the e,’s. The next
proposition gives such an expression, apparently due to Littlewood [8, p. 110];
its proof is omitted.

12.4, PropOsITION. If ¢;,, = Y, 8uuseys then g, ., is the coefficient of ¢, in the
product e,e,, i.e., g,,, = (€1, e) = (e;,¢,e). O

Proposition 12.4 is the basic result on the ordinary multiplication e,e, of Schur
functions (see Littlewood [8, pp.91-98]), and shows how multiplying Schur
functions is related to building up plane partitions. Other methods of multiplying
Schur functions, in particular the plethyism e, ® e,, have been considered. We
will not go into them here, but instead refer the reader to the bibliographies in
Littlewood [8] and Robinson [12]. For an interesting relation between the numbers
8y, and the structure of finite abelian p-groups, see P. Hall [35] and Klein [38].
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By applying the operator 0 to Proposition 12.2 and Proposition 12.4, we get an
expression for e, in terms of the a,’s directly generalizing Corollary 11.2. This
result was first proved by Aitken [15], [16] by other means.

12.5. CoroLLARY (Aitken). e, = lag: - —sad- O

13. Frobenius’ formula for the characters of the symmetric group

We have succeeded in expressing the e,’s in terms of the symmetric functions
ky, h,, and a,. The remaining basis to be considered is s,. Let us write

s = 2 rhe, (44)

un

so x is the matrix transforming e, to s,, and x4 = (e,, s;). The significance of the
coefficients x4, first obtained by Frobenius [29], is perhaps the most profound
result known about Schur functions.

13.1. THporeM (Frobenius) The matrix (y) is the character table of the sym-
metric group S,. Specifically, x, is the character y* corresponding to the partition u
evaluated at the conjugacy class of S, corresponding to the partition J. []

We will not prove this theorem here, since we are assuming no group-theoretic
background on the part of the reader, and since this result will not be needed for
our enumeration of plane partitions (Parts IV and V). A straightforward account
is given by Littlewood [8, § 5.2]. Further results on the representation theory of
the symmetric group may be found in Littlewood [8], Robinson [12], and the
references given there. In particular, Young [66] was the first person to recognize
the connection between plane partitions and the symmetric group. An account of
Young’s highly significant work is given by Rutherford [13].

A number of properties of the matrix y4 can be deduced without recourse to
group theory (i.e., without using Theorem 13.1). These results normally are regarded
as special cases of theorems in group representation theory. We prove two such
results here.

13.2 PROPOSITION. (¥%) is a column-orthogonal matrix, indeed,

Sk =G It 1272,
A

where u = {122, .. ).
Proof': Since e, is an orthonormal basis and s, is an orthogonal basis,

2 = (5,8,
A

which was evaluated in Proposition 4.2. ]

13.3. PROPOSITION. |4 = [[a-n(17272.. ), where 4 = (171272 ...

Proof': By the previous proposition, |y4| = [T.(s,, 5,)'/* = [, (1712"...) (see
Section 4). [J

Since the matrix y} is orthogonal, its inverse is simply x2/(s,, s,). In other words,

e/l = Z Xﬁsu/(su’ S/t . (45)

ukn

(to be continued)
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