Here I will maintain supplementary material for *Enumerative Combinatorics*, volume 2 (original edition of 1999). This will include errata, updated references, and new material. I will be continually updating this supplement.

NOTE. References to math.CO refer to the combinatorics section of the Mathematics Archive at arxiv.org/list/math.CO/recent. A front end site for math.CO is front.math.ucdavis.edu/math.CO.

- p. 2, Example 5.1.2. Interchange \cap and \cup on line 2.
- p. 6, line 10. Change situations to situations.
- p. 8, line 6. The first Π should be Π.
- p. 11, line 3. Change $E_c(n)$ to $E_c(x)$.
- p. 18, line 3. Change $(n)_2$ to $n(n-2)$.
- p. 20, line 9. Change $Z(\mathcal{S}_n)$ to $\tilde{Z}(\mathcal{S}_n)$.
- p. 24, line 4 (after figure). Change $\lim_{n \to \infty}$ to $\lim_{k \to \infty}$.
- p. 25, line 5. Change \subseteq to \in.
- p. 33, line 5−. Change $\text{ord}(\tau_k)$ to $\text{ord}(\tau_j)$.
- p. 34, Lemma 5.3.9. Delete the first sentence, viz., “Let $w \in \mathcal{A}^*$.”
- p. 35, line 10. Change $w \in \mathcal{B}^*$ to $w \in \mathcal{B}_r^*$.
- p. 35, line 8−. Change \mathcal{A} to \mathcal{A}.
- p. 36, lines 15–16. Change “beginning with a 1” to “ending with a -1”.

1
• p. 36, line 1–. Insert + · · · before =. (The left-hand side is an infinite sum.)

• p. 51, line 9–. Change \(Q_i = \Pi_i^{(2)} \) to “when \(Q_i \) is given by Example 5.5.2(d) for \(r = 2 \).”

• p. 59, line 8. Change “effect” to “affect”.

• p. 59, line 9. Change “Since the rows” to “Since the columns”.

• p. 59, line 13. Change “Because the columns” to “Because the rows”.

• p. 62. Example 5.6.12, line 5. Change “modulo \(n \)” to “modulo \(2^n \)”.

• p. 63, line 12. Change “sequence” to “sequences”.

• p. 65, line 8. Change “Theorem” to “Lemma”.

• p. 72, Exercise 5.2(a). Relabel the first part (iii) as part (ii).

• p. 74, Exercise 5.8(a). The stated formula for \(T(n, k) \) fails for \(n = 0 \). Also, it makes more sense to define \(T(0, 0) = 1 \).

• p. 81, Exercise 5.24(d). A solution was found by the Cambridge Combinatorics and Coffee Club (February 2000).

• p. 83, line 1–. Change diagraph to digraph.

• p. 87, equation (5.111). We need to add the further condition that \(p_n(0) = \delta_{0n} \). Otherwise, for instance, the polynomials \(p_n(x) = (1 + x)^n \) satisfy (iv) with \(Q = \frac{d}{dx} \) but fail to satisfy (i)–(iii).

• p. 97, Exercise 5.51. It is not true that (ii) implies (i), e.g., when \(C(x) = c \). One needs to add the hypothesis that \(\{x\}C(x) \neq 0 \), so that \((C(x) - c)^{(-1)} \) exists. Substituting \(xC(B(x)) \) for \(x \) in (ii) yields

\[xC(B(x))/C(A(xC(B(x)))) = x, \]

so \(C(B(x)) = C(A(xC(B(x)))) \). Substituting \(B(x)^{(-1)} \) for \(x \) yields \(C(x) = C(A(B(x)^{(-1)}C(x))) \). Subtract \(c \) from both sides and apply \((C - c)^{(-1)} \) to get \(x = A(B(x)^{(-1)}C(x)) \). Applying \(A^{(-1)} \) to both sides gives (i). This argument is due to Daniel Giaino and Amit Khetan and (independently) to Yumi Odama.
• p. 101, line 3. Change \(J_0[(2 - t)/\sqrt{t - 1}] \) to \(J_0\left(\sqrt{-t}(2 - t)/(1 - t)\right) \).

• p. 102, Exercise 5.71. It would be better not to specify the degree \(d \) of \(G \), since (as stated in the solution) \(d = \lambda_1 \).

• p. 103, Exercise 5.74(d). Replace the first two sentences with: Show that all vertices have the same outdegree \(d \). (By (c), all vertices then also have indegree \(d \)).

• p. 108, Exercise 5.7(a), line 7. Change \(b_{2n} \) to \(b_{2n-k} \).

• p. 124, Exercise 5.28. A bijective proof based on Prüfer codes is due to the Cambridge Combinatorics and Coffee Club (December 1999).

• p. 134, Exercise 5.41(c), lines 3– to 2–. The paper of Postnikov and Stanley has appeared in *J. Combinatorial Theory (A)* **91** (2000), 544–597.

• p. 137, Exercise 5.45, line 1. Change \(kxy^k \) to \((k+1)xy^k \).

• p. 137, Exercise 5.45, line 4. Change this equation to

\[
y = x + 2xy + 3xy^2 + \cdots = \frac{x}{(1-y)^2}.
\]

• p. 142, line 1. Change L^{n-1} to L^n.

• p. 143, Exercise 5.50(c), lines 3– to 2–. The paper of Postnikov and Stanley has appeared in *J. Combinatorial Theory (A)* 91 (2000), 544–597.

• p. 144, Exercise 5.53. The identity

$$4^n = \sum_{j=0}^{n} 2^{n-j} \left(\begin{array}{c} n+j \\ j \end{array} \right)$$

• p. 147, Third Solution. The first two lines should be: Equation (5.530) can be rewritten (after substituting $n+k$ for n)

$$(n+k)[x^n] \frac{1}{k} \left(\frac{F^{(-1)}(x)}{x} \right)^k = [x^n] \left(\frac{x}{F(x)} \right)^{n+k}.$$ \hspace{1cm} (5.140)

• p. 151, Exercise 5.62(b). David Callan observed (private communication) that there is a very simple combinatorial proof. Any matrix of the type being enumerated can be written *uniquely* in the form $P+2Q$, where P and Q are permutation matrices. Conversely $P+2Q$ is always of the type being enumerated, whence $f_3(n) = n!^2$.

• p. 162, lines 13– to 12–. Change “Thus any algebraic power series, as defined in Definition 6.1.1” to “Thus any algebraic function, i.e, any solution η to (6.2)”.

• p. 169, item (vi). When there is a region with only two edges, then the neighboring regions will not be convex (as shown in Figure 6.1). Hence when there is a region with two edges the phrase “each a convex k-gon” should be replaced by “each a k-gon”.

4
• p. 175, line 1. Change \{9,11\} to \{9,14\}.
• p. 175, line 2. Change x^{11} to x^{14}.
• p. 175, line 4. Change v^{11} to v^{14}.
• p. 175, line 11. Change Theorem 5.4.1 to Theorem 5.4.2.
• p. 175, line 2–. Change $k \in K$ to $k \in \mathbb{Z}$.
• p. 176, line 16. Change intersect to intersect.
• p. 176, line 4–. Change $(n+2)$-gon to $(n+1)$-gon.
• p. 192, line 9–. Change $u(0) = 0$ to $v(0) = 0$.
• p. 192, lines 8– to 7–. The example $v = \log(1 + x^2) - 1$ is confusing since $v(0) \neq 0$. Nevertheless the series $u(v(x)) = \sqrt{\log(1 + x^2)}$ is well-defined formally since we can write
\[
\sqrt{\log(1 + x^2)} = x \sqrt{\frac{\log(1 + x^2)}{x^2}}.\]
It would have been more accurate to define
\[
v(x) = \frac{\log(1 + x^2)}{x^2} - 1.
\]
The same remarks apply to Exercise 6.59.
• p. 212, line 1. The statement that Catalan number enumeration originated with Segner and Euler in 1760 (or actually 1758/59 in the cited references) is inaccurate. The enumeration of polygon dissections was stated by Euler in a letter to Goldbach in 1751. This letter is printed in P.-H. Fuss, Correspondance Mathématique et Physique, Tome. 1, Acad. Sci. St. Petersburg, 1843; reprinted in The Sources of Science, No. 35, Johnson Reprint Corporation, New York and London, 1968, pp. 549–552.
• p. 212, lines 16–17. I have forgotten the source for the statement that Netto was the first to use the term “Catalan number.” Can anyone provide a reference?

• p. 213, line 5–. Change “to Comtet [19]” “to Abel [continue??] see Ouvres, vol II, p. 287, point D

• p. 217, Exercise 6.2(a). It needs to be assumed that $F(0) = 0$; otherwise e.g. $F(x) = 1/2$ is a trivial counterexample.

• p. 219, Exercise 6.16. A combinatorial proof was first given by R. Sulanke, Electronic J. Combinatorics 7(1), R40, 2000. A sharper result was subsequently proved combinatorially by D. Callan, A uniformly distributed parameter on a class of lattice paths, math.CO/0310461.

• p. 221, Exercise 6.19(j). This problem appeared as Problem A5 on the 2003 William Lowell Putnam Mathematical Competition. Many participants found the following bijection with 6.19(i) (Dyck paths from $(0,0)$ to $(2n,0)$): Let D be a Dyck path from $(0,0)$ to $(2n,0)$. If D has no maximal sequence of $(1,-1)$ steps of even length ending on the x-axis, then just prepend the steps $(1,1)$ and $(1,-1)$ to the beginning of D. Otherwise let R be the rightmost maximal sequence of $(1,-1)$ steps of even length ending on the x-axis. Insert an extra $(1,1)$ step at the beginning of D and a $(1,-1)$ step after R. This gives the desired bijection.

• p. 224, item ii, line 5. Change $S(w) = w$ to $S(w) = 12\cdots n$.

• p. 228, item iii, line 3. To be precise, the displayed sequences should have the initial and final 1’s deleted.

• p. 230, Exercise 6.21(b), line 3. Change 5.3.11 to 5.3.12.

• p. 230, Exercise 6.23. Brian Rothbach has pointed out that this problem can be given another stipulation: serieshelpmate in 20. By parity considerations (Black cannot lose an odd number of moves with a knight) the solution is the same as before except Black plays Pa7-a6 instead of Pa7-a5. Thus the number of solutions is $C_{10} = 16796$.

• p. 231, Exercise 6.25(i). This conjecture has been proved by M. Haiman, J. Amer. Math. Soc. 14 (2001), 941–1006; math.AG/0010246.
• p. 232, Exercise 6.27(c). Robin Chapman has found an elegant argument that there always exists an integral orthonormal basis.

• p. 233, Exercise 6.30, line 3. It would be less ambiguous to change “this exercise” to “that exercise”.

• p. 235, Exercise 6.34, line 4. At the end of the line it should be mentioned that the polynomial \(g(L_n, q) \) of Exercise 3.71(f) is a further \(q \)-analogue of \(C_n \). An additional reference for this polynomial is R. Stanley, *J. Amer. Math. Soc.* 5 (1992), 805–851 (Prop. 8.6).

• p. 236, Exercise 6.34(b), line 8. Change “nonnegative” to “nonpositive”.

• p. 238, Exercise 6.38(d), line 1. Change \((n, n)\) to \((n, 0)\).

• p. 239, Exercise 6.39(h). A period is missing at the end of the sentence.

• p. 241, Exercise 6.41, line 1. Change \(S^2(w) = w \) to \(S^2(w) = 12 \cdots n \).

• p. 246, Exercise 6.55(a), line 4. Change “while \(w(t) \geq i + 1 \) if \(t \) is between \(k_i + 1 \) and \(s \)” to “while \(w(t) \geq i + 1 \) if \(k_i + 1 \leq t \leq s \) or \(s \leq t \leq k_i - 1 \)”.

• p. 246, equation (6.62). Change \(\sum_{n=1}^{n-1} \) to \(\sum_{k=1}^{n} \).

• p. 247, Exercise 6.59. See the item above for p. 192, lines 8– to 7–.

• p. 250, Exercise 6.3, line 3. Replace “\(r = s + \frac{1}{2} \) for some \(s \in \mathbb{Z} \)” with “\(r \) cannot be a negative integer”.

• p. 250, Exercise 6.3, paragraph 3. The earliest proof that \(\sum_{n \geq 0} \binom{2n}{n}^t x^n \) isn’t algebraic for any \(t \in \mathbb{N}, t > 1 \), appears in the paper P. Flajolet, *Theoretical Computer Science* 49 (1987), 283–309 (page 294). Flajolet shows that if \(\sum a_n x^n \) is algebraic and each \(a_n \in \mathbb{Q} \), then \(a_n \) satisfies an asymptotic formula

\[
a_n = \frac{\beta^n n^s}{\Gamma(s + 1)} \sum_{i=0}^{m} C_i \omega_i^n + O(\beta^n n^t),
\]

where \(s \in \mathbb{Q} - \{-1, -2, -3, \ldots \} \), \(t < s \), \(\beta \) is a positive algebraic number, and the \(C_i \) and \(\omega_i \) are algebraic with \(|\omega_i| = 1 \). A simple application of
Stirling’s formula shows that if $a_n = \left(\frac{2n}{n}\right)^t$, then a_n does not have this asymptotic form when $t \in \mathbb{N}$, $t > 1$.

- p. 253, last two lines. Change “somewhat general more result” to “somewhat more general result”.

- p. 258, Exercise 6.19(s), line 1. Change a_i to $a_i - 1$.

- p. 260, line 6–. Change $(c_j + j - 1, n)$ to (n, j).

- p. 264, Exercise 6.19(iii). It should be mentioned that the diagonals of the frieze patterns of Exercise 6.19(mmm) are precisely the sequences $1a_1a_2\cdots a_n1$ of the present exercise.

- p. 272, Exercise 6.34, line 7. Change *a* to *e*.

- p. 274, line 2. Change “D. Vanquelin” to “B. Vauquelin”.

- p. 278, Exercise 6.53, line 3. Change $Q(x) = x - 2$ to $Q(x) = -x - 2$.

- p. 279, Exercise 6.56(c). In the paper N. Alon and E. Friedgut, *J. Combinatorial Theory (A)* 89 (2000), 133–140, it is shown that $A_v(n) < e^{\gamma^*(n)}$, where $\gamma^*(n)$ is an extremely slow growing function related to the Ackermann hierarchy. The paper is available at http://www.ma.huji.ac.il/~ehudf.

- p. 291, line 9–. In general it is not true that $\hat{\Lambda}_R = \hat{\Lambda} \otimes R$; one only has a natural surjection from the former onto the latter. Equality will hold for instance if R is a finite-dimensional \mathbb{Q}-vector space.

- p. 282, Exercise 6.63(b), line 2. Change 1847 to 1848.

- p. 292, line 7. Insert “in” after “role”.

- p. 293, lines 11-13. Replace “, and such that the ... exist.” with a period. (The deleted condition automatically holds.)

- p. 295, Figure 7-3. In the expansion of h_{41}, the coefficient of m_{41} should be 2.

- p. 298, line 10–. Change “if follows” to “it follows”.

9
• p. 300, line 8–. Change \sum to \prod.
• p. 301, line 7. Change 1.1.9(b) to 1.9(b).
• pp. 314–315, proof of Proposition 7.10.4. Change λ to λ/μ throughout proof.
• p. 315, Figure 7-4. In the expression for s_3 change the second m_{111} to m_3. Similarly, in the expression for s_4 change the second m_{1111} to m_4.
• p. 317, line 12–. Change “clearly impossible” to “clear”.
• p. 322, line 2. Interchange \tilde{P} and \tilde{Q}.
• p. 326, line 2. Insert a space after “antichains”.
• p. 329, line 15–. Change x’s to X’s.
• p. 336, line 7 (counting the displayed tableau as a single line). Change 7.8.2(b) to 7.8.2(a).
• p. 346, line 3–. Change “forms a border strip” to “forms a border strip or is empty”.
• p. 346, line 1–. Change λ^i/λ^{i+1} to λ^{i+1}/λ^i.
• p. 348, line 9. Change $\chi_\lambda(\mu)$ to $\chi^\lambda(\mu)$.
• p. 352, line 2 of proof of Proposition 7.18.1. Change $\sum_\mu z^{-1}_\lambda f(\lambda)p_\mu$ to $\sum_\lambda z^{-1}_\lambda f(\lambda)p_\lambda$.
• p. 354, line 4. Change “in” to “is”.
• p. 354, line 5. Change “a integral” to “an integral”.
• p. 355, line 4. Add a period after “nonnegative”.
• p. 356, line 1. Insert “character of the” before “action”.
• p. 359, line 6. Change the subscript α_S to $\text{co}(S)$.
• p. 364, line 1. Change $e(D(T))$ to $e(\text{co}(D(T)))$.
• p. 370, line 3 of second proof. Change 1.22(d) to 1.23(d).

• p. 370, line 5–. Change the first row of the middle tableau from 43333311 to 4333311.

• p. 374, first diagram. The 1 at the end of the first row should be in boldface.

• p. 377, line 7; p. 378, line 8; page 378, line 10–. Change $\pi \in B(r,c,t)$ to $\pi \subseteq B(r,c,t)$.

• p. 379, line 5–. Insert π after the first “partition”.

• p. 379, line 4–. Change “similary” to “similarly” and change λ^* to π^*.

• p. 381, middle of page. Replace $\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}$ with $\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array}$.

• p. 383, line 9. Change “$D(w) = T'$ and $D(w^{-1}) = T''$” to “$D(w) = D(T')$ and $D(w^{-1}) = D(T)$”.

• p. 394, line 8–. Insert # before Fix(w).

• p. 395, line 10–. Change “Burnside’s theorem” to “Burnside’s lemma”.

• p. 399, line 15. Change “function” to “functions”.

• p. 399, line 7–. For additional information concerning Craige Schensted, see the webpage http://ea.ea.home.mindspring.com.

• p. 404, line 7–. Change A2.2 to A2.4.

• p. 405, line 1. Change A2.6 to A2.8.

• p. 405, line 6. Change A2.6 to A2.8.

• p. 416, line 7–. Change u_{it+2} to u_{jt+2}.

• p. 418, line 7. Change “subsequences” to “subsequence”.

11
• p. 419, line 16. Change “was” to “is”.

• p. 421, line 9. Insert “a” after “such”.

• p. 421, lines 8 to 7. Change “second statement of Theorem A1.1.4” to “first assertion of Theorem A1.1.6”.

• p. 424, line 11. Delete “by”.

• p. 426, line “tableaux in (A1.137)” to “tableau defined by (A1.137)”.

• p. 439, line 7. Delete comma after 156.

• p. 442, Theorem A2.4, line 6. Change $\alpha : V \to W$ to $\alpha : W \to W'$.

• p. 442, Theorem A2.4, line 7. Change $v \in V$ to $v \in W$.

• p. 442, Theorem A2.4, line 9. Change “Hence” to “Moreover,”.

• p. 443, line 11. Change

$$\text{char } \varphi = (x_1 \cdots x_n)^{-1} = (x_1 \cdots x_n)^{-1} s_\emptyset$$

to

$$\text{char } \varphi = x_1^{-1} + \cdots + x_n^{-1} = (x_1 \cdots x_n)^{-1} s_1^{n-1}$$

• p. 444, line 12. Delete “char”.

• p. 444, line 11. Change “given by (A2.156)” to “generated (as a \mathbb{C}-algebra) by (A2.156)”.

• p. 447, line 3. Change $s_1(x^\lambda_i)$ to $s_1(x^\lambda_i, x^\lambda_{i+1}, \ldots)$.

• p. 450, Exercise 7.4, line 2. Change the exponent $n - 1 - r$ to $n - 1 + r$.

12
• p. 451, Exercise 7.13(a). This exercise is stated incorrectly. For instance, $K_{777,6654} = 1$, contrary to the statement of the exercise. One way to state the correct result is as follows. Let the parts of λ' be given by
\[
\lambda'_1 > \cdots > \lambda'_{n_1} = \cdots = \lambda'_{n_2} > \cdots > \lambda'_{n_k} > 0.
\]
Define $\lambda^{(j)} = (\lambda'_{n_j - 1} + 1, \ldots, \lambda'_{n_j})$ (with $n_0 = 0$), so $\lambda^{(j)}$ is a partition of rectangular shape. Let μ be a partition with $|\mu| = |\lambda|$, and let
\[
\mu^{(j)} = (\mu_{n_j - 1} + 1, \ldots, \mu_{n_j}).
\]
Then $K_{\lambda \mu} = 1$ if and only if $\lambda \geq \mu$ (dominance order) and
\begin{enumerate}
\item $|\lambda^{(j)}| = |\mu^{(j)}|$ and $\lambda^{(j)} \geq \mu^{(j)}$ for all j.
\item For all $1 \leq j \leq k$ either $0 \leq \mu'_{n_j - 1} + 1 - \lambda'_n \leq 1$ or $0 \leq \lambda'_n - \mu'_{n_j} \leq 1$.
\end{enumerate}

• p. 452, line 6. Change “k times” to “n times”.

• p. 452, Exercise 7.16(a), line 5. Change $c_i - j + c_i + j$ to $c_i - j i c_i + j$.

• pp. 452–453, Exercise 7.16(b,e). The formulas for $y_i(n)$ and $u_i(n)$ have been extended to $i \leq 6$ by F. Gascon, *Fonctions de Bessel et combinatoire*, Publ. LACIM 28, Univ. du Québec à Montréal, 2002 (page 75). In particular,
\[
y_6(2n) = 6(2n)! \sum_{k=0}^{n} \frac{(10n - 13k + 8)C_{k+1}}{(n-k+2)!(n-k)!(k+4)!k!},
\]
where C_{k+1} denotes a Catalan number.

• p. 459, Exercise 7.30(b), line 2. Change $x_i^{d-1} + x_i^{d-2}x_j + x_i^{d-3}x_j^2 + \cdots + x_j^{d-2}x_j^{d-1}$ to $x_i^d + x_i^{d-1}x_j + x_i^{d-2}x_j^2 + \cdots + x_j^d$.

• p. 459, Exercise 7.30(c), line 4. Change $d - 1$ to d.

• p. 460, Exercise 7.37. For further information on expanding a_0^2 in terms of Schur functions, see
\[
\]
• p. 461, Exercise 7.42, line 2. Change $s\lambda(y)$ to $s\tilde{\lambda}(y)$.

• p. 466, line 3-. Change $(\lambda_i - 1)!(\lambda'_i - 1)!$ to $(\lambda_i - i)!(\lambda'_i - i)!$.

• p. 467, line 5. Change S_n to S_n.

• p. 467, Exercise 7.55(b). Let $f(n)$ be the number of $\lambda \vdash n$ satisfying (7.177). Then

$$ (f(1), f(2), \ldots, f(30)) = (1, 1, 1, 2, 2, 7, 7, 10, 10, 34, 40, 53, 61, 103, 112, 143, 145, 369, 458, 579, 712, 938, 1127, 1383, 1638, 2308, 2754, 3334, 3925, 5092). $$

The problem of finding a formula for $f(n)$ was solved by Arvind Ayyer, Amritanshu Prasad, and Steven Spallone, arXiv:1604.08837.

• p. 467, Exercise 7.59. In order for the bijection $\lambda \mapsto (\lambda^0, \lambda^1, \ldots, \lambda^{p-1})$ given in the solution to part (e) (page 517) to be correct, it is necessary to define a specific indexing of the terms of C_{λ}. Namely, index a term a by c_i if $i = i_1 - i_0$, where i_1 is the number of 1's weakly to the left of a, and i_0 is the number of 0's strictly to the right of a (so if $a = 1$, then this contributes to i_1). The sequence becomes $\cdots c_{-2} c_{-1} c_0 c_1 c_2 \cdots$ as before, so it suffices to define the indexing by letting the first 1 be c_{i_0}, where i_0 is the number of 0's following this 1. Equivalently, $\ell(\lambda) = i_0$.

Example. If $\lambda = (4, 3, 3, 3, 1)$, then $C_{\lambda} = \cdots 0010110001011 \cdots$. The first 1 in this sequence is $c_{-5} = c_{-4}$. On the other hand, if $\lambda = (3, 3, 3, 2, 2, 1)$, then $C_{\lambda} = \cdots 0010100010011 \cdots$. Now the first 1 is $c_{-6} = c_{-5}$.

• p. 468, Exercise 7.59(e), line 3. Change Y^k to Y^p.

• p. 469, Exercise 7.61, line 2. Change “0 or 1” to “0 or ± 1”.

• p. 474, Exercise 7.70, line 3. Under the second summation sign insert a space between “in” and S_n.

• p. 477, Exercise 7.79(c), line 1. Change “strengthening” to “strengthening”.

• p. 484, equation (7.193). Change $1 \leq i \leq j \leq n$ to $1 \leq i < j \leq n$.

14
• p. 484, Exercise 7.101(b). As in (a), the plane partitions being counted have largest part at most m.

• p. 485, line 4. Change SSYT to “reverse SSYT” (i.e., the rows are weakly decreasing and columns strictly decreasing).

• p. 485, line 5. Change $T_{ij} < n - \lambda_i + i$ to $T_{ij} \leq n + \mu_i - i$, and change $n = 3$ to $n = 2$.

• p. 485, lines 6 and 8. Change $t_{32/1,3}(q)$ to $t_{32/1,2}(q)$.

• p. 485, line 7. The five displayed tableaux should be rotated 180°.

• p. 485, line 3–. The asymptotic formula for $a(n)$ should be multiplied by a factor of $1/\sqrt{3\pi}$. The factor $1/\sqrt{\pi}$ was included by Wright and omitted here by mistake. The additional factor $1/\sqrt{3}$ was omitted by Wright, though his proof makes it clear that it should appear. See L. Mutafchiev and E. Kamenov, math.CO/0601253.

• p. 491, Exercise 7.9, line 1. Insert ε^{λ} before $a_{\lambda\mu}e^{\lambda}$.

• p. 492, Exercise 7.11. Change $\left(\ell_{(\mu)}\right)$ to $\left(\ell_{(\mu)}^{(\mu)}\right)$ (three times).

• p. 494, Figure 7-20. Change the labels R_1h6, R_1h5, and R_2h6 to R_1a6, R_1a5, and R_2a5, respectively.

• p. 496, equation (7.199). Change $(m_i(\lambda)!)^{-1}$ to $\left[\prod_i(m_i(\lambda)!)^{-1}\right]$.

• p. 497. Exercise 7.22(b), line 2. Change the first \mathfrak{S}_n to \mathfrak{S}_n.

• p. 500, displayed tableaux near end of Exercise 7.24. The tableaux T_8 and T_9 are missing the element 8 to the right of 3. Also, the $\{3,10\}$ under T_9 should be under T_{10}.
• p. 500, line 5–. Change (??) to (c).

• p. 502, Exercise 7.27, first displayed equation. Change \((n)_m\) to \((n)_{n-m}\).

• p. 514, lines 4– and 3–. Change “ibid., Cor. 7.1.2” to “R. Stanley, *Electron. J. Combinatorics* 3, R6 (1996), 22 pp., Cor. 1.2”.

• p. 514, line 1–, and p. 515, line 1. “Ibid.” refers to the reference in the item above, not to the previous reference in the book.

• p. 516, line 8. Change \((\lambda_i - 1)! \cdot (\lambda'_i - 1)!\) to \((\lambda_i - i)! \cdot (\lambda'_i - i)!\).
• p. 516, Exercise 7.54. The following elegant solution is due to Katerina Kalampogia-Evangelinou. Expand s_λ in terms of power sums and set $x_i = q^{i-1}$ (principal specialization). If μ has no even part, then $p_\mu(1, q, q^2, \ldots)$ has no pole at $q = -1$. If λ has an even hook length, then by Corollary 7.21.3 $s_\lambda(1, q, q^2, \ldots)$ has a pole at $q = -1$, and the proof follows.

• p. 517, Exercise 7.59(e), line 3. Change Y^k to Y^p.

• p. 517, Exercise 7.59(e), line 9. Change Y^\emptyset to Y^p, \emptyset, and change Y^k to Y^p.

• p. 518, Exercise 7.59(h), line 1. Change Y^\emptyset to Y^p, \emptyset, and change Y^k to Y^p.

• p. 518, Exercise 7.59(h), line 2. Change Y^k to Y^p (three times).

• p. 518, Exercise 7.59(h), line 3. Change Y^k to Y^p.

• p. 520, line 3–. Change $\sum_{n \geq 0} h_{2n+1} t^{2n+1}$ to $\sum_{n \geq 0}(-1)^n h_{2n+1} t^{2n+1}$

• p. 535, lines 7–10. Replace the sentence “No proof ... are known.” with “A bijective proof of the unimodality of $s_\lambda(1, q, \ldots, q^n)$ was given by A. N. Kirillov, C. R. Acad. Sci. Paris, Sér. I 315 (1992), 497–501.”

• p. 537, Exercise 7.78(f), line 6. Change $s_\mu(x)$ to $s_\mu(y)$ and $s_\nu(x)$ to $s_\nu(z)$.

• p. 539, Exercise 7.85. A further reference to the evaluation of $g_{\lambda\mu\nu}$ is M. H. Rosas, The Kronecker product of Schur functions indexed by two-row shapes or hook shapes, math.CO/0001084.

• p. 551, Exercise 7.102(b), lines 2– to 1–. The “nice” bijective proof asked for was given by M. Rubey, A nice bijection for a content formula for skew semistandard Young tableaux, math.CO/0011099. The proof is based on jeu de taquin.

• p. 556, line 3. Change $n \to \infty$ to $x \to \infty$.

• p. 556, line 6. Change $(x - t)^2$ to $(x - t)$.

• p. 556, line 7. Change $n^{1/6}$ to $n^{1/3}$.

• p. 576, line 7. Change work to word.

• p. 580. Replace index entry “traingle-free graph” with “triangle-free graph”.

• p. 580. Change “Valquelin, D.” to “Vauquelin, B.”.