ERRATA
for Catalan Numbers
version of 24 March 2016

• p. 1, line 8. Change \(d - 1 \) to \(n - 1 \).

• p. 40, item 132. The five examples should be

\[
12132434 \quad 12134234 \quad 12314234 \quad 12312434 \quad 12341234
\]

• p. 51, item 200. The condition on \(A \) and \(B \) should be that for all \(i \), the \(i \)th largest element of \(A \) is smaller than the \(i \)th largest element of \(B \).

• p. 134, Problem A59. It should be assumed in both parts that \(f(x) \) has compact support; otherwise the solution is not unique.

• p. 213, column 1, line 4. Change Martin to Michael.
ADDENDA
version of 14 January 2016

B1. (a) [2+] Define integers \(c_n \) by

\[
C(-x) = \prod_{n \geq 1} (1 - x^n)^c_n.
\]

Show that

\[
c_n = \frac{1}{2n} \sum_{d|n} (-1)^{d-1} \mu(n/d) \left(\frac{2d}{d} \right).
\]

(b) [2+] Show that \(c_n \) is divisible by \(n \).

(c) [3–] Show that \(6c_n \) is divisible by \(n^2 \).

B2. [3] Fix \(n \geq 2 \). Let \(X \) be a \((2n-1) \)-element set. Let \(V \) be the real (any field of characteristic 0 will do) vector space with a basis consisting of all symbols

\[
[a_1, \ldots, a_i, [b_1, \ldots, b_n], a_{i+1}, \ldots, a_{n-1}],
\]

where \(\{a_1, \ldots, a_{n-1}, b_1, \ldots, b_n\} = X \). Let \(W \) be the subspace of \(V \) generated by the following elements:

- \([c_1, \ldots, c_i, c_{i+1}, \ldots, c_{2n-1}]+[c_1, \ldots, c_{i+1}, c_i, \ldots, c_{2n-1}]\). In other words, the \((2n-1)\)-component “bracket” \([c_1, \ldots, c_{2n-1}]\) (where each \(c_i \) is an element of \(X \) with one exception which is a bracket \([b_1, \ldots, b_n]\) of elements of \(X \)) is antisymmetric in its entries.

- For all \(a_1 < \cdots < a_n \) and \(b_1 < \cdots < b_n \) such that \(\{a_1, \ldots, a_{n-1}, b_1, \ldots, b_n\} = X \), the element

\[
[a_1, \ldots, a_{n-1}; [b_1, \ldots, b_n]] - \sum_{i=1}^{n} [b_1, \ldots, b_{i-1}, [a_1, \ldots, a_{n-1}, b_i], b_{i+1}, \ldots, b_n] - \sum_{i=1}^{n} [a_1, \ldots, a_{n-1}; [b_1, \ldots, b_{i-1}, b_i, b_{i+1}, \ldots, b_n]]
\]

Show that \(\dim V/W = C_n \).
Solutions

B1. (c) See http://mathoverflow.net/questions/195339.

B2. This result was conjectured by Tamar Friedmann (in a more general context) and proved by Phil Hanlon in 2015. Friedmann made the stronger conjecture that the natural \mathfrak{S}_n-action on V/W is the irreducible representation indexed by the partition $(2, 2, \ldots, 2, 1)$ of $2n - 1$. Hanlon in fact proved this stronger conjecture.