Here I will maintain supplementary material for *Enumerative Combinatorics*, volume 2 (paperback edition of 2001). This will include errata, updated references, and new material. I will be continually updating this supplement.

Note. References to math.CO refer to the combinatorics section of the xxx Mathematics Archive at xxx.lanl.gov/archive/math. A front end site for math.CO is front.math.ucdavis.edu/math.CO.

- p. 6, line 10. Change situtations to situations.
- p. 11, line 3. Change $E_c(n)$ to $E_c(x)$.
- p. 18, line 3. Change $(n)_2$ to $n(n-2)$.
- p. 20, line 9. Change $Z(S_n)$ to $\tilde{Z}(S_n)$.
- p. 24, line 4 (after figure). Change $\lim_{n\to\infty}$ to $\lim_{k\to\infty}$.
- p. 25, line 5. Change \subseteq to \in.
- p. 33, line 5–. Change $\text{ord}(\tau_k)$ to $\text{ord}(\tau_j)$.
- p. 34, Lemma 5.3.9. Delete the first sentence, viz., “Let $w \in A^*$.”
- p. 35, line 10. Change $w \in B^*$ to $w \in B_r^*$.
- p. 35, line 8–. Change \mathcal{A} to \mathcal{A}.
- p. 36, lines 15–16. Change “beginning with a 1” to “ending with a -1”.
- p. 36, line 1–. Insert \ldots before $=$. (The left-hand side is an infinite sum.)
• p. 51, line 9–. Change \(Q_i = \Pi_i^{(2)} \) to “when \(Q_i \) is given by Example 5.5.2(d) for \(r = 2 \).

• p. 59, line 9. Change “Since the rows” to “Since the columns”.

• p. 59, line 13. Change “Because the columns” to “Because the rows”.

• p. 62. Example 5.6.12, line 5. Change “modulo \(n \)” to “modulo \(2^n \)”.

• p. 63, line 12. Change “sequence” to “sequences”.

• p. 65, line 8. Change “Theorem” to “Lemma”.

• p. 87, equation (5.111). We need to add the further condition that \(p_n(0) = \delta_0n \). Otherwise, for instance, the polynomials \(p_n(x) = (1 + x)^n \) satisfy (iv) with \(Q = \frac{d}{dx} \) but fail to satisfy (i)–(iii).

• p. 97, Exercise 5.51. It is not true that (ii) implies (i), e.g., when \(C(x) = c \). One needs to add the hypothesis that \([x]C(x) \neq 0 \), so that \((C(x) - c)^{(-1)} \) exists. Substituting \(xC(B(x)) \) for \(x \) in (ii) yields

\[
xC(B(x))/C(A(xC(B(x)))) = x,
\]

so \(C(B(x)) = C(A(xC(B(x)))) \). Substituting \(B(x)^{(-1)} \) for \(x \) yields \(C(x) = C(A(B(x)^{(-1)}C(x))) \). Subtract \(c \) from both sides and apply \((C - c)^{(-1)} \) to get \(x = A(B(x)^{(-1)}C(x)) \). Applying \(A^{(-1)} \) to both sides gives (i). This argument is due to Daniel Giambio and Amit Khetan and (independently) to Yumi Odama.

• p. 101, line 3. Change \(J_0[(2 - t)/\sqrt{t - 1}] \) to \(J_0 \left(\sqrt{-t} (2 - t)/(1 - t) \right) \).

• p. 102, Exercise 5.71. It would be better not to specify the degree \(d \) of \(G \), since (as stated in the solution) \(d = \lambda_1 \).

• p. 103, Exercise 5.74(d). Replace the first two sentences with: Show that all vertices have the same outdegree \(d \). (By (c), all vertices then also have indegree \(d \).)

• p. 108, Exercise 5.7(a), line 7. Change b_{2n} to b_{2n-k}.

• p. 137, Exercise 5.45, line 1. Change kxy^k to $(k+1)xy^k$.

• p. 137, Exercise 5.45, line 4. Change this equation to

$$y = x + 2xy + 3xy^2 + \cdots = \frac{x}{(1-y)^2}.$$

• p. 147, Third Solution. The first two lines should be: Equation (5.530) can be rewritten (after substituting $n+k$ for n)

$$\frac{(n+k)[x^n]}{k} \left(\frac{F^{(-1)}(x)}{x} \right)^k = [x^n] \left(\frac{x}{F(x)} \right)^{n+k}.$$

(5.140)

• p. 162, lines 13– to 12–. Change “Thus any algebraic power series, as defined in Definition 6.1.1” to “Thus any algebraic function, i.e, any solution η to (6.2)”.

• p. 175, line 1. Change $\{9,11\}$ to $\{9,14\}$.

• p. 175, line 2. Change x^{11} to x^{14}.

• p. 175, line 4. Change v^{11} to v^{14}.

• p. 175, line 11. Change Theorem 5.4.1 to Theorem 5.4.2.

• p. 175, line 2–. Change $k \in K$ to $k \in \mathbb{Z}$.

• p. 176, line 16. Change intesect to intersect.

• p. 176, line 4–. Change $(n+2)$-gon to $(n+1)$-gon.

• p. 192, line 9–. Change $u(0) = 0$ to $v(0) = 0$.

• p. 192, lines 8– to 7–. The example $v = \log(1 + x^2) - 1$ is confusing since $v(0) \neq 0$. Nevertheless the series $u(v(x)) = \sqrt{\log(1 + x^2)}$ is well-defined formally since we can write

$$\sqrt{\log(1 + x^2)} = x \sqrt{\frac{\log(1 + x^2)}{x^2}}.$$

It would have been more accurate to define

$$v(x) = \frac{\log(1 + x^2)}{x^2} - 1.$$

The same remarks apply to Exercise 6.59.

• p. 212, lines 16–17. I have forgotten the source for the statement that Netto was the first to use the term “Catalan number.” Can anyone provide a reference?

• p. 219, Exercise 6.16. A combinatorial proof was first given by R. Sulanke, *Electronic J. Combinatorics* 7(1), R40, 2000. A sharper result was subsequently proved combinatorially by D. Callan, A uniformly distributed parameter on a class of lattice paths, math.CO/0310461.

• p. 221, Exercise 6.19(j). This problem appeared as Problem A5 on the 2003 William Lowell Putnam Mathematical Competition. Many participants found the following bijection with 6.19(i) (Dyck paths from $(0, 0)$ to $(2n, 0)$): Let D be a Dyck path from $(0, 0)$ to $(2n, 0)$. If D has no maximal sequence of $(1, -1)$ steps of even length ending on the x-axis, then just prepend the steps $(1, 1)$ and $(1, -1)$ to the beginning of D. Otherwise let R be the rightmost maximal sequence of $(1, -1)$ steps of even length ending on the x-axis. Insert an extra $(1, 1)$ step at the beginning of D and a $(1, -1)$ step after R. This gives the desired bijection.
• p. 224, item ii, line 5. Change $S(w) = w$ to $S(w) = 12 \cdots n$.

• p. 228, item iii, line 3. To be precise, the displayed sequences should have the initial and final 1’s deleted.

• p. 230, Exercise 6.21(b), line 3. Change 5.3.11 to 5.3.12

• p. 230, Exercise 6.23. Brian Rothbach has pointed out that this problem can be given another stipulation: serieshelpmate in 20. By parity considerations (Black cannot lose an odd number of moves with a knight) the solution is the same as before except Black plays Pa7-a6 instead of Pa7-a5. Thus the number of solutions is $C_{10} = 16796$.

• p. 233, Exercise 6.30, line 3. It would be less ambiguous to change “this exercise” to “that exercise”.

• p. 235, Exercise 6.34, line 4. At the end of the line it should be mentioned that the polynomial $g(L_n, q)$ of Exercise 3.71(f) is a further q-analogue of C_n. An additional reference for this polynomial is R. Stanley, *J. Amer. Math. Soc.* 5 (1992), 805–851 (Prop. 8.6).

• p. 236, Exercise 6.34(b,c). While (b) is correct as stated (in the paperback edition of 2001), it would be best to change $q^n c_n(q)$ on line 6 to $c_n(q)$ (as it was in the hardcover edition of 1999) and “nonnegative” on line 8 to “nonpositive”. In this way part (c) remains valid. If part (b) is kept as it is, then change $c_n(t; q)$ in line 4 of part (c) to $q^n c_n(t; q)$.

• p. 238, Exercise 6.38(d), line 1. Change (n, n) to $(n, 0)$.

• p. 239, Exercise 6.39(h). A period is missing at the end of the sentence.

• p. 241, Exercise 6.41, line 1. Change $S^2(w) = w$ to $S^2(w) = 12 \cdots n$.

• p. 247, Exercise 6.59. See the item above for p. 192, lines 8– to 7–.

• p. 250, Exercise 6.3, line 3. Replace “$r = s + \frac{1}{2}$ for some $s \in \mathbb{Z}$” with “r cannot be a negative integer”.

• p. 250, Exercise 6.3, paragraph 3. The earliest proof that $\sum_{n \geq 0} \left(\frac{2^n}{n} \right) t^t x^n$ isn’t algebraic for any $t \in \mathbb{N}$, $t > 1$, appears in the paper P. Flajolet, *Theoretical Computer Science* 49 (1987), 283–309 (page 294). Flajolet
shows that if $\sum a_n x^n$ is algebraic and each $a_n \in \mathbb{Q}$, then a_n satisfies an asymptotic formula

$$a_n = \frac{\beta^n n^s}{\Gamma(s+1)} \sum_{i=0}^{m} C_i \omega_i^n + O(\beta^n n^t),$$

where $s \in \mathbb{Q} - \{-1, -2, -3, \ldots\}$, $t < s$, β is a positive algebraic number, and the C_i and ω_i are algebraic with $|\omega_i| = 1$. A simple application of Stirling’s formula shows that if $a_n = \left(\begin{array}{c} 2n \\ n \end{array}\right) t$, then a_n does not have this asymptotic form when $t \in \mathbb{N}$, $t > 1$.

- p. 257, Exercise 6.19(k). Update the reference to *J. Integer Seq.* 4 (2001), Article 01.1.3; available electronically at

 \[\text{http://www.research.att.com/~njas/sequences/JIS} \]

- p. 258, Exercise 6.19(s), line 1. Change a_i to $a_i - 1$.

- p. 269, Exercise 4.23. Change the rating to [5].

- p. 274, line 2. Change “D. Vanquelin” to “B. Vauquelin”.

- p. 278, Exercise 6.53, line 3. Change $Q(x) = x - 2$ to $Q(x) = -x - 2$.

- p. 282, Exercise 6.63(b), line 2. Change 1847 to 1848.

- p. 293, lines 11-13. Replace “, and such that the ... exist.)” with a period. (The deleted condition automatically holds.)

- p. 295, Figure 7-3. In the expansion of h_{41}, the coefficient of m_{41} should be 2.
• p. 298, line 10–. Change “if follows” to “it follows”.

• p. 301, line 7. Change 1.1.9(b) to 1.9(b).

• pp. 314–315, proof of Proposition 7.10.4. Change λ to λ/µ throughout proof.

• p. 317, line 12–. Change “clearly impossible” to “clear”.

• p. 329, line 15–. Change x’s to X’s.

• p. 336, line 7 (counting the displayed tableau as a single line). Change 7.8.2(b) to 7.8.2(a).

• p. 346, line 3–. Change “forms a border strip” to “forms a border strip or is empty”.

• p. 346, line 1–. Change λi/λi+1 to λi+1/λi.

• p. 348, line 9. Change χλ(µ) to χλ(µ).

• p. 352, line 2 of proof of Proposition 7.18.1. Change \(\sum_{\mu} z^{-1}_{\lambda} f(\lambda)p_{\mu} \) to \(\sum_{\lambda} z^{-1}_{\lambda} f(\lambda)p_{\lambda} \).

• p. 354, line 5. Change “a integral” to “an integral”.

• p. 355, line 4. Add a period after “nonnegative”.

• p. 359, line 6. Change the subscript \(\alpha_S \) to \(co(S) \).

• p. 364, line 1. Change \(e(D(T)) \) to \(e(co(D(T))) \).

• p. 370, line 3 of second proof. Change 1.22(d) to 1.23(d).

• p. 377, line 7; p. 378, line 8; page 378, line 10–. Change \(\pi \in B(r, c, t) \) to \(\pi \subseteq B(r, c, t) \).

• p. 379, line 5–. Insert \(\pi \) after the first “partition”, and change \(\lambda^* \) to \(\pi^* \).

• p. 379, line 4–. Change “similary” to “similarly”.
• p. 383, line 9. Change “\(D(w) = T'\) and \(D(w^{-1}) = T\)” to “\(D(w) = D(T')\) and \(D(w^{-1}) = D(T)\)”.

• p. 395, line 10–. Change “Burnside’s theorem” to “Burnside’s lemma”.

• p. 416, line 7–. Change \(u_{i+2}\) to \(u_{j+2}\).

• p. 418, line 7. Change “subsequences” to “subsequence”.

• p. 419, line 16. Change “was” to “is”.

• p. 421, line 9–. Insert “a” after “such”.

• p. 421, lines 8– to 7–. Change “second statement of Theorem A1.1.4” to “first assertion of Theorem A1.1.6”.

• p. 424, line 11. Delete “by”.

• p. 426, line “tableaux in (A1.137)” to “tableau defined by (A1.137)”.

• p. 429, line 7. Delete comma after 156.

• p. 442, Theorem A2.4, line 9. Change “Hence” to “Moreover,”.

• p. 443, line 11. Change

\[
\text{char } \varphi = (x_1 \cdots x_n)^{-1} = (x_1 \cdots x_n)^{-1}s_\emptyset
\]

to

\[
\text{char } \varphi = x_1^{-1} + \cdots + x_n^{-1} = (x_1 \cdots x_n)^{-1}s_\emptyset^{n-1}
\]

• p. 444, line 12. Delete “char”.

• p. 444, line 11–. Change “given by (A2.156)” to “generated (as a \(\mathbb{C}\)-algebra) by (A2.156)”.

• p. 447, line 3–. Change \(s_1(x_1^{\lambda_i})\) to \(s_1(x_1^{\lambda_i}, x_2^{\lambda_i}, \ldots)\).
• p. 451, Exercise 7.13(a). This exercise is stated incorrectly. For instance, $K_{777,6654} = 1$, contrary to the statement of the exercise. One way to state the correct result is as follows. Let the parts of λ' be given by as follows. Let the parts of λ' be given by

$$\lambda'_1 = \cdots = \lambda'_{n_1} > \lambda'_{n_1+1} = \cdots = \lambda'_{n_2} > \lambda'_{n_2+1} = \cdots > \lambda'_{n_{k-1}+1} = \cdots = \lambda'_{n_k} > 0.$$

Define $\lambda^{(j)} = (\lambda'_{n_{j-1}+1}, \ldots, \lambda'_{n_j})$ (with $n_0 = 0$), so $\lambda^{(j)}$ is a partition of rectangular shape. Let μ be a partition with $|\mu| = |\lambda|$, and let

$$\mu^{(j)} = (\mu_{n_{j-1}+1}, \ldots, \mu_{n_j}).$$

Then $K_{\lambda \mu} = 1$ if and only if $\lambda \geq \mu$ (dominance order) and

(i) $|\lambda^{(j)}| = |\mu^{(j)}|$ and $\lambda^{(j)} \geq \mu^{(j)}$ for all j.

(ii) For all $1 \leq j \leq k$ either $0 \leq \mu'_{n_{j-1}+1} - \lambda'_{n_{j-1}+1} \leq 1$ or $0 \leq \lambda'_{n_j} - \mu'_{n_j} \leq 1$.

• p. 452, line 6. Change “k times” to “n times”.

• p. 452, Exercise 7/16(a), line 5. Change $c_{i-j} + c_{i+j}$ to Change $c_{i-j}i c_{i+j}$.

• pp. 452–453, Exercise 7.16(b,e). The formulas for $y_i(n)$ and $u_i(n)$ have been extended to $i \leq 6$ by F. Gascon, Fonctions de Bessel et combinatoire, Publ. LACIM 28, Univ. du Québec à Montréal, 2002 (page 75). In particular,

$$y_6(2n) = 6(2n)! \sum_{k=0}^{n} \frac{(10n - 13k + 8)C_{k+1}}{(n-k+2)! (n-k)! (k+4)! k!},$$

where C_{k+1} denotes a Catalan number.

• p. 459, Exercise 7.30(c), line 4. Change $d - 1$ to d.

• p. 460, Exercise 7.37. For further information on expanding a^2 in terms of Schur functions, see

• p. 461, Exercise 7.42, line 2. Change $s \tilde{\lambda}(y)$ to $s \tilde{\lambda}'(y)$.

• p. 466, line 3–. Change $(\lambda_i - 1)!(\lambda'_i - 1)!$ to $(\lambda_i - i)! (\lambda'_i - i)!$.

• p. 467, Exercise 7.55(b). Let $f(n)$ be the number of $\lambda \vdash n$ satisfying (7.177). Then

$$(f(1), f(2), \ldots, f(30)) = (1, 1, 1, 2, 2, 7, 7, 10, 10, 34, 40, 53, 61, 103, 112, 143, 145, 369, 458, 579, 712, 938, 1127, 1383, 1638, 2308, 2754, 3334, 3925, 5092).$$

The problem of finding a formula for $f(n)$ was solved by Arvind Ayyer, Amritanshu Prasad, and Steven Spallone, arXiv:1604.08837.

• p. 467, Exercise 7.59. In order for the bijection $\lambda \mapsto (\lambda^0, \lambda^1, \ldots, \lambda^{p-1})$ given in the solution to part (e) (page 517) to be correct, it is necessary to define a specific indexing of the terms of C_{λ}. Namely, index a term a by c_i if $i = i_1 - i_0$, where i_1 is the number of 1’s weakly to the left of a, and i_0 is the number of 0’s strictly to the right of a (so if $a = 1$, then this contributes to i_1). The sequence becomes $\cdots c_{-2} c_{-1} c_0 c_1 c_2 \cdots$ as before, so it suffices to define the indexing by letting the first 1 be $c_{i_{10}-1}$, where i_0 is the number of 0’s following this 1.

Example. If $\lambda = (4, 3, 3, 3, 1)$, then $C_{\lambda} = \cdots 0010110001011 \cdots$. The first 1 in this sequence is $c_{-4} = c_{-3}$. On the other hand, if $\lambda = (3, 3, 3, 2, 2, 1)$, then $C_{\lambda} = \cdots 0010100100011 \cdots$. Now the first 1 is $c_{1-6} = c_{-5}$.

• p. 468, Exercise 7.59(e), line 3. Change Y^k to Y^p.

• p. 469, Exercise 7.61, line 2. Change “0 or 1” to “0 or ±1”.

• p. 474, Exercise 7.70, line 3. Under the second summation sign insert a space between “in” and \mathfrak{S}_n.

• p. 485, line 3–. The asymptotic formula for $a(n)$ should be multiplied by a factor of $1/\sqrt{3\pi}$. The factor $1/\sqrt{\pi}$ was included by Wright and omitted here by mistake. The additional factor $1/\sqrt{3}$ was omitted by Wright, though his proof makes it clear that it should appear. See L. Mutafchiev and E. Kamenov, math.CO/0601253.

• p. 491, Exercise 7.9, line 1. Insert ε_{λ} before $a_{\lambda \mu} e_{\lambda}$.
• p. 492, Exercise 7.11. Change \(\binom{\ell}{j} \) to \(\binom{\ell(\mu)-1}{j} \) (three times).

• p. 494, Figure 7-20. Change the labels \(R_{16}, R_{15}, \) and \(R_{26} \) to \(R_{1a6}, R_{1a5}, \) and \(R_{2a5}, \) respectively.

• p. 496, equation (7.199). Change \((m_i(\lambda)!)^{-1} \) to \(\prod_i (m_i(\lambda)!)^{-1} \).

• p. 500, displayed tableaux near end of Exercise 7.24. The tableaux \(T_8 \) and \(T_9 \) are missing the element 8 to the right of 3. Also, the \(\{3, 10\} \) under \(T_9 \) should be under \(T_{10} \).

• p. 502, Exercise 7.27, first displayed equation. Change \((n)_m \) to \((n)_{n-m} \).

• p. 514, line 1–, and p. 515, line 1. “Ibid.” refers to the reference in the item above, not to the previous reference in the book.

• p. 516, line 8. Change \((\lambda_i - 1)!^2(\lambda'_i - 1)! \) to \((\lambda_i - i)!^2(\lambda'_i - i)! \).

• p. 516, Exercise 7.54. The following elegant solution is due to Katherine Kalampogia-Evangelinou. Expand \(s_\lambda\) in terms of power sums and set \(x_i = q^{i-1}\) (principal specialization). If \(\mu\) has no even part, then \(p_\mu(1,q,q^2,\ldots)\) has no pole at \(q = -1\). If \(\lambda\) has an even hook length, then by Corollary 7.21.3 \(s_\lambda(1,q,q^2,\ldots)\) has a pole at \(q = -1\), and the proof follows.

• p. 517, Exercise 7.59(e), line 3. Change \(Y_k\) to \(Y^p\).

• p. 517, Exercise 7.59(e), line 9. Change \(Y_\emptyset\) to \(Y^p_\emptyset\), and change \(Y^k\) to \(Y^p\).

• p. 518, Exercise 7.59(h), line 1. Change \(Y_\emptyset\) to \(Y^p_\emptyset\), and change \(Y^k\) to \(Y^p\).

• p. 518, Exercise 7.59(h), line 2. Change \(Y^k\) to \(Y^p\) (three times).

• p. 518, Exercise 7.59(h), line 3. Change \(Y^k\) to \(Y^p\).

• p. 520, line 3. Change \(\sum_{n \geq 0} h_{2n+1}t^{2n+1}\) to \(\sum_{n \geq 0} (-1)^n h_{2n+1}t^{2n+1}\).

• p. 535, lines 7–10. Replace the sentence “No proof ... are known.” with “A bijective proof of the unimodality of \(s_\lambda(1,q,\ldots,q^n)\) was given by A. N. Kirillov, C. R. Acad. Sci. Paris, Sér. I 315 (1992), 497–501.”

• p. 537, Exercise 7.78(f), line 6. Change \(s_\mu(x)\) to \(s_\mu(y)\) and \(s_\nu(x)\) to \(s_\nu(z)\).

• p. 576, line 7. Change work to word.

• p. 580. Change “Valquelin, D.” to “Vauquelin, B.”.