
QUEUE PROBLEMS REVISITED1

Richard P. Stanley

A queue problem is a chess problem in which each solution has the same set
of moves, but the order of the moves can vary. The object is to count the
number of solutions. The computation of the number of possible move orders
should be mathematically interesting. The most interesting situation occurs
when this counting problem is equivalent to a known mathematical counting
problem, and we can determine the answer directly from the mathematical
theory. All queue problems composed thus far have been serieshelpmates or
serieshelpstalemates, in which Black makes a series of moves and White one
move. The number of solutions is thus the number of Black move orders;
White always has the same unique move at the end.

Queue problems were introduced by the Finnish composers Eero Bonsdorff,
Arto Puusa, and Kauko Väisänen, beginning around 1983. These pioneering
problems are collected in [4]. In 1993–94 the Finnish Chess Problem Society
sponsored an international solving contest for mathematical chess problems,
in which all the problems but one were proper queue problems. This con-
test featured eight new problems, composed by the above three composers
together with Unto Heinonen.

In this article we present three new queue problems illustrating three theo-
rems from enumerative combinatorics (the mathematical subject dealing with
counting the number of objects with specified properties) not involved in any
previous queue problems. We also give an extension of a classic problem of
Bonsdorff and Väisänen.

First we discuss a method for describing solutions to queue problems. Con-
sider Problem A. The Black pawn at a5 must play the moves a4-a3-a2-a1B-
e5-b8-a7, while the a6 pawn plays a5-a4-a3-a2-a1B-e5-b8. White then plays
b76=. The a4 pawn can never pass the a5 pawn (even after promotion).
We depict this situation in Figure 1, which we call the solution poset P .
(“Poset” is an abbreviation for “partially ordered set.”) The elements (ver-
tices or points) of P correspond to the moves of Black. The pawn initially

1Corrected version of 12 September 2005. Problem E was unsound in the original ver-

sion appearing in Suomen Tehtäväniekat. The present version has been computer checked

by Mario Richter.
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at a5 is denoted P1 and then B1 after promotion, and similarly P2 for the
pawn initially at a6. A move B is written above a move A and joined to
A by a sequence of descending edges if B must be played after A. Hence a
solution to the problem consists of a labeling of the 14 vertices of P with the
numbers 1, 2, . . . , 14 such that if the label j can be reached from i by moving
up edges, then j > i. The label of vertex A is the number of the move A
in the solution. Such a labeling of a poset P is called a linear extension of
P . The number of linear extensions of P is denoted e(P ). The number of
solutions to a “pure” queue problem is thus e(P ), where P is the solution
poset. Linear extensions of posets are a well-studied topic in combinatorics;
see for instance [6, §3.5].

(A) E. Bondorff & K. Väisänen
ST solving contest, 1983�

� �

Serieshelpmate in 14: how many solutions?

The poset P of Figure 1 may be regarded as a (rotated) 2 × 7 rectangle. A
linear extension of P is thus equivalent to filling in the squares of a 2 × 7
rectangle with the numbers 1, 2, . . . , 14 so that every row and column is
increasing. Figure 2 shows a linear extension of P and the equivalent 2 × 7
rectangle. The corresponding solution to Problem A is 1.a4 2.a3 3.a2 4.a5
5.a1B 6.a4 7.a3 8.Be5 9.a2 10.a1B 11.Bb8 12.Ba7 13.Be5 14.Bb8 b76=. The
number of 2 × n rectangles with squares labelled with 1, 2, . . . , 2n so every
row and column is increasing is well-known to be the Catalan number Cn,
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Figure 1: The solution poset for Problem A

given by

Cn =
1

n + 1

(

2n

n

)

=
(2n)!

n!(n + 1)!
.

Since C7 = 429, the answer to Problem A is 429.

Catalan numbers are among the most ubiquitous sequences of numbers in
combinatorics. For 66 combinatorial interpretations of these numbers, see [7,
Exer. 5.19], available also at http://www-math.mit.edu/∼rstan/ec. This
website also has a link to a “Catalan addendum” with many additional com-
binatorial interpretations.

The “Catalan queue” of Problem A is so fundamental that it is interesting to
ask to what extent it can be extended to a longer queue. Problem B shows
our best effort in this direction: the number of solutions is C17 = 129644790.
(Thanks to Noam Elkies for pointing out the necessity of the pawn at c5.)
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Figure 2: A linear extension of the solution poset to Problem A

(B) R. Stanley (after E. Bonsdorff and K. Väisänen)
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Serieshelpmate in 34: how many solutions?

Our approach to Problem A illustrates the paradigm we will be following for
the three problems below. Namely, construct the solution poset P , interpret
the number e(P ) of linear extensions of P in terms of a known enumeration
problem, and use the solution to the enumeration problem to solve the queue
problem.
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(C) R. Stanley, 3rd Prize

E. Bonsdorff 80th birthday tourney, 2002
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Serieshelpmate in 14: how many solutions?

Consider Problem C, whose solution poset is shown in Figure 3. For p ≤ q
define a poset Pp,q to consist of three chains x1 > · · · > xp, y1 > · · · > yq,
and z1 > · · · > zq, with xi < zi and yi < zi. Kreweras [2, (85)] shows that
the number of linear extensions of Pp,q is given by

e(Pp,q) =
22p(p + 2q)! (2q − 2p + 2)!

p! (2q + 2)! (q − p)! (q − p + 1)!
.

(A simpler proof in the case p = q appears in [3].) The poset of Figure 3
is just P4,4 with two irrelevant top elements. Hence the total number of
solutions is given by

e(P4,4) =
28 · 12! · 2!

4! · 10! · 0! · 1!
= 2816.
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Figure 3: The solution poset for Problem C
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(D) R. Stanley

2003

�
�

�
�

�

Serieshelpmate in 7: how many solutions?

Next we turn to Problem D. The solution poset is shown in Figure 4(a).
Consider a linear extension of this poset, such as shown in Figure 4(b). If
we read the labels from left-to-right along the zigzag shape of the poset, we
obtain the permutation 3614275. Replace each number i in this permutation
by 8 − i, obtaining w = 5274613. The characteristic property of w is that it
first goes down, then up, then down, etc., i.e.,

5 > 2 < 7 > 4 < 6 > 1 < 3.

Such a permutation is called alternating. Let En denote the number of al-
ternating permutations of 1, 2, . . . , n. For instance, E4 = 5, corresponding
to the five alternating permutations 2143, 3241, 3142, 4231, 4132, and the
number of solutions to Problem D is E7. The numbers En are known as
Euler numbers and can be computed from the recurrence

E0 = 1, E1 = 1, 2En+1 =
n

∑

k=0

(

n

k

)

EkEn−k if n ≥ 1.

It was proved by Desirée André in 1879 that

∞
∑

n=0

En

xn

n!
= sec x + tan x.
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Figure 4: (a) The solution poset P for Problem D
(b) A linear extension of P

Here sec and tan denote the trigonometric functions secant and tangent. See
for instance the website

http://mathworld.wolfram.com/AlternatingPermutation.html.

The terms of sec x have even exponents and of tan x have odd exponents.
Hence E2n is sometimes called a secant number and E2n+1 a tangent number.
In particular,

tan x = x + 2
x3

3!
+ 16

x5

5!
+ 272

x7

7!
+ 7936

x9

9!
+ · · · .

Hence the number of solutions to Problem D is E7 = 272. Can the theme of
this problem be extended to E8 = 1385 or E9 = 7936 solutions?
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(E) R. Stanley

2004

�
� � �

�
� � �

Serieshelpmate in 14: how many solutions?

Problem E requires some knowledge of calculus to appreciate fully. The
solution poset P for Problem E is shown in Figure 5(a). Figure 5(b) shows
a linear extension π of P , together with a certain labeling of its elements
with the labels x, a12, a13, a23, a14, a24, a34 (twice each). Suppose we list these
labels in the order designated by π and adjoin an x at the beginning and
end. We obtain the permutation

w = x a12 a13 a12 x a14 a24 a13 a23 a23 x a34 a14 a34 a24 x. (1)

of four x’s and two each of aij for 1 ≤ i < j ≤ 4. The characteristic
property of w is that each aij occurs between the ith x and the jth x. Thus
if J(n, k) denotes the number of permutations of n x’s and 2k each of aij

for 1 ≤ i < j ≤ n, then the number of solutions to Problem E is given by
J(4, 1).

Now define the integral

I(n, k) =

∫

1

0

· · ·

∫

1

0

∏

1≤i<j≤n

(xi − xj)
2kdx1 · · ·dxn.

This integral is a special case of a famous integral due to Selberg and known
as Selberg’s integral (e.g., [1, Chap. 8]). Its value is given by

I(n, k) =
1

k!n

n
∏

j=1

((j − 1)k)!2(jk)!

((n − j − 2)k + 1)!
. (2)
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Figure 5: (a) The solution poset P for Problem E
(b) A linear extension and “Selberg labeling” of P
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In particular, we obtain easily from (2) that I(4, 1) = 1/252000.

There is also a standard way to interpret I(n, k) as a probability, namely,
suppose we randomly arrange n x’s and 2k each of the symbols aij for 1 ≤

i < j ≤ n in a line. Then I(n, k) is the probability that all the aij’s occur
between the ith and jth x. (This probabilistic interpretation is much easier
to derive than the explicit value (2).) Since there are a total of

(n + kn(n − 1))!

n! (2k)!(
n

2
)

ways to arrange n x’s and 2k each of the aij’s in a line, we have

J(n, k) =
(n + kn(n − 1))!

n! (2k)!(
n

2
)

I(n, k).

It follows that the number of solutions to Problem E is given by

J(4, 1) =
16!

24 · 26
I(4, 1)

= 13621608000 ·
1

252000
= 54054.
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[6] R. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth and
Brooks/Cole, Pacific Grove, CA, 1986; second printing, Cambridge Uni-
versity Press, Cambridge, 1996.

[7] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University
Press, New York/Cambridge, 1999.

12


