
BIJECTIVE PROOF PROBLEMS

August 18, 2009

Richard P. Stanley

The statements in each problem are to be proved combinatorially, in most
cases by exhibiting an explicit bijection between two sets. Try to give the
most elegant proof possible. Avoid induction, recurrences, generating func-
tions, etc., if at all possible.

The following notation is used throughout for certain sets of numbers:

N nonnegative integers
P positive integers
Z integers
Q rational numbers
R real numbers
C complex numbers
[n] the set {1, 2, . . . , n} when n ∈ N

We will (subjectively) indicate the difficulty level of each problem as follows:

[1] easy
[2] moderately difficult
[3] difficult
[u] unsolved
[?] The result of the problem is known, but I am uncertain whether

a combinatorial proof is known.
[∗] A combinatorial proof of the problem is not known. In all cases, the

result of the problem is known.

Further gradations are indicated by + and –; e.g., [3–] is a little easier than
[3]. In general, these difficulty ratings are based on the assumption that the
solutions to the previous problems are known.

For those wanting to plunge immediately into serious research, the most
interesting open bijections (but most of which are likely to be quite difficult)
are Problems 27, 28, 59, 107, 143, 118, 123 (injection of the type described),
125, 140, 148, 151, 195, 198, 215, 216, 217, 226, 235, and 247.
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1. Elementary Combinatorics

1. [1] The number of subsets of an n-element set is 2n.

2. [1] A composition of n is a sequence α = (α1, α2, . . . , αk) of positive
integers such that

∑

αi = n. The number of compositions of n is 2n−1.

3. [2] The total number of parts of all compositions of n is equal to
(n+ 1)2n−2.

4. [2–] For n ≥ 2, the number of compositions of n with an even number
of even parts is equal to 2n−2.

5. [2] Fix positive integers n and k. Find the number of k-tuples (S1, S2, . . . , Sk)
of subsets Si of {1, 2, . . . , n} subject to each of the following conditions
separately, i.e., the three parts are independent problems (all with the
same general method of solution).

(a) S1 ⊆ S2 ⊆ · · · ⊆ Sk

(b) The Si’s are pairwise disjoint.

(c) S1 ∩ S2 ∩ · · · ∩ Sk = ∅

6. [1] If S is an n-element set, then let
(

S
k

)

denote the set of all k-element

subsets of S. Let
(

n
k

)

= #
(

S
k

)

, the number of k-subsets of an n-set.
(Thus we are defining the binomial coefficient

(

n
k

)

combinatorially when
n, k ∈ N.) Then

k!

(

n

k

)

= n(n− 1) · · · (n− k + 1).

7. [1+] (x+ y)n =
∑n

k=0

(

n
k

)

xkyn−k. Here x and y are indeterminates and
we define

(

x

k

)

=
x(x− 1) · · · (x− k + 1)

k!
.

Note. Both sides are polynomials in x and y. If two polynomials
P (x, y) and Q(x, y) agree for x, y ∈ N then they agree as polynomials.
Hence it suffices to assume x, y ∈ N.
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8. [1] Let m,n ≥ 0. How many lattice paths are there from (0, 0) to
(m,n), if each step in the path is either (1, 0) or (0, 1)? The figure
below shows such a path from (0, 0) to (5, 4).

(0,0)

(5,4)

9. [1] For n > 0, 2
(

2n−1
n

)

=
(

2n
n

)

.

10. [1+] For n ≥ 1,
n
∑

k=0

(−1)k
(

n

k

)

= 0.

11. [1+] For n ≥ 0,
n
∑

k=0

(

x

k

)(

y

n− k

)

=

(

x+ y

n

)

. (1)

12. [2–] For n ≥ 0,
n
∑

k=0

(

x+ k

k

)

=

(

x+ n + 1

n

)

.

13. [3] For n ≥ 0,
n
∑

k=0

(

2k

k

)(

2(n− k)

n− k

)

= 4n.

14. [3–] We have

m
∑

i=0

(

x+ y + i

i

)(

y

a− i

)(

x

b− i

)

=

(

x+ a

b

)(

y + b

a

)

,

where m = min(a, b).
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15. [3–] For n ≥ 0,

n
∑

k=0

(

n

k

)2

xk =

n
∑

j=0

(

n

j

)(

2n− j

n

)

(x− 1)j.

16. [3–] Fix n ≥ 0. Then

∑

i+j+k=n

(

i+ j

i

)(

j + k

j

)(

k + i

k

)

=

n
∑

r=0

(

2r

r

)

.

Here i, j, k ∈ N.

17. [?] For n ≥ 0,
2n
∑

k=0

(−1)k
(

2n

k

)3

= (−1)n
(3n)!

n!3
.

18. [3] Let f(n) denote the number of subsets of Z/nZ (the integers modulo
n) whose elements sum to 0 (mod n) (including the empty set ∅). For
instance, f(5) = 8, corresponding to ∅, {0}, {1, 4}, {0, 1, 4}, {2, 3},
{0, 2, 3}, {1, 2, 3, 4}, {0, 1, 2, 3, 4}. When n is odd, f(n) is equal to
the number of “necklaces” (up to cyclic rotation) with n beads, each
bead colored white or black. For instance, when n = 5 the necklaces
are (writing 0 for white and 1 for black) 00000, 00001, 00011, 00101,
00111, 01011, 01111, 11111. (This is easy if n is prime.)

19. [2–] How many m×n matrices of 0’s and 1’s are there, such that every
row and column contains an odd number of 1’s?

20. (a) [1–] Fix k, n ≥ 1. The number of sequences a1 · · · an such that
1 ≤ ai ≤ k and ai 6= ai+1 for 1 ≤ i < n is k(k − 1)n−1.

(b) [2+] If in addition a1 6= an, then the number gk(n) of such se-
quences is

gk(n) = (k − 1)n + (k − 1)(−1)n. (2)

Note. It’s easy to prove bijectively that

gk(n− 1) + gk(n) = k(k − 1)n−1,

from which (2) is easily deduced. I’m not sure, however, whether
anyone has given a direct bijective proof of (2).
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21. [2–] If p is prime and a ∈ P, then ap−a is divisible by p. (A combinato-
rial proof would consist of exhibiting a set S with ap − a elements and
a partition of S into pairwise disjoint subsets, each with p elements.)

22. (a) [2] Let p be a prime. Then
(

2p
p

)

− 2 is divisible by p2.

(b) (∗) In fact if p > 3, then
(

2p
p

)

− 2 is divisible by p3.

23. [2–] If p is prime, then (p− 1)! + 1 is divisible by p.

24. [1] A multiset M is, informally, a set with repeated elements, such as
{1, 1, 1, 2, 4, 4, 4, 5, 5}, abbreviated {13, 2, 43, 52}. The number of ap-
pearances of i in M is called the multiplicity of i, denoted νM (i) or
just ν(i). The definition of a submultiset N of M should be clear,
viz., νN(i) ≤ νM (i) for all i. Let M = {1ν1, 2ν2, . . . , kνk}. How many
submultisets does M have?

25. [2] The size or cardinality of a multiset M , denoted #M or |M |, is its
number of elements, counting repetitions. For instance, if

M = {1, 1, 1, 2, 4, 4, 4, 5, 5}

then #M = 9. A multiset M is on a set S if every element of M is an
element of S. Let

((

n
k

))

denote the number of k-element multisets on
an n-set, i.e., the number of ways of choosing, without regard to order,
k elements from an n-element set if repetitions are allowed. Then

((n

k

))

=

(

n + k − 1

k

)

.

26. [2–] Fix k, n ≥ 0. Find the number of solutions in nonnegative integers
to

x1 + x2 + · · ·+ xk = n.

27. [*] Let n ≥ 2 and t ≥ 0. Let f(n, t) be the number of sequences with n
x’s and 2t aij ’s, where 1 ≤ i < j ≤ n, such that each aij occurs between
the ith x and the jth x in the sequence. (Thus the total number of
terms in each sequence is n+ 2t

(

n
2

)

.) Then

f(n, t) =
(n+ tn(n− 1))!

n! t!n(2t)!(
n

2)

n
∏

j=1

((j − 1)t)!2(jt)!

(1 + (n + j − 2)t)!
.
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Note. This problem a combinatorial formulation of a special case of
the evaluation of a definite integral known as the Selberg integral. A
combinatorial proof would be very interesting.

28. [*] A binary de Bruijn sequence of degree n is a binary sequence a1a2 · · · a2n
(so ai = 0 or 1) such that all 2n “circular factors” aiai+1 . . . ai+n−1 (tak-
ing subscripts modulo 2n) of length n are distinct. An example of such
a sequence for n = 3 is 00010111. The number of binary de Bruijn
sequences of degree n is 22

n−1

.

Note.Note that 22
n−1

=
√
22n . Hence if Bn denotes the set of all binary

de Bruijn sequences of degree n and {0, 1}2n denotes the set of all binary
sequences of length 2n, then we want a bijection ϕ : Bn×Bn → {0, 1}2n.
Note. Binary de Bruijn sequences were defined and counted (nonbi-
jectively) by Nicolaas Govert de Bruijn in 1946. It was then discovered
in 1975 that this problem had been posed A. de Rivière and solved by
C. Flye Sainte-Marie in 1894.

29. [3] Let α and β be two finite sequences of 1’s and 2’s. Define α < β if
α can be obtained from β by a sequence of operations of the following
types: changing a 2 to a 1, or deleting the last letter if it is a 1. Define
α ≺ β if α can be obtained from β by a sequence of operations of
the following types: changing a 2 to a 1 if all letters preceding this 2
are also 2’s, or deleting the first 1 (if it occurs). Given β and k ≥ 1,
let Ak(β) be the number of sequences ∅ < β1 < β2 < · · · < βk =
β. Let Bk(β) be the number of sequences ∅ ≺ β1 ≺ β2 ≺ · · · ≺
βk = β. For instance, A3(22) = 7, corresponding to (β1, β2) = (2, 21),
(11, 21), (1, 21), (11, 12), (1, 12), (1, 11), (1, 2). Similarly B3(22) = 7,
corresponding to (β1, β2) = (2, 21), (11, 21), (1, 21), (2, 12), (1, 12),
(1, 11), (1, 2). In general, Ak(β) = Bk(β) for all k and β.

30. [1] The Fibonacci numbers Fn are defined by F1 = F2 = 1 and Fn+1 =
Fn+Fn−1 for n ≥ 2. The number f(n) of compositions of n with parts
1 and 2 is Fn+1. (There is at this point no set whose cardinality is
known to be Fn+1, so you should simply verify that f(n) satisfies the
Fibonacci recurrence and has the right initial values.)

31. [2–] The number of compositions of n with all parts > 1 is Fn−1.

32. [2–] The number of compositions of n with odd parts is Fn.
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33. [1+] How many subsets S of [n] don’t contain two consecutive integers?

34. [2–] How many binary sequences (i.e., sequences of 0’s and 1’s) (ε1, . . . , εn)
satisfy

ε1 ≤ ε2 ≥ ε3 ≤ ε4 ≥ ε5 ≤ · · ·?

35. [2] Show that
∑

a1a2 · · ·ak = F2n,

where the sum is over all compositions a1 + a2 + · · ·+ ak = n.

36. [3–] Show that

∑

(2a1−1 − 1) · · · (2ak−1 − 1) = F2n−2,

where the sum is over all compositions a1 + a2 + · · ·+ ak = n.

37. [2] Show that
∑

2{#i : ai=1} = F2n+1,

where the sum is over all compositions a1 + a2 + · · ·+ ak = n.

38. [2+] The number of sequences (δ1, δ2, . . . , δn) of 0’s, 1’s, and 2’s such
that 0 is never immediately followed by a 1 is equal to F2n+2.

39. [2?] Show that F 2
n − Fn−1Fn+1 = (−1)n−1.

40. [2–] Show that F1 + F2 + · · ·+ Fn = Fn+2 − 1.

41. [2] Continuing Exercise 5, fix positive integers n and k. Find the num-
ber of k-tuples (S1, S2, . . . , Sk) of subsets Si of {1, 2, . . . , n} satisfying

S1 ⊆ S2 ⊇ S3 ⊆ S4 ⊇ S5 ⊆ · · · .

(The symbols ⊆ and ⊇ alternate.)
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Bonus Chess Problem
(related to Problem 27)

R. Stanley

2004

j Z Z Z

ZpZ Z Z

pOpZPZ Z

Z o ZPZ

spZpZpZ

Z O o Z

O Z Z Z

Z Z J A

Serieshelpmate in 14: how many solutions?

In a Serieshelpmate in n, Black makes n consecutive moves. White then
makes one move, checkmating Black. Black may not check White (except
possibly on his last move, if White then moves out of check) and may not
move into check. White and Black are cooperating to achieve the goal of
checkmate.

Note. For discussion of many of the chess problems given here, see

www-math.mit.edu/∼rstan/chess/queue.pdf
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2. Permutations

42. [1] In how many ways can n square envelopes of different sizes be ar-
ranged by inclusion? For instance, with six envelopes A,B,C,D,E, F
(listed in decreasing order of size), one way of arranging them would
be F ∈ C ∈ B,E ∈ B,D ∈ A, where I ∈ J means that envelope I is
contained in envelope J .

43. [2+] Let f(n) be the number of sequences a1, . . . , an of positive integers
such that for each k > 1, k only occurs if k − 1 occurs before the last
occurrence of k. Then f(n) = n!. (For n = 3 the sequences are 111,
112, 121, 122, 212, 123.)

44. [2–] Let w = a1a2 · · · an be a permutation of 1, 2, . . . , n, denoted w ∈
Sn. We can also regard w as the bijection w : [n] → [n] defined by
w(i) = ai. We say that i is a fixed point of w if w(i) = i (or ai = i).
The total number of fixed points of all w ∈ Sn is n!.

45. [2] An inversion of w is a pair (i, j) for which i < j and ai > aj . Let
inv(w) denote the number of inversions of w. Then

∑

w∈Sn

qinv(w) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

46. [1] For any w ∈ Sn, inv(w) = inv(w−1).

47. [2–] How many permutations w = a1a2 · · · an ∈ Sn have the property
that for all 1 ≤ i < n, the numbers appearing in w between i and i+1
(whether i is to the left or right of i+1) are all less than i? An example
of such a permutation is 976412358.

48. [2–] How many permutations a1a2 · · · an ∈ Sn satisfy the following
property: if 2 ≤ j ≤ n, then |ai − aj| = 1 for some 1 ≤ i < j? E.g., for
n = 3 there are the four permutations 123, 213, 231, 321.

49. [2] A derangement is a permutation with no fixed points. Let D(n)
denote the number of derangments of [n] (i.e., the number of w ∈ Sn

with no fixed points). (Set D(0) = 1.) Then

D(n) = n!

(

1− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

)

. (3)
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Note. A rather complicated recursive bijection follows from a gen-
eral technique for converting Inclusion-Exclusion arguments to bijective
proofs. What is wanted, however, is a “direct” proof of the identity

D(n) +
n!

1!
+

n!

3!
+ · · · = n! +

n!

2!
+

n!

4!
+ · · · .

In other words, the number of ways to choose a permutation w ∈ Sn

and then choose an odd number of fixed points of w, or instead to
choose a derangement in Sn, is equal to the number of ways to choose
w ∈ Sn and then choose an even number of fixed points of w.

50. [1] Show that

D(n) = (n− 1)(D(n− 1) +D(n− 2)), n ≥ 1.

51. [3] Show that
D(n) = nD(n− 1) + (−1)n.

(Trivial from (3), but surprisingly tricky to do bijectively.)

52. [2] Let m1, . . . , mn ∈ N and
∑

imi = n. The number of w ∈ Sn whose
disjoint cycle decomposition contains exactly mi cycles of length i is
equal to

n!

1m1 m1! 2m2 m2! · · ·nmn mn!
.

Note that, contrary to certain authors, we are including cycles of length
one (fixed points).

53. [1+] A fixed point free involution in S2n is a permutation w ∈ S2n

satisfying w2 = 1 and w(i) 6= i for all i ∈ [2n]. The number of fixed
point free involutions in S2n is (2n− 1)!! := 1 · 3 · 5 · · · (2n− 1).

Note. This problem is a special case of Problem 52. For the present
problem, however, give a factor-by-factor explanation of the product
1 · 3 · 5 · · · (2n− 1).

54. [3] If X ⊆ P, then write −X = {−n : n ∈ X}. Let g(n) be the
number of ways to choose a subset X of [n], and then choose fixed
point free involutions π on X ∪ (−X) and π̄ on X̄ ∪ (−X̄), where
X̄ = {i ∈ [n] : i /∈ X}. Then g(n) = 2n n!.
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55. [2–] Let n ≥ 2. The number of permutations w ∈ Sn with an even
number of even cycles (in the disjoint cycle decomposition of w) is
n!/2.

56. [2] Let c(n, k) denote the number of w ∈ Sn with k cycles (in the
disjoint cycle decomposition of w). Then

n
∑

k=1

c(n, k)xk = x(x+ 1)(x+ 2) · · · (x+ n− 1).

Try to give two bijective proofs, viz., first letting x ∈ P and showing
that both sides are equal as integers, and second by showing that the
coefficients of xk on both sides are equal.

57. [2] Let w be a random permutation of 1, 2, . . . , n (chosen from the
uniform distribution). Fix a positive integer 1 ≤ k ≤ n. What is the
probability that in the disjoint cycle decomposition of w, the length of
the cycle containing 1 is k? In other words, what is the probability
that k is the least positive integer for which wk(1) = 1?

Note. Let pnk be the desired probability. Then pnk = fnk/n!, where
fnk is the number of w ∈ Sn for which the length of the cycle containing
1 is k. Hence one needs to determine the number fnk by a bijective
argument.

58. (a) [2] Let w be a random permutation of 1, 2, . . . , n (chosen from the
uniform distribution), n ≥ 2. The probability that 1 and 2 are in
the same cycle of w is 1/2.

(b) [2+] Generalize (a) as follows. Let 2 ≤ k ≤ n, and let λ =
(λ1, λ2, . . . , λℓ), where λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0 and

∑

λi = k.
Choose a random permutation w ∈ Sn. Let Pλ be the probability
that 1, 2, . . . , λ1 are in the same cycle C1 of w, and λ1+1, . . . , λ1+
λ2 are in the same cycle C2 of w different from C1, etc. Then

Pλ =
(λ1 − 1)! · · · (λℓ − 1)!

k!
.

(c) [3–] Same as (b), except now we take w uniformly at random from
the alternating group An. Let the resulting probability be Qλ.
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Then

Qλ =
(λ1 − 1)! · · · (λℓ − 1)!

(k − 2)!

(

1

k(k − 1)
+ (−1)n−k 1

n(n− 1)

)

.

59. (a) [*] Let n be odd, and let u, v be random (independent, uniformly
distributed) n-cycles in Sn. Then the probability that 1 and 2 are
in the same cycle of the product uv is 1/2.

(b) [*] More generally, let 2 ≤ k ≤ n with n − k odd. With u, v as
above, the probability that 1, 2, . . . , k are all in different cycles of
uv is 1/k!.

60. [3–] Let w be a random permutation of 1, 2, . . . , n (chosen from the
uniform distribution). For each cycle C of w, color all its elements
red with probability 1/2, and leave all its elements uncolored with
probability 1/2. The probability Pk(n) that exactly k elements from
[n] are colored red is given by

Pk(n) = 4−n

(

2k

k

)(

2(n− k)

n− k

)

.

Compare Problem 13.

61. [2+] A record (or left-to-right maximum) of a permutation a1a2 · · ·an
is a term aj such that aj > ai for all i < j. The number of w ∈ Sn

with k records equals the number of w ∈ Sn with k cycles.

62. [3] Let a(n) be the number of permutations w ∈ Sn that have a square
root, i.e., there exists u ∈ Sn satisfying u2 = w. Then a(2n + 1) =
(2n+ 1)a(2n).

63. [2+] Let w = a1 · · · an ∈ Sn. An excedance of w is a number i for which
ai > i. A descent of w is a number i for which ai > ai+1. The number
of w ∈ Sn with k excedances is equal to the number of w ∈ Sn with k
descents. (This number is denoted A(n, k+1) and is called an Eulerian
number.)

64. [2–] Continuing the previous problem, a weak excedance of w is a num-
ber i for which ai ≥ i. The number of w ∈ Sn with k weak excedances
is equal to A(n, k) (the number of w ∈ Sn with k − 1 excedances).
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65. [3–] Let k ≥ 0. Then

∑

n≥0

nkxn =

∑n
k=1A(n, k)x

n

(1− x)k+1
.

For instance,
∑

n≥0

n3xn =
x+ 4x2 + x3

(1− x)4
,

and there is one w ∈ S3 with no descents, four with one descent, and
one with two descents.

Hint. Given a permutation a1a2 · · ·an ∈ Sn, consider all functions f :
[k] → [n] satisfying: f(a1) ≤ f(a2) ≤ · · · ≤ f(an) and f(ai) < f(ai+1)
if ai > ai+1.

66. (a) [*] Given m,n ≥ 0, define

C(m,n) =
(2m)!(2n)!

m!n! (m+ n)!
.

Then C(m,n) ∈ Z. (Note that C(1, n) = 2Cn, where Cn is a
Catalan number.)

67. [3–] Let f(n) be the number of ways to choose a subset S ⊆ [n] and
a permutation w ∈ Sn such that w(i) 6∈ S whenever i ∈ S. Then
f(n) = Fn+1n!, where Fn+1 denotes a Fibonacci number.

68. [1] Let i1, . . . , ik ∈ N,
∑

ij = n. The multinomial coefficient
(

n
i1,...,ik

)

is defined combinatorially to be the number of permutations of the
multiset {1i1, . . . , kik}. For instance,

(

4
1,2,1

)

= 12, corresponding to the
twelve permutations 1223, 1232, 1322, 2123, 2132, 2213, 2231, 2312,
2321, 3122, 3212, 3211. Then

(

n

i1, . . . , ik

)

=
n!

i1! · · · ik!
.

69. [2] The descent set D(w) of w ∈ Sn is the set of descents of w. E.g.,
D(47516823) = {2, 3, 6}. Let S = {b1, . . . , bk−1} ⊆ [n − 1], with b1 <
b2 < · · · < bk−1. Let

αn(S) = #{w ∈ Sn : D(w) ⊆ S}.
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Then

αn(S) =

(

n

b1, b2 − b1, b3 − b2, . . . , bk−1 − bk−2, n− bk−1

)

.

70. [3–] The major index maj(w) of a permutation w = a1a2 · · · an ∈ Sn is
defined by

maj(w) =
∑

i : ai>ai+1

i =
∑

i∈D(w)

i.

For instance, maj(47516823) = 2 + 3 + 6 = 11. Then

∑

w∈Sn

qinv(w) =
∑

w∈Sn

qmaj(w).

71. [3] Extending the previous problem, fix j, k, n. Then

#{w ∈ Sn : inv(w) = j, maj(w) = k}

= #{w ∈ Sn : inv(w) = k, maj(w) = j}.
Note. Problem 70 states that inv and maj are equidistributed on Sn,
while Problem 71 states the stronger result that inv and maj have a
symmetric joint distribution on Sn.

72. [2] A permutation w = a1a2 · · ·an ∈ Sn is alternating if D(w) =
{1, 3, 5, . . .} ∩ [n− 1]. In other words,

a1 > a2 < a3 > a4 < a5 > · · · .

Let En denote the number of alternating permutations in Sn. Then
E0 = E1 = 1 and

2En+1 =
n
∑

k=0

(

n

k

)

EkEn−k, n ≥ 1. (4)

73. [2+] Show that
∑

n≥0

En
xn

n!
= sec x+ tanx. (5)
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Note. It is not difficult to deduce this result from equation (4), but a
combinatorial proof is wanted. This is quite a bit more difficult. Note
that sec x is an even function of x and tan x is odd, so (5) is equivalent
to

∑

n≥0

E2n
x2n

(2n)!
= sec x

∑

n≥0

E2n+1
x2n+1

(2n+ 1)!
= tanx.

Note.We could actually use equation (5) to define tanx and sec x (and
hence the other trigonometric functions in terms of these) combinato-
rially! The next two exercises deal with this subject of “combinatorial
trigonometry.”

74. [2+] Assuming (5), show that

1 + tan2 x = sec2 x.

75. [2+] Assuming (5), show that

tan(x+ y) =
tanx+ tan y

1− (tan x)(tan y)
.

76. [2] Let k ≥ 2. The number of permutations w ∈ Sn all of whose cycle
lengths are divisible by k is given by

12 · 2 · 3 · · · (k−1)(k+1)2(k+2) · · · (2k−1)(2k+1)2(2k+2) · · · (n−1).

77. [3] Let k ≥ 2. The number of permutations w ∈ Sn none of whose
cycle lengths is divisible by k is given by

1 · 2 · · · (k − 1)2(k + 1) · · · (2k − 2)(2k − 1)2(2k + 1) · · · (n− 1)n,

if k6 |n

1 · 2 · · · (k − 1)2(k + 1) · · · (2k − 2)(2k − 1)2(2k + 1) · · · (n− 2)(n− 1)2,

if k|n.
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78. [2] The number u(n) of functions f : [n] → [n] satisfying f j = f j+1 for
some j ≥ 1 is given by u(n) = (n + 1)n−1, where f i denotes iterated
functional composition, e.g., f 3(x) = f(f(f(x))). (Use Problem 128.)

79. [2] The number g(n) of functions f : [n] → [n] satisfying f = f 2 is
given by

h(n) =
n
∑

i=1

in−i

(

n

i

)

.

80. [2+] The number h(n) of functions f : [n] → [n] satisfying f = f j for
some j ≥ 2 is given by

h(n) =
n
∑

i=1

in−in(n− 1) · · · (n− i+ 1).

81. [3–] The number of pairs (u, v) ∈ S2
n such that uv = vu is given by

p(n)n!, where p(n) denotes the number of partitions of n.

Note (for those familiar with groups). This problem generalizes as
follows. Let G be a finite group. The number of pairs (u, v) ∈ G × G
such that uv = vu is given by k(G)·|G|, where k(G) denotes the number
of conjugacy classes of G. In this case a bijective proof is unknown (and
probably impossible).

82. [2] The number of pairs (u, v) ∈ S2
n such that u2 = v2 is given by

p(n)n! (as in the previous problem).

Note. Again there is a generalization to arbitrary finite groups G.
Namely, the number of pairs (u, v) ∈ G×G such that uv = vu is given
by ι(G) · |G|, where ι(G) denotes the number of self-inverse conjugacy
classes K of G, i.e, if w ∈ K then w−1 ∈ K.

83. [*] The number of triples (u, v, w) ∈ S3
n such that u, v, and w are n-

cycles and uvw = 1 is equal to 0 if n is even (this part is easy), and to
2(n− 1)!2/(n+ 1) if n is odd.

84. [*] Let n be an odd positive integer. The number of ways to write the
n-cycle (1, 2, . . . , n) ∈ Sn in the form uvu−1v−1 (u, v ∈ Sn) is equal to
2n · n!/(n+ 1).
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85. [?] Let κ(w) denote the number of cycles of w ∈ Sn. Then

∑

w∈Sn

xκ(w·(1,2,...,n)) =
1

n(n+ 1)
((x+ n)n+1 − (x)n+1).

86. [3+] Let ap,k denote the number of fixed-point free involutions w ∈ S2p

(i.e., the disjoint cycle decomposition of w consists of p 2-cycles) such
that the permutation w(1, 2, . . . , 2p) has exactly k cycles. Then

∑

k≥1

ap,kx
k = (1 · 3 · 5 · · · (2p− 1))

∑

k≥1

2k−1

(

p

k − 1

)(

x

k

)

.

Note that Problem 175 gives the leading coefficient ap,p+1.
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Bonus Chess Problem
(related to Problem 72)

R. Stanley

2003

Z Z Z Z

ZbZ Z Z

spZ o j

Z Z Z M

ZKo Z Z

Z a ZpZ

Z Z Z Z

Z S Z ZN

Serieshelpmate in 7: how many solutions?

Can the theme of the above problem be extended another move or two?
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3. Partitions

A partition λ of n ≥ 0 (denoted λ ⊢ n or |λ| = n) is an integer sequence
(λ1, λ2, . . . ) satisfying λ1 ≥ λ2 ≥ · · · ≥ 0 and

∑

λi = n. Trailing 0’s
are often ignored, e.g., (4, 3, 3, 1, 1) represents the same partition of 12 as
(4, 3, 3, 1, 1, 0, 0) or (4, 3, 3, 1, 1, 0, 0, . . . ). The terms λi > 0 are called the
parts of λ. The conjugate partition to λ, denoted λ′, has λi − λi+1 parts
equal to i for all i ≥ 1. The (Young) diagram of λ is a left-justified array of
squares with λi squares in the ith row. For instance, the Young diagram of
(4, 4, 2, 1) looks like

The Young diagram of λ′ is the transpose of that of λ. Notation such as
u = (2, 3) ∈ λ means that u is the square of the diagram of λ in the second
row and third column. If dots are used instead of squares, then we obtain
the Ferrers diagram. For instance, the Ferrers diagram of (4, 4, 2, 1) looks
like

87. [1+] Let λ be a partition. Then

∑

i

(i− 1)λi =
∑

i

(

λ′
i

2

)

.
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88. [1+] Let λ be a partition. Then

∑

i

⌈

λ2i−1

2

⌉

=
∑

i

⌈

λ′
2i−1

2

⌉

∑

i

⌊

λ2i−1

2

⌋

=
∑

i

⌈

λ′
2i

2

⌉

∑

i

⌊

λ2i

2

⌋

=
∑

i

⌊

λ′
2i

2

⌋

.

89. [1] The number of partitions of n with largest part k equals the number
of partitions of n with exactly k parts.

90. [2+] Fix k ≥ 1. Let λ be a partition. Define fk(λ) to be the number of
parts of λ equal to k, e.g., f3(8, 5, 5, 3, 3, 3, 3, 2, 1, 1) = 4. Define gk(λ)
to be the number of integers i for which λ has at least k parts equal to
i, e.g., g3(8, 8, 8, 8, 6, 6, 3, 2, 2, 2, 1) = 2. Then

∑

λ⊢n

fk(λ) =
∑

λ⊢n

gk(λ).

91. [2+] The total number of 2’s in all partitions of n is equal to the total
number of singletons in all partitions of n−1. A singleton is a part with
multiplicity one. For instance, the partition (8, 8, 7, 5, 4, 4, 4, 2, 2, 1) has
two 2’s and three singletons.

92. [2–] The number of partitions of n ≥ 2 into powers of 2 is even. For
instance, when n = 4 there are the four partitions 4 = 2+2 = 2+1+1 =
1 + 1 + 1 + 1.

93. [1] The number of partitions of n with k parts equals the number of
partitions of n+

(

k
2

)

with k distinct parts.

94. [2] The number of partitions of n with odd parts equals the number of
partitions of n with distinct parts.

95. [2] The number of partitions of n for which no part occurs more than 9
times is equal to the number of partitions of n with no parts divisible
by 10.
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96. [2] Let p(n) denote the number of partitions of n. The number of pairs
(λ, µ), where λ ⊢ n, µ ⊢ n+1, and the Young diagram of µ is obtained
from that of λ by adding one square, is equal to p(0)+p(1)+ · · ·+p(n).
(Set p(0) = 1.)

97. [2] Let σ(n) denote the sum of all (positive) divisors of n ∈ P; e.g.,
σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28. Let p(n) denote the number of
partitions of n (with p(0) = 1). Then

n · p(n) =
n
∑

i=1

σ(i)p(n− i).

98. [2] The number of self-conjugate partitions of n equals the number of
partitions of n into distinct odd parts.

99. [2+] Let e(n), o(n), and k(n) denote, respectively, the number of par-
titions of n with an even number of even parts, with an odd number of
even parts, and that are self-conjugate. Then e(n)− o(n) = k(n).

100. [2] A perfect partition of n ≥ 1 is a partition λ ⊢ n which “contains”
precisely one partition of each positive integer m ≤ n. In other words,
regarding λ as the multiset of its parts, for each m ≤ n there is a
unique submultiset of λ whose parts sum to m. The number of perfect
partitions of n is equal to the number of ordered factorizations of n+1
into integers ≥ 2.

Example. The perfect partitions of 5 are (1, 1, 1, 1, 1), (3, 1, 1), and
(2, 2, 1). The ordered factorizations of 6 are 6 = 2 · 3 = 3 · 2.

101. (a) [3] The number of partitions of 5n + 4 is divisible by 5.

(b) [*] (implies (a)) The number of 6-tuples (λ1, . . . , λ6), where λ1 is
a partition of some integer 5k + 4, and the remaining λi’s are all
partitions of integers that are divisible by 5, such that

∑ |λi| = n,
is equal to five times the number of 6-tuples (µ1, . . . , µ6), where
each µi is a partition such that

∑ |µi| = n.

102. [3–] The number of incongruent triangles with integer sides and perime-
ter n is equal to the number of partitions of n − 3 into parts equal to
2, 3, or 4. For example, there are three such triangles with perimeter
9, the side lengths being (3, 3, 3), (2, 3, 4), (1, 4, 4). The corresponding
partitions of 6 are 2+2+2=3+3=4+2.
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103. [3] Let f(n) be the number of partitions of n into an even number of
parts, all distinct. Let g(n) be the number of partitions of n into an odd
number of parts, all distinct. For instance, f(7) = 3, corresponding to
6 + 1 = 5 + 2 = 4 + 3, and g(7) = 2, corresponding to 7 = 4 + 2 + 1.
Then

f(n)− g(n) =

{

(−1)k, if n = k(3k ± 1)/2 for some k ∈ N

0, otherwise.

Note. This result is usually stated in generating function form, viz.,
∏

n≥1

(1− xn) = 1 +
∑

k≥1

(−1)k
(

xk(3k−1)/2 + xk(3k+1)/2
)

,

and is known as Euler’s pentagonal number formula.

104. [2] Let f(n) (respectively, g(n)) be the number of partitions λ =
(λ1, λ2, . . . ) of n into distinct parts, such that the largest part λ1 is
even (respectively, odd). Then

f(n)− g(n) =







1, if n = k(3k + 1)/2 for some k ≥ 0
−1, if n = k(3k − 1)/2 for some k ≥ 1
0, otherwise.

105. [3] For n ∈ N let f(n) (respectively, g(n)) denote the number of par-
titions of n into distinct parts such that the smallest part is odd and
with an even number (respectively, odd number) of even parts. Then

f(n)− g(n) =

{

1, if n is a square
0, otherwise.

106. [3] Let λ = (λ1, λ2, . . . ) ⊢ n. Define

α(λ) =
∑

i

⌈λ2i−1/2⌉

β(λ) =
∑

i

⌊λ2i−1/2⌋

γ(λ) =
∑

i

⌈λ2i/2⌉

δ(λ) =
∑

i

⌊λ2i/2⌋.
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Let a, b, c, d be (commuting) indeterminates, and define

w(λ) = aα(λ)bβ(λ)cγ(λ)dδ(λ).

For instance, if λ = (5, 4, 4, 3, 2) then w(λ) is the product of the entries
of the diagram

a b a b a
c d c d
a b a b
c d c
a b

Show that
∑

λ

w(λ) =
∏

j≥1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbjcj−1dj−1)(1− ajbj−1cjdj−1)
,

where the sum on the left ranges over all partitions λ of all integers
n ≥ 0.

107. (a) (∗) The number of partitions of n into parts ≡ ±1 (mod 5) is equal
to the number of partitions of n whose parts differ by at least 2.

(b) (∗) The number of partitions of n into parts ≡ ±2 (mod 5) is equal
to the number of partitions of n whose parts differ by at least 2
and for which 1 is not a part.

Note. This is the combinatorial formulation of the famous Rogers-
Ramanujan identities. Several bijective proofs are known, but none
are really satisfactory. What is wanted is a “direct” bijection whose
inverse is easy to describe.

108. [3] The number of partitions of n into parts ≡ 1, 5, or 6 (mod 8) is
equal to the number of partitions into parts that differ by at least 2,
and such that odd parts differ by at least 4.

109. [3] A lecture hall partition of length k is a partition λ = (λ1, . . . , λk)
(some of whose parts may be 0) satisfying

0 ≤ λk

1
≤ λk−1

2
≤ · · · ≤ λ1

k
.

The number of lecture hall partitions of n of length k is equal to the
number of partitions of n whose parts come from the set 1, 3, 5, . . . , 2k−
1 (with repetitions allowed).
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110. [3] The Lucas numbers Ln are defined by L1 = 1, L2 = 3, Ln+1 =
Ln + Ln−1 for n ≥ 2. Let f(n) be the number of partitions of n all
of whose parts are Lucas numbers L2n+1 of odd index. For instance,
f(12) = 5, corresponding to

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
4 + 4 + 1 + 1 + 1 + 1
4 + 4 + 4
11 + 1

Let g(n) be the number of partitions λ = (λ1, λ2, . . . ) such that λi/λi+1 >
1
2
(3 +

√
5) whenever λi+1 > 0. For instance, g(12) = 5, corresponding

to
12, 11 + 1, 10 + 2, 9 + 3, 8 + 3 + 1.

Then f(n) = g(n) for all n ≥ 1.

111. [3–] Let A(n) denote the number of partitions (λ1, . . . , λk) ⊢ n such
that λk > 0 and

λi > λi+1 + λi+2, 1 ≤ i ≤ k − 1

(with λk+1 = 0). LetB(n) denote the number of partitions (µ1, . . . , µj) ⊢
n such that

• Each µi is in the sequence 1, 2, 4, . . . , gm, . . . defined by

g1 = 1, g2 = 2, gm = gm−1 + gm−2 + 1 for m ≥ 3.

• If µ1 = gm, then every element in {1, 2, 4, . . . , gm} appears at least
once as a µi.

Then A(n) = B(n) for all n ≥ 1.

Example. A(7) = 5 because the relevant partitions are (7), (6, 1),
(5, 2), (4, 3), (4, 2, 1), and B(7) = 5 because the relevant partitions are
(4, 2, 1), (2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1).

112. (∗) Let S ⊆ P and let p(S, n) denote the number of partitions of n
whose parts belong to S. Let

S = ±{1, 4, 5, 6, 7, 9, 10, 11, 13, 15, 16, 19 (mod40)}
T = ±{1, 3, 4, 5, 9, 10, 11, 14, 15, 16, 17, 19 (mod40)},
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where

±{a, b, . . . (modm)} = {n ∈ P : n ≡ ±a,±b, . . . (modm)}.

Then p(S, n) = p(T, n− 1) for all n ≥ 1.

Note. In principle the known proof of this result and of Problem 113
below can be converted into a complicated recursive bijection, as has
been done for Problem 107. Just as for Probem 107, what is wanted is
a “direct” bijection whose inverse is easy to describe.

113. [*] Let

S = ±{1, 4, 5, 6, 7, 9, 11, 13, 16, 21, 23, 28 (mod 66)}
T = ±{1, 4, 5, 6, 7, 9, 11, 14, 16, 17, 27, 29 (mod 66)}.

Then p(S, n) = p(T, n) for all n ≥ 1 except n = 13 (!).

114. [*] The number of partitions of 2n into distinct even parts equals the
number of partitions if 2n + 1 into distinct odd parts, provided that
all parts that are multiples of 7 are colored with one of two colors.
(Two multiples of 7 that are different colors are regarded as different
parts.) For instance, the partitions of 18 being counted are (18), (16, 2),
(141, 4), (142, 4), (12, 6), (12, 4, 2), (10, 8), (10, 6, 2), (8, 6, 4), while the
partitions of 19 being counted are (19), (15, 3, 1), (11, 71, 1), (11, 72, 1),
(11, 5, 3), (9, 71, 3), (9, 72, 3), (71, 72, 5).

115. [2–] Prove the following identities by interpreting the coefficients in
terms of partitions.

∏

i≥1

1

1− qxi
=

∑

k≥0

xkqk

(1− x)(1− x2) · · · (1− xk)

∏

i≥1

1

1− qxi
=

∑

k≥0

xk2qk

(1− x) · · · (1− xk)(1− qx) · · · (1− qxk)

∏

i≥1

(1 + qxi) =
∑

k≥0

x(
k+1

2 )qk

(1− x)(1− x2) · · · (1− xk)

∏

i≥1

(1 + qx2i−1) =
∑

k≥0

xk2qk

(1− x2)(1− x4) · · · (1− x2k)
.
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116. [3] Show that

∞
∑

n=−∞

xnqn
2

=
∏

k≥1

(1− q2k)(1 + xq2k−1)(1 + x−1q2k−1).

This famous result is Jacobi’s triple product identity.

117. [3] Let f(n) be the number of partitions of 2n whose Ferrers diagram
can be covered by n edges, each connecting two adjacent dots. For
instance, (4, 3, 3, 3, 1) can be covered as follows:

r
r
r
r
r

r
r
r
r

r
r
r
r r

Then f(n) is equal to the number of ordered pairs (λ, µ) of partitions
satisfying |λ|+ |µ| = n.

118. [3+] Given a partition λ and u ∈ λ, let a(u) (called the arm length of u)
denote the number of squares directly to the right of u (in the diagram
of λ), counting λ itself exactly once. Similarly let l(u) (called the leg
length of u) denote the number of squares directly below u, counting u
itelf once. Thus if u = (i, j) then a(u) = λi−j+1 and l(u) = λ′

j−i+1.
Define

γ(λ) = #{u ∈ λ : a(u)− l(u) = 0 or 1}.
Then

∑

λ⊢n

qγ(λ) =
∑

λ⊢n

qℓ(λ),

where ℓ(λ) denotes the length (number of parts) of λ.

119. [3–] If 0 ≤ k < ⌊n/2⌋, then
(

n
k

)

≤
(

n
k+1

)

.

Note. To prove an inequality a ≤ b combinatorially, find sets A,B
with #A = a, #B = b, and either an injection (one-to-one map)
f : A → B or a surjection (onto map) g : B → A.
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120. [3–] Let 1 ≤ k ≤ n−1. Then
(

n
k

)2 ≥
(

n
k−1

)(

n
k+1

)

. Note that this result is

even stronger than Problem 119 above (assuming
(

n
k

)

=
(

n
n−k

)

) [why?].

121. [1] Let p(j, k, n) denote the number of partitions of n with at most j
parts and with largest part at most k. Then p(j, k, n) = p(j, k, jk−n).

122. [3] Let p(j, k, n) be as in the previous problem. A standard result in
enumerative combinatorics states that

jk
∑

n=0

p(j, k, n)qn =

[

j + k

j

]

,

where
[

m
i

]

denotes the q-binomial coefficient :

[m

i

]

=
(1− qm)(1− qm−1) · · · (1− qm−i+1)

(1− qi)(1− qi−1) · · · (1− q)
.

Prove this bijectively in the form

∑jk
n=0 p(j, k, n)q

n

(1− qj+k)(1− qj+k−1) · · · (1− qk+1)
=

1

(1− qj)(1− qj−1) · · · (1− q)
.

123. [3] Continuing the previous problem, if n < jk/2 then p(j, k, n) ≤
p(j, k, n+ 1).

Note. A (difficult) combinatorial proof is known. What is really
wanted, however, is an injection f : An → An+1, where Am is the set
of partitions counted by p(j, k,m), such that for all λ ∈ An, f(λ) is
obtained from λ by adding 1 to a single part of λ. It is known that
such an injection f exists, but no explicit description of f is known.

124. [1] Let p̄(k, n) denote the number of partitions of n into distinct parts,
with largest part at most k. Then

p̄(k, n) = p̄(k,

(

k + 1

2

)

− n).

Note. It is easy to see that

(k+1

2 )
∑

n=0

p̄(k, n)qn = (1 + q)(1 + q2) · · · (1 + qk).
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125. [*] Continuing the previous problem, if n < 1
2

(

k+1
2

)

then p̄(k, n) ≤
p̄(k, n+ 1).

Note. As in Problem 123 it would be best to give an injection g :
Bn → Bn+1, where Bm is the set of partitions counted by p̄(k,m), such
that for all λ ∈ Bn, f(λ) is obtained from λ by adding 1 to a single
part of λ. It is known that such an injection g exists, but no explicit
description of g is known. However, unlike Problem 123, no explicit
injection g : Bn → Bn+1 is known.

126. [2+] A partition π of a set S is a collection of nonempty pairwise
disjoint subsets (called the blocks of π) of S whose union is S. Let
B(n) denote the number of partitions of an n-element set. B(n) is
called a Bell number. For instance, B(3) = 5, corresponding to the
partitions (written in an obvious shorthand notation) 1-2-3, 12-3, 13-2,
1-23, 123. The number of partitions of [n] for which no block contains
two consecutive integers is B(n− 1).

127. [2] The number of permutations w = a1 · · · an ∈ Sn such that for
no 1 ≤ i < j < n do we have ai < aj < aj+1 is given by the Bell
number B(n). The same result holds if ai < aj < aj+1 is replaced with
ai < aj+1 < aj .
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4. Trees

A tree T on [n] is a graph with vertex set [n] which is connected and contains
no cycles. Equivalently, as is easy to see, T is connected and has n−1 edges.
A forest is a graph for which every connected component is a tree. A rooted
tree is a tree with a distinguished vertex u, called the root. If there are t(n)
trees on [n] and r(n) rooted trees, then r(n) = nt(n) since there are n choices
for the root u. A planted forest (sometimes called a rooted forest) is a graph
for which every connected component is a rooted tree.

128. [3–] The number of trees t(n) on [n] is t(n) = nn−2. Hence the number
of rooted trees is r(n) = nn−1.

129. [1+] The number of planted forests on [n] is (n+ 1)n−1.

130. [2] Let S ⊆ [n], #S = k. The number pS(n) of planted forests on [n]
whose root set is S is given by

pS(n) = knn−k−1.

131. [2] Given a planted forest F on [n], let deg(i) be the degree (number of
children of i). E.g., deg(i) = 0 if and only if i is a leaf (endpoint) of F .
If F has k components then it is easy to see that

∑

i deg(i) = n − k.
Given δ = (δ1, . . . , δn) ∈ Nn with

∑

δi = n − k, let N(δ) denote the
number of planted forests F on [n] (necessarily with k components)
such that deg(i) = δi for 1 ≤ i ≤ n. Then

N(δ) =

(

n− 1

k − 1

)(

n− k

δ1, . . . , δn

)

,

where
(

n−k
δ1,...,δn

)

denotes a multinomial coefficient.

132. [3–] A k-edge colored tree is a tree whose edges are colored from a set of
k colors such that any two edges with a common vertex have different
colors. Show that the number Tk(n) of k-edge colored trees on the
vertex set [n] is given by

Tk(n) = k(nk− n)(nk− n− 1) · · · (nk− 2n+3) = k(n− 2)!

(

nk − n

n− 2

)

.
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133. A binary tree is a rooted tree such that every vertex v has exactly
two subtrees Lv, Rv, possibly empty, and the set {Lv, Rv} is linearly
ordered, say as (Lv, Rv). We call Lv the left subtree of v and draw it to
the left of v. Similarly Rv is called the right subtree of v, etc. A binary
tree on the vertex set [n] is increasing if each vertex is smaller that its
children. An example of such a tree is given by:

6

3

2

1

8

7

5

4

(a) [1+] The number of increasing binary trees on [n] is n!.

(b) [2] The number of increasing binary trees on [n] for which exactly
k vertices have a left child is the Eulerian number A(n, k + 1).

134. An increasing forest is a planted forest on [n] such that every vertex is
smaller than its children.

(a) [1+] The number of increasing forests on [n] is n!.

(b) [2] The number of increasing forests on [n] with exactly k com-
ponents is equal to the number of permutations w ∈ Sn with k
cycles.

(c) [2] The number of increasing forests on [n] with exactly k end-
points is the Eulerian number A(n, k).

135. [2] Show that

∑

n≥0

(n+ 1)n
xn

n!
=

(

∑

n≥0

nnx
n

n!

)(

∑

n≥0

(n + 1)n−1x
n

n!

)

.
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136. [2] Show that
1

1−
∑

n≥1

nn−1x
n

n!

=
∑

n≥0

nnx
n

n!
.

137. [3] Let τ be a rooted tree with vertex set [n] and root 1. An inversion
of τ is a pair (i, j) such that 1 < i < j and the unique path in τ from
1 to i passes through j. For instance, the tree below has the inversions
(3, 4), (2, 4), (2, 6), and (5, 6).

r r

r r

r

r

�
�
��

❅
❅

❅
❅

❅
❅❅

�
�
��

2 5

3 6

4

1

Let inv(τ) denote the number of inversions of τ . Define

In(t) =
∑

τ

tinv(τ),

summed over all nn−2 trees on [n] with root 1. For instance,

I1(t) = 1

I2(t) = 1

I3(t) = 2 + t

I4(t) = 6 + 6t+ 3t2 + t3

I5(t) = 24 + 36t+ 30t2 + 20t3 + 10t4 + 4t5 + t6

I6(t) = 120 + 240t+ 270t2 + 240t3 + 180t4 + 120t5 + 70t6 + 35t7

+15t8 + 5t9 + t10.

Show that
tn−1In(1 + t) =

∑

G

te(G),

summed over all connected graphs G (without loops or multiple edges)
on the vertex set [n], where e(G) is the number of edges of G.
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138. [3] An alternating tree on [n] is a tree with vertex set [n] such that
every vertex is either less than all its neighbors or greater than all its
neighbors. Let f(n) denote the number of alternating trees on [n], so
f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 7, f(5) = 36, etc. Then

f(n+ 1) =
1

2n

n
∑

k=0

(

n

k

)

(k + 1)n−1.

139. [3–] A local binary search tree is a binary tree, say with vertex set [n],
such that the left child of a vertex is smaller than its parent, and the
right child of a vertex is larger than its parent. An example of such a
tree is:

r r r

r r r

r r
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The number f(n) of alternating trees on [n] is equal to the number of
local binary search trees on [n].

140. [*] A tournament is a directed graph with no loops (edges from a vertex
to itself) and with exactly one edge u → v or v → u between any two
distinct vertices u, v. Thus the number of tournaments on [n] (i.e., with

vertex set [n]) is 2(
n

2). Write C = (c1, c2, . . . , ck) for the directed cycle
with edges c1 → c2 → · · · → ck → c1 in a tournament on [n]. Let
asc(C) be the number of integers 1 ≤ i ≤ k for which ci−1 < ci, and
let des(C) be the number of integers 1 ≤ i ≤ k for which ci−1 > ci,
where by convention c0 = ck. We say that the cycle C is ascending if
asc(C) ≥ des(C). For example, the cycles (a, b, c), (a, c, b, d), (a, b, d, c),
and (a, c, d, b) are ascending, where a < b < c < d. A tournament
T on [n] is semiacyclic if it contains no ascending cycles, i.e, if for
any directed cycle C in T we have asc(C) < des(C). The number of
semiacyclic tournaments on [n] is equal to the number of alternating
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trees on [n]. (This problem, usually stated in a different but equivalent
form, has received a lot of attention. A solution would be well worth
publishing.)

141. [2] An edge-labelled alternating tree is a tree, say with n + 1 vertices,
whose edges are labelled 1, 2, . . . , n such that no path contains three
consecutive edges whose labels are increasing. (The vertices are not
labelled.) If n > 1, then the number of such trees is n!/2.

142. [2+] A spanning tree of a graph G is a subgraph of G which is a tree
and which uses every vertex of G. The number of spanning trees of G
is denoted c(G) and is called the complexity of G. Thus Problem 128
is equivalent to the statement that c(Kn) = nn−2, where Kn is the
complete graph on n vertices (one edge between every two distinct
vertices). The complete bipartite graph Kmn has vertex set A ∪ B,
where #A = m and #B = n, with an edge between every vertex of A
and every vertex of B (so mn edges in all). Then c(Kmn) = mn−1nm−1.

143. [*] The n-cube Cn (as a graph) is the graph with vertex set {0, 1}n
(i.e., all binary n-tuples), with an edge between u and v if they differ
in exactly one coordinate. Thus Cn has 2n vertices and n2n−1 edges.
Then

c(Cn) = 22
n−n−1

n
∏

k=1

k(
n

k).

144. [3–] A parking function of length n is a sequence (a1, . . . , an) ∈ Pn such
that its increasing rearrangement b1 ≤ b2 ≤ · · · ≤ bn satisfies bi ≤ i.
The parking functions of length three are 111, 112, 121, 211, 122, 212,
221, 113, 131, 311, 123, 132, 213, 231, 312, 321. The number of parking
functions of length n is (n + 1)n−1.

145. [3] Let PF(n) denote the set of parking functions of length n. Then
∑

(a1,...,an)∈PF(n)

qa1+···+an =
∑

τ

q(
n+1

2 )−inv(τ),

where τ ranges over trees on [n + 1] with root 1, and where inv(τ) is
defined in Problem 137.

146. [3–] A valid n-pair consists of a permutation w = a1 · · · an ∈ Sn,
together with a collection I of pairs (i, j) such that
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• If (i, j) ∈ I then 1 ≤ i < j ≤ n.

• If (i, j) ∈ I then ai < aj.

• If (i, j), (i′, j′) ∈ I and {i, i + 1, . . . , j} ⊆ {i′, i′ + 1, . . . , j′), then
(i, j) = (i′, j′).

For example, let n = 3. For each w ∈ S3 we put after it the number of
sets I for which (w, I) is a valid 3-pair: 123 (5), 213 (3), 132 (3), 231
(2), 312 (2), 321 (1). The number of valid n-pairs is (n+ 1)n−1.

147. (a) [3] Let T be a tournament on [n], as defined in Problem 140. The
outdegree of vertex i, denoted outdeg(i), is the number of edges
pointing out of i, i.e., edges of the form i → j. The outdegree
sequence of T is defined by

out(T ) = (outdeg(1), . . . , outdeg(n)).

For instance, there are eight tournaments on [3], but two have
outdegree sequence (1, 1, 1). The other six have distinct outdegree
sequences, so the total number of distinct outdegree sequences of
tournaments on [3] is 7. The total number of distinct outdegree
sequences of tournaments on [n] is equal to the number of forests
on [n].

(b) [3] More generally, let G be an (undirected) graph on [n]. An ori-
entation o of G is an assignment of a direction u → v or v → u to
each edge uv of G. The outdegree sequence of o is defined analo-
gously to that of tournaments. The number of distinct outdegree
sequences of orientations of G is equal to the number of spanning
forests of G.

148. [*] Let G be a graph on [n]. The degree of vertex i, denoted deg(i),
is the number of edges incident to i. The (ordered) degree sequence of
G is the sequence (deg(1), . . . , deg(n)). The number f(n) of distinct
degree sequences of simple (i.e., no loops or multiple edges) graphs on
[n] is given by

f(n) =
∑

Q

max{1, 2d(Q)−1}, (6)

where Q ranges over all graphs on [n] for which every connected com-
ponent is either a tree or has exactly one cycle, which is of odd length.
Moreover, d(Q) denotes the number of (odd) cycles in Q.
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149. [3] The number of ways to write the cycle (1, 2, . . . , n) ∈ Sn+1 as a
product of n − 1 transpositions (the minimum possible) is nn−2. (A
transposition is a permutation w ∈ Sn with one cycle of length two
and n − 2 fixed points.) For instance, the three ways to write (1, 2, 3)
are (multiplying right-to-left) (1, 2)(2, 3), (2, 3)(1, 3), and (1, 3)(1, 2).

Note. It is not difficult to show bijectively that the number of ways to
write some n-cycle as a product of n−1 transpositions is (n−1)!nn−2,
from which the above result follows by “symmetry.” However, a direct
bijection between factorizations of a fixed n-cycle such as (1, 2, . . . , n)
and labelled trees (say) is considerably more difficult.

150. [3–] The following four sets have an equal number of elements.

(a) Ternary trees with n vertices. A ternary tree is a rooted tree such
that each vertex has three linearly ordered (say from left-to-right)
subtrees, possibly empty. For instance, there are three ternary
trees with two vertices.

(b) Noncrossing trees on the vertex set [n+ 1]. A noncrossing tree T
on a linearly ordered set S is a tree with vertex set S such that if
a < b < c < d in S, then not both ac and bd are edges of T .

(c) Recursively labelled forests on the vertex set [n], i.e., a planted (or
rooted) forest on [n] such that the vertices of every subtree (i.e.,
of every vertex and all its descendants) is a set of consecutive
integers.

(d) Equivalence classes of ways to write the cycle (1, 2, . . . , n+1) ∈ Sn

as a product of n transpositions (the minimum possible) such
that two products are equivalent if they can be obtained from
each other by successively interchanging consecutive commuting
transpositions. (Two transpositions (i, j) and (h, k) commute if
they have no letters in common.) Thus the three factorizations of
(1, 2, 3) are all inequivalent, while the factorization (1, 5)(2, 4)(2, 3)(1, 4)
of (1, 2, 3, 4, 5) is equivalent to itself and (2, 4)(1, 5)(2, 3)(1, 4),
(1, 5)(2, 4)(1, 4)(2, 3), (2, 4)(1, 5)(1, 4)(2, 3), and (2, 4)(2, 3)(1, 5)(1, 4).
(Compare Problem 149.)

Note. The cardinality of the four sets above is equal to 1
2n+1

(

3n
n

)

,

a “ternary analogue” of the Catalan number 1
n+1

(

2n
n

)

.
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151. [3] Let f(n) be the number of labelled ternary trees on n vertices such
that a left child or middle child has a larger label than its parent. Then
f(n) = Cnn!, where Cn denotes a Catalan number. For instance, when
n = 2 we are counting the four trees

1

2

1

2

1

2 1

2

152. [3+] Let λ = (λ1, λ2, . . . , λℓ) be a partition of n with λℓ > 0, and let
w be a permutation of 1, 2, . . . , n whose cycles have lengths λ1, . . . , λℓ.
Let f(λ) be the number of ways to write w = t1t2 · · · tk where the
ti’s are transpositions that generate all of Sn, and where k is minimal
with respect to the condition on the ti’s. (It is not hard to see that
k = n+ ℓ− 2.) Show that

f(λ) = (n + ℓ− 2)!nℓ−3

ℓ
∏

i=1

λλi+1
i

λi!
.

Note. Suppose that ti = (ai, bi). Let G be the graph on [n] with
edges aibi, 1 ≤ i ≤ k. Then the statement that the ti’s generate Sn is
equivalent to the statement that G is connected.
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5. Catalan Numbers

Let us define the nth Catalan number Cn by

Cn =
1

n + 1

(

2n

n

)

, n ≥ 0. (7)

Thus (C0, C1, . . . ) = (1, 1, 2, 5, 14, 42, 132, 429, . . .). There are a huge num-
ber of combinatorial interpretations of these numbers; 66 appear in Ex-
ercise 6.19 of R. Stanley, Enumerative Combinatorics, vol. 2 (available at
www-math.mit.edu/∼rstan/ec) and an addendum with many more inter-
pretations may be found at the same website. We give here a subset of these
interpretations that are the most fundamental or most interesting. Prob-
lem 164 is perhaps the easiest one to show bijectively is counted by (7). All
your other proofs should be bijections with previously shown “Catalan sets.”
Each interpretation is illustrated by the case n = 3, which hopefully will
make any undefined terms clear.

153. [2–] triangulations of a convex (n + 2)-gon into n triangles by n − 1
diagonals that do not intersect in their interiors

154. [1+] binary parenthesizations of a string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

155. [1+] binary trees with n vertices
r
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156. [1+] plane binary trees with 2n + 1 vertices (or n + 1 endpoints) (A
plane binary tree is a binary tree for which every vertex is either an
endpoint or has two children.)
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157. [2] plane trees with n+1 vertices (A plane tree is a rooted tree for which
the subtrees of every vertex are linearly ordered from left to right.)
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158. [1+] lattice paths from (0, 0) to (n, n) with steps (0, 1) or (1, 0), never
rising above the line y = x
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159. [1] Dyck paths from (0, 0) to (2n, 0), i.e., lattice paths with steps (1, 1)
and (1,−1) that never fall below the x-axis

160. [3–] (unordered) pairs of lattice paths with n + 1 steps each, starting
at (0, 0), using steps (1, 0) or (0, 1), ending at the same point, and only
intersecting at the beginning and end
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161. [2–] n nonintersecting chords joining 2n points on the circumference of
a circle
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162. [2] ways of drawing in the plane n+ 1 points lying on a horizontal line
L and n arcs connecting them such that (α) the arcs do not pass below
L, (β) the graph thus formed is a tree, (γ) no two arcs intersect in their
interiors (i.e., the arcs are noncrossing), and (δ) at every vertex, all the
arcs exit in the same direction (left or right)

163. [3–] ways of drawing in the plane n + 1 points lying on a horizontal
line L and n arcs connecting them such that (α) the arcs do not pass
below L, (β) the graph thus formed is a tree, (γ) no arc (including its
endpoints) lies strictly below another arc, and (δ) at every vertex, all
the arcs exit in the same direction (left or right)

164. [3–] sequences of n 1’s and n −1’s such that every partial sum is non-
negative (with −1 denoted simply as − below) (difficulty rating based
on showing bijectively that the number of such sequences is 1

n+1

(

2n
n

)

)

111−−− 11−1−− 11−−1− 1−11−− 1−1−1−

165. [1] sequences 1 ≤ a1 ≤ · · · ≤ an of integers with ai ≤ i

111 112 113 122 123

166. [2] sequences a1, a2, . . . , an of integers such that a1 = 0 and 0 ≤ ai+1 ≤
ai + 1

000 001 010 011 012

167. [1+] sequences a1, a2, . . . , an−1 of integers such that ai ≤ 1 and all
partial sums are nonnegative

0, 0 0, 1 1,−1 1, 0 1, 1

168. [2–] sequences a1, a2, . . . , an of integers such that ai ≥ −1, all partial
sums are nonnegative, and a1 + a2 + · · ·+ an = 0

0, 0, 0 0, 1,−1 1, 0,−1 1,−1, 0 2,−1,−1
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169. [2–] Sequences of n − 1 1’s and any number of −1’s such that every
partial sum is nonnegative

1, 1 1, 1,−1 1,−1, 1 1, 1,−1,−1 1,−1, 1,−1

170. [3–] Sequences a1a2 · · · an of nonnegative integers such that aj = #{i :
i < j, ai < aj} for 1 ≤ j ≤ n

000 002 010 011 012

171. [2+] Pairs (α, β) of compositions of n with the same number of parts,
such that α ≥ β (dominance order, i.e., α1 + · · · + αi ≥ β1 + · · · + βi

for all i)

(111, 111) (12, 12) (21, 21) (21, 12) (3, 3)

172. [2] permutations a1a2 · · · a2n of the multiset {12, 22, . . . , n2} such that:
(i) the first occurrences of 1, 2, . . . , n appear in increasing order, and
(ii) there is no subsequence of the form αβαβ

112233 112332 122331 123321 122133

173. [3–] permutations a1a2 · · · an of [n] with longest decreasing subsequence
of length at most two (i.e., there does not exist i < j < k, ai > aj > ak),
called 321-avoiding permutations

123 213 132 312 231

174. [2] permutations a1a2 · · · an of [n] for which there does not exist i <
j < k and aj < ak < ai (called 312-avoiding permutations)

123 132 213 231 321

175. [2] permutations w of [2n] with n cycles of length two, such that the
product (1, 2, . . . , 2n) · w has n+ 1 cycles

(1, 2, 3, 4, 5, 6)(1, 2)(3, 4)(5, 6) = (1)(2, 4, 6)(3)(5)

(1, 2, 3, 4, 5, 6)(1, 2)(3, 6)(4, 5) = (1)(2, 6)(3, 5)(4)

(1, 2, 3, 4, 5, 6)(1, 4)(2, 3)(5, 6) = (1, 3)(2)(4, 6)(5)

(1, 2, 3, 4, 5, 6)(1, 6)(2, 3)(4, 5) = (1, 3, 5)(2)(4)(6)

(1, 2, 3, 4, 5, 6)(1, 6)(2, 5)(3, 4) = (1, 5)(2, 4)(3)(6)
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176. [3–] pairs (u, v) of permutations of [n] such that u and v have a total
of n+ 1 cycles, and uv = (1, 2, . . . , n)

(1)(2)(3) · (1, 2, 3) (1, 2, 3) · (1)(2)(3) (1, 2)(3) · (1, 3)(2)
(1, 3)(2) · (1)(2, 3) (1)(2, 3) · (1, 2)(3)

177. [1+] noncrossing matchings of [2n], i.e., ways of connecting 2n points
in the plane lying on a horizontal line by n nonintersecting arcs, each
arc connecting two of the points and lying above the points

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

178. [2+] nonnesting matchings on [2n], i.e., ways of connecting 2n points in
the plane lying on a horizontal line by n arcs, each arc connecting two
of the points and lying above the points, such that no arc is contained
entirely below another

179. [2] noncrossing partitions of [n], i.e., partitions of [n] such that if a, c
appear in a block B and b, d appear in a block B′, where a < b < c < d,
then B = B′

123 12−3 13−2 23−1 1−2−3
(The unique partition of [4] that isn’t noncrossing is 13−24.)

180. [3–] noncrossing partitions of [2n + 1] into n + 1 blocks, such that no
block contains two consecutive integers

137−46−2−5 1357−2−4−6 157−24−3−6 17−246−3−5 17−26−35−4

181. [3–] nonnesting partitions of [n], i.e., partitions of [n] such that if a, e
appear in a block B and b, d appear in a different block B′ where
a < b < d < e, then there is a c ∈ B satisfying b < c < d

123 12−3 13−2 23−1 1−2−3
(The unique partition of [4] that isn’t nonnesting is 14−23.)
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182. [3–] nonisomorphic n-element posets (i.e., partially ordered sets) with
no induced subposet isomorphic to 2+2 or 3+1, where a+b denotes
the disjoint union of an a-element chain and a b-element chain
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183. [2+] relations R on [n] that are reflexive (iRi), symmetric (iRj ⇒ jRi),
and such that if 1 ≤ i < j < k ≤ n and iRk, then iRj and jRk (in the
example below we write ij for the pair (i, j), and we omit the pairs ii)

∅ {12, 21} {23, 32} {12, 21, 23, 32} {12, 21, 13, 31, 23, 32}

184. [2–] ways to stack coins in the plane, the bottom row consisting of n
consecutive coins

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏✒✑

✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏✒✑

✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏✒✑

✓✏
✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏✒✑

✓✏
✒✑
✓✏✒✑

✓✏

185. [3–] n-tuples (a1, a2, . . . , an) of integers ai ≥ 2 such that in the sequence
1a1a2 · · · an1, each ai divides the sum of its two neighbors

14321 13521 13231 12531 12341

186. [3] n-element subsets S of N× N such that if (i, j) ∈ S then i ≥ j and
there is a lattice path from (0, 0) to (i, j) with steps (0, 1), (1, 0), and
(1, 1), such that all vertices of L lie in S

{(0, 0), (1, 0), (2, 0)} {(0, 0), (1, 0), (1, 1)} {(0, 0), (1, 0), (2, 1)}

{(0, 0), (1, 1), (2, 1)} {(0, 0), (1, 1), (2, 2)}
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1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 2 1 5 1 2 3 1 3 2 1 5

2 5 1 4 4 1 5 2 2 5 1 4
3 2 3 3 3 2 3 3 3 2 3

1 5 2 2 5 1 4 4 1 5
2 3 1 3 2 1 5 1 2

1 1 1 1 1 1 1 1

Figure 1: The frieze pattern corresponding to the sequence (1, 3, 2, 1, 5, 1, 2, 3)

187. [3] positive integer sequences a1, a2, . . . , an+2 for which there exists an
integer array (called a frieze pattern, necessarily with n+ 1 rows)

1 1 1 · · · 1 1 1 · · · 1 1
a1 a2 a3 · · · an+2 a1 a2 · · · an−1

b1 b2 b3 · · · bn+2 b1 · · · bn−2
·

·

·
r1 r2 r3 · · · rn+2 r1

1 1 1 · · · 1
(8)

such that any four neighboring entries in the configuration
r
s t
u

sat-

isfy st = ru + 1 (an example of such an array for (a1, . . . , a8) =
(1, 3, 2, 1, 5, 1, 2, 3) (necessarily unique) is given by Figure 1):

12213 22131 21312 13122 31221

188. [3] n-tuples (a1, . . . an) of positive integers such that the tridiagonal
matrix

























a1 1 0 0 · · · 0 0
1 a2 1 0 · · · 0 0
0 1 a3 1 · · · 0 0

·
·
·

0 0 0 0 · · · an−1 1
0 0 0 0 · · · 1 an
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is positive definite with determinant one

Note. A real matrix A is positive definite if it is symmetric and every
eigenvalue is positive; equivalently, A is symmetric and every leading
principal minor is positive. A leading principal minor is the determi-
nant of a square submatrix that fits into the upper left-hand corner of
A.

131 122 221 213 312

189. [2+] Vertices of height n − 1 of the tree T defined by the property
that the root has degree 2, and if the vertex x has degree k, then the
children of x have degrees 2, 3, . . . , k + 1

190. [3–] Subsets S of N such that 0 ∈ S and such that if i ∈ S then
i+ n, i+ n + 1 ∈ S

N, N− {1}, N− {2}, N− {1, 2}, N− {1, 2, 5}

191. [2+] Ways to write (1, 1, . . . , 1,−n) ∈ Zn+1 as a sum of vectors ei −
ei+1 and ej − en+1, without regard to order, where ek is the kth unit
coordinate vector in Zn+1:

(1,−1, 0, 0) + 2(0, 1,−1, 0) + 3(0, 0, 1,−1)

(1, 0, 0,−1) + (0, 1,−1, 0) + 2(0, 0, 1,−1)

(1,−1, 0, 0) + (0, 1,−1, 0) + (0, 1, 0,−1) + 2(0, 0, 1,−1)

(1,−1, 0, 0) + 2(0, 1, 0,−1) + (0, 0, 1,−1)

(1, 0, 0,−1) + (0, 1, 0,−1) + (0, 0, 1,−1)

192. [1+] tilings of the staircase shape (n, n − 1, . . . , 1) with n rectangles
such that each rectangle contains a square at the end of some row
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193. [2+] n× n N-matrices M = (mij) where mij = 0 unless i = n or i = j
or i = j − 1, with row and column sum vector (1, 2, . . . , n)





1 0 0
0 2 0
0 0 3









0 1 0
0 1 1
1 0 2









1 0 0
0 1 1
0 1 2









1 0 0
0 0 2
0 2 1









0 1 0
0 0 2
1 1 1





This concludes the list of objects counted by Catalan numbers. A few more
problems related to Catalan numbers are the following.

194. [*] We have
n
∑

k=0

C2kC2(n−k) = 4nCn.

195. [*] An intriguing variation of Problem 193 above is the following. A
bijective proof would be of great interest. Let g(n) denote the number
of n × n N-matrices M = (mij) where mij = 0 if i > j + 1, with row
and column sum vector

(

1, 3, 6, . . . ,
(

n+1
2

))

. For instance, when n = 2
there are the two matrices

[

1 0
0 3

] [

0 1
1 2

]

.

Then g(n) = C1C2 · · ·Cn.

196. [2+] (compare with Problem 191) Let f(n) be the number of ways to
write the vector

(

1, 2, 3, . . . , n,−
(

n + 1

2

))

∈ Zn+1

as a sum of vectors ei − ej, 1 ≤ i < j ≤ n+1, without regard to order,
where ek is the kth unit coordinate vector in Zn+1. For instance, when
n = 2 there are the two ways (1, 0,−1) + 2(0, 1,−1) = (1,−1, 0) +
3(0, 1,−1). Assuming Problem 195, show that f(n) = C1C2 · · ·Cn.
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197. [3–] The Narayana numbers N(n, k) are defined by

N(n, k) =
1

n

(

n

k

)(

n

k − 1

)

.

Let Xnk be the set of all sequences w = w1w2 · · ·w2n of n 1’s and n
−1’s with all partial sums nonnegative, such that

k = #{j : wj = 1, wj+1 = −1}.

Show that N(n, k) = #Xnk. Hence by Problem 164, there follows

n
∑

k=1

N(n, k) = Cn.

One therefore says that the Narayana numbers are a refinement of
the Catalan numbers. There are many other interesting refinements of
Catalan numbers, but we won’t consider them here.

198. [*] Let f(n, k) be the number of ways to draw k(n− 2k− 1) edges (the
maximum possible) between vertices of a convex n-gon P so that (a)
the vertices of each edge are at distance at least k+1 apart (where the
distance between vertices u and v is the minimum number of steps from
u to v along the edges of P ), and (b) there do not exist k + 1 edges
such that any two of them intersect in their interiors. For instance,
f(n+2, 1) = Cn by Problem 153. Then f(n, k) is equal to the number
of k-tuples (D1, . . . , Dk) of Dyck paths (as defined in Problem 159) from
(0, 0) to (2n− 4k, 0) such that Di never rises above Di−1 for 1 < i ≤ k.

Note. It can be shown that

f(n, k) = det[Cn−i−j]
k
i,j=1

=
∏

1≤i<j≤n−2k

2k + i+ j − 1

i+ j − 1
.

199. [*] An Eulerian tour in a directed graph D is a permutation e1e2 · · · eq
of the edges of D such that the final vertex (head) of ei is the intial
vertex (tail) of ei+1, 1 ≤ i ≤ q, where the subscripts are taken modulo
q. Thus any cyclic shift eiei+1 · · · eqe1 · · · ei−1 of an Eulerian tour is
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also an Eulerian tour. For n ≥ 2, the number of loopless (i.e., no edge
from a vertex to itself) digraphs on the vertex set [n] with no isolated
vertices and with exactly one Eulerian tour (up to cyclic shift) is given
by 1

2
(n− 1)!Cn = (2n− 1)n−2.
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Bonus Chess Problem
(related to Problem 164)

R. Stanley (after E. Bonsdorff and K. Väisänen)

2003

kZ Z Z Z

Z Z Z Z

pOPo O Z

o OpZ Z

Z J Z o

Z O O Zp

Z Z Z o

Z Z Z mr

Serieshelpmate in 34: how many solutions?
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6. Young Tableaux

Let λ = (λ1, λ2, . . . ) ⊢ n. A standard Young tableau (SYT) of shape λ is
a left-justified array of the integers 1, 2, . . . , n, each occurring exactly once,
with λi entries in the ith row, such that every row and column is increasing.
An example of an SYT of shape (4, 4, 2) is given by

1 2 3 6
4 5 8 10
7 9

.

We write fλ for the number of SYT of shape λ.

Let u be a square of the Young diagram of λ, denoted u ∈ λ. The hook length
h(u) of u is the number of squares directly to the right or directly below u,
counting u itself once. If u = (i, j) (i.e., u is in the ith row and jth column
of (the Young diagram of) λ), then h(u) = λi + λ′

j − i − j + 1. The hook
lengths of (4, 4, 2) are given by

2 1

5 4 2 1

2356

The difficulty ratings in this section assume knowledge of the definition of
the RSK algorithm but none of its deeper properties.

200. [1] The number of SYT of shape (n, n) is the Catalan number Cn =
1

n+1

(

2n
n

)

.

201. [3] The number of SYT of shape λ is given by

fλ =
n!

∏

u∈λ h(u)
.

This is the famous hook-length formula of Frame, Robinson, and Thrall
(1954). It was only given a “satisfactory” bijective proof in 1997.
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202. generalize p(0) + · · ·+ p(n)

203. [2–] Show that
∑

λ⊢n(f
λ)2 = n!. In other words, the number of pairs

(P,Q) of SYT of the same shape and with n entries is n!.

204. [3] The total number of SYT with n entries is equal to the number of
involutions w ∈ Sn, i.e., w

2 = 1.

205. [3] The number of SYT with 2n entries and all rows of even length is
1 · 3 · 5 · · · (2n− 1).

206. [2] The number of SYT with n entries and at most two rows is
(

n
⌊n/2⌋

)

.

207. [3] The number of SYT with n entries and at most three rows is equal

to
∑⌊n/2⌋

i=0

(

n
2i

)

Ci, where Ci denotes a Catalan number.

208. [3] The number of SYT with n entries and at most four rows is equal
to C⌊(n+1)/2⌋C⌈(n+1)/2⌉.

Note. There is a similar, though somewhat more complicated, formula
for the case of five rows. For six and more rows, no “reasonable” formula
is known.

209. [2] The number of pairs (P,Q) of SYT of the same shape with n entries
each and at most two rows is the Catalan number Cn.

210. [3] The number of pairs (P,Q) of SYT of the same shape with n entries
each and at most three rows is given by

1

(n + 1)2(n+ 2)

n
∑

k=0

(

2k

k

)(

n+ 1

k + 1

)(

n + 2

k + 1

)

.

211. [2] Let Wi(n) be the number of ways to draw i diagonals in a convex n-
gon such that no two diagonals intersect in their interiors. Then Wi(n)
is the number of standard Young tableaux of shape 〈(i + 1)2, 1n−i−3〉
(i.e., two parts equal to i+1 and n− i−3 parts equal to 1; when i = 0
there are n− 1 parts equal to 1).

Note. Given the result of this problem, it follows immediately from
the hook-length formula (Problem 201) that

Wi(n) =
1

n + i

(

n + i

i+ 1

)(

n− 3

i

)

,
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a result originally stated by Kirkman (1857) and Prouhet (1866), with
the first complete proof by Cayley (1890-91).

212. [2+] Let T be an SYT of shape λ ⊢ n. For each entry of T not in
the first column, let f(i) be the number of entries j in the column
immediately to the left of i and in a row not above i, for which j < i.
Define f(T ) =

∏

i f(i), where i ranges over all entries of T not in the
first column. For instance, if

T =
1 3 6 8
2 4 7
5

,

then f(3) = 2, f(4) = 1, f(6) = 2, f(7) = 1, f(8) = 2, and f(T ) = 8.
Then

∑

sh(T )=λ f(T ), where the sum ranges over all SYT T of shape λ,

is equal to the number of partitions of the set [n] of type λ (i.e., with
block sizes λ1, λ2, . . . ).

213. [3+] Let λ ⊢ n. An assignment u 7→ au of the distinct integers
1, 2, . . . , n to the squares u ∈ λ is a balanced tableau of shape λ if
for each u ∈ λ the number au is the kth largest number in the hook
of u, where k is the leg-length (number of squares directly below u,
counting u itself) of the hook of u. For instance, the balanced tableaux
of shape (3, 2) are

4 2 1 4 2 3 4 2 5 4 3 5 3 2 1
5 3 5 1 3 1 2 1 5 4 .

Let bλ be the number of balanced tableaux of shape λ. Then bλ = fλ,
the number of SYT of shape λ.

Note. For such a simply stated problem, this seems remarkably diffi-
cult to prove.

214. [2] Let f(n) be the number of ways to write the permutation n, n −
1, n−2, . . . , 1 ∈ Sn as a product of

(

n
2

)

(the minimum possible) adjacent
transpositions si = (i, i + 1), 1 ≤ i ≤ n − 1. For instance, f(3) = 2,
corresponding to s1s2s1 and s2s1s2. Then f(n) is equal to the number
of balanced tableaux (as defined in the previous problem) of shape
(n− 1, n− 2, . . . , 1).
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Note. It thus follows from the previous problem that f(n) = f (n−1,n−2,...,1).
Any bijective proof of this difficult result would be an impressive achieve-
ment.

215. [3+] Let w0 = n, n− 1, n− 2, . . . , 1 ∈ Sn and p =
(

n
2

)

. Define

Rn = {(a1, . . . , ap) ∈ [n− 1]p : w0 = sa1sa2 · · · sap},
where si = (i, i + 1) as in the previous problem. For example, R3 =
{(1, 2, 1), (2, 1, 2)}. Then

∑

(a1,...,ap)∈Rn

a1a2 · · ·ap = p!. (9)

For instance, when n = 3 we get 1 · 2 · 1 + 2 · 1 · 2 = 3!.

Update (May 19, 2015). The difficulty rating has been changed from
[*] to [3+] due to the paper by Benjamin Young at arxiv.org/abs/1409.7714.

216. [*] Let n, p, and w0 be as is the previous problem. Let Tn be the set of
all sequences ((i1, j1), . . . , (ip, jp)) such that

• 1 ≤ ik < jk ≤ n for 1 ≤ k ≤ p

• w0 = (i1, j1)(i2, j2) · · · (ip, jp), where (ik, jk) denotes the transpo-
sition exchanging ik and jk

• Let vk = (i1, j1)(i2, j2) · · · (ik, jk). Then for all 1 ≤ k < p, we have
inv(vk+1) = 1 + inv(vk), where inv is defined in Problem 45.

Then
∑

((i1,j1),...,(ip,jp))∈Tn

(j1 − i1)(j2 − i2) · · · (jp − ip) = p!. (10)

For instance, T3 = {((1, 2), (2, 3), (1, 2)), ((1, 2), (1, 3), (2, 3)),
((2, 3), (1, 2), (2, 3)), ((2, 3), (1, 3)(1, 2))}, giving 1 · 1 · 1+ 1 · 2 · 1+ 1 · 1 ·
1 + 1 · 2 · 1 = 3!.

Note. Note the similarity with the previous problem. Is it just a
coincidence that the two sums (9) and (10) are equal?

217. [*] Continuing the notation of Problem 215, if α = (a1, a2, . . . , ap) ∈ Rn,
then define

f(α) = #{i : 1 ≤ i ≤ p− 2, ai = ai+2}.
Then

∑

α∈Rn
f(α) = #Rn (= f (n−1,n−2,...,1) by Problem 214).
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218. [3–] An oscillating tableau of length 2n and shape ∅ is a sequence

(λ0, λ1, . . . , λ2n),

where each λi is a partition, λ0 = λ2n = ∅, and each λi is obtained
from λi−1 by either adding or removing a square from (the diagram
of) λ. For instance, when n = 2 we get the three oscillating tableaux
(∅, 1, ∅, 1, ∅), (∅, 1, 2, 1, ∅), and (∅, 1, 11, 1, ∅). The number of oscillating
tableaux of length 2n and shape ∅ is equal to 1 · 3 · 5 · · · (2n− 1) (the
number of partitions of [2n] into n 2-element blocks).

219. [*] The major index maj(T ) of an SYT is defined to be the sum of all
entries i of T for which i+ 1 appears in a lower row than i. Fix n ∈ P

and λ ⊢ n, and let m ∈ Z. Then the number of SYT T of shape λ
satisfying maj(T ) ≡ m (mod n) depends only on λ and gcd(m,n).

220. [3–] Let µ be a partition, and let Aµ be the infinite shape consisting of
the quadrant Q = {(i, j) : i < 0, j > 0} with the shape µ removed
from the lower right-hand corner. Thus every square of Aµ has a finite
hook and hence a hook length. For instance, when µ = (3, 1) we get
the diagram

3

6

8

9

10

2

5

7

8

9

1

4

6

7

8

2

4

5

6

1

3

4

5

1

2

3

···

···

Then the multiset of hook lengths of Aµ is equal to the union of the
multiset of hook lengths of Q (explicitly given by {11, 22, 33, . . . }) and
the multiset of hook lengths of µ.
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221. [3–] A plane partition of n is an array π = (πij)i,j≥1 of nonnegative inte-
gers whose rows and columns are weakly decreasing and whose entries
sum to n. When writing π, the entries equal to 0 are often omitted.
Thus the plane partitions of the integers 0 ≤ n ≤ 3 are given by

∅ 1 2 11 1 3 21 111 11 2 1
1 1 1 1

1.

If π is a plane partition of n, then we write |π| = n. Let ars(n) denote
the number of plane partitions of n with at most r rows and at most s
columns (of nonzero entries). Then

∑

n≥0

ars(n)x
n =

r
∏

i=1

s
∏

j=1

(1− xi+j−1)−1. (11)

In particular, let a(n) denote the total number of plane partitions of n.
If we let r, s → ∞ in (11) then it’s not hard to see that we get

∑

n≥0

a(n)xn =
∏

i≥1

(1− xi)−i,

a famous formula of MacMahon.

Hint. Use the RSK algorithm.

Note. At this point it’s natural to consider three-dimensional (and
higher) partitions, but almost nothing is known about them, and a
“reasonable” enumeration of them is believed to be hopeless.

222. [3+] Fix r, s, t > 0. Let P(r, s, t) denote the set of plane partitions with
at most r rows, at most s columns, and with largest part at most t.
Then

∑

π∈P(r,s,t)

x|π| =
r
∏

i=1

s
∏

j=1

t
∏

k=1

1− xi+j+k−1

1− xi+j+k−2
. (12)

Note that Problem 221 is the case t → ∞.

223. [3] A plane partition π = (πij) is symmetric if πij = πji for all i, j. Let
b(n) denote the number of symmetric plane partitions of n. Then

∑

n≥0

b(n)xn =
∏

i≥1

1

(1− x2i−1) (1− x2i)⌊i/2⌋
.
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224. [2] Let frs(n) denote the number of plane partitions π = (πij) with at
most r rows, at most s columns, and with trace tr(π) := π11+π22+· · · =
n. Then

frs(n) =

(

rs+ n− 1

rs− 1

)

.

225. [2] A monotone triangle of length n is a triangular array of integers
whose first row is 1, 2, . . . , n, every row is strictly increasing, and each
entry is (weakly) between its two neighbors above. This somewhat
vague definition should be made clear by the following example:

1 2 3 4 5 6
1 2 3 4 6

1 3 4 5
2 4 5

2 5
3

.

There are for instance seven monotone triangles of length 3, given by

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 1 2 1 3 1 3 1 3 2 3 2 3
1 2 1 2 3 2 3

.

An alternating sign matrix is a square matrix with entries 0,±1, such
that the nonzero entries in every row and column alternate 1,−1, 1,−1, . . . ,
1,−1, 1. (Thus every row and column sum is 1.) An example is

















0 0 0 1 0 0
0 0 1 0 0 0
0 1 −1 0 1 0
1 −1 1 −1 0 1
0 0 0 1 0 0
0 1 0 0 0 0

















.

The number of monotone triangles of length n is equal to the number
of n× n alternating sign matrices.

226. [*] An n × n totally symmetric self-complementary (TSSC) plane par-
tition is a plane partition π = (πij)

n
i,j=1 satisfying: (i) π is symmetric
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(as defined in Problem 223), (ii) every row (and hence every column
by symmetry) of π is a self-conjugate partition, and (iii) π is invariant
under the operation of replacing each entry i with n − i and rotating
180◦. It is easy to see that n must be even. The 4 × 4 TSSC plane
partitions are given by:









4 4 2 2
4 4 2 2
2 2 0 0
2 2 0 0

















4 4 3 2
4 3 2 1
3 2 1 0
2 1 0 0









.

A descending plane partition is an array of positive integers satisfying:
(i) Each row after the first contains fewer elements than the row above,
(ii) each row is indented one space to the right from the row above,
(iii) the entries weakly decrease in each row, (iv) the entries strictly
decrease in each column, (v) the first entry in each row (except the
first) does not exceed the number of entries in the preceding row, and
(vi) the first entry in each row is greater than the number of entries in
its own row. The descending partitions with largest part at most three
are given by

∅ 2 3 3 1 3 2 3 3 3 3
2
.

The following four numbers are all equal:

(a)
n−1
∏

i=0

(3i+ 1)!

(n + i)!

(b) the number of monotone triangles of length n

(c) the number of 2n× 2n TSSC plane partitions

(d) the number of descending plane partitions with largest part at
most n.

Note. There are
(

4
2

)

= 6 pairs of equal numbers above. None of
these six pairs is known to be equal by a bijective proof! (All are
known to be equal by complicated indirect arguments.) This is one
of the most intriguing open problems in the area of bijective proofs.
There are certain refinements of the numbers (a)–(d) which may be
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useful in finding bijections. For instance, it appears that the number
of descending plane partitions with largest part at most n and with
exactly k parts equal to n is equal to the number of monotone triangles
of length n and bottom element k + 1. Similarly, it seems that the
number of descending plane partitions with largest part at most n and
with exactly k parts is equal to the number of monotone triangles of
length n with exactly k entries which are greater than the entry to the
upper left.

227. [3] If A is an alternating sign matrix, let s(A) denote the number of
−1’s in A. Then

∑

A

2s(A) = 2(
n

2),

where A ranges over all n× n alternating sign matrices.

228. [3] Let w = a1 · · · an ∈ Sn. An increasing subsequence of w of length
j is a subsequence ai1ai2 · · · aij of w (so i1 < i2 < · · · < ij) such that
ai1 < ai2 < · · · < aij . Decreasing subsequence is defined analogously.
Let is(w) (respectively, ds(w)) denote the length of the longest increas-
ing (respectively, decreasing) subsequence of w. A famous result of
Erdős and Szekeres, given an equally famous elegant pigeonhole proof
by Seidenberg, states that if n = pq + 1, then either is(w) > p or
ds(w) > q. The number A(p, q) of w ∈ Spq satisfying is(w) = p and
ds(w) = q is given by (fλ)2, where λ is the partition with p parts
equal to q (i.e., the diagram of λ is a p × q rectangle). Note that the
hook-length formula (Problem 201) then gives an explicit formula for
A(p, q).

229. [3] If T is an SYT with n entries, then let w(T ) be the permutation of
1, 2, . . . , n obtained by reading the entries of T in the usual (English)
reading order. For instance, if T is given by

1 3 4 9
2 6 8
5 7

,

then w(T ) = 134926857 ∈ S9. Define

sgn(T ) =

{

1, if w(T ) is an even permutation
−1, if w(T ) is an odd permutation.
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Then
∑

T

sgn(T ) = 2⌊n/2⌋,

summed over all SYT with n entries.
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Bonus Chess Problem
(related to Problem 201)

K. Väisänen

1985

Z Z Z Z

Z Z Z Zp

PZ o Z o

ZkZ O Zp

RZ ZKZ o

O Z Z Zp

Z Z Z Z

Z Z Z Z

Serieshelpmate in 25: how many solutions?
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7. Lattice Paths and Tilings

Let S be a subset of Zk. A lattice path of length ℓ from α ∈ Zk to β ∈ Zk

with steps S may be regarded as a sequence

α = v0, v1, . . . , vℓ = β

such that each vi − vi−1 ∈ S. A number of lattice path problems have been
given already: Problems 8, 158, 159, 160, and 186.

230. [2+] The number of lattice paths of length 2n from (0, 0) to (0, 0) with

steps (0,±1) and (±1, 0) is
(

2n
n

)2
.

231. [1] Let f(m,n) denote the number of lattice paths from (0, 0) to (m,n)
with steps (0, 1), (1, 0), (1, 1). Then

f(m+ 1, n+ 1) = f(m,n+ 1) + f(m+ 1, n) + f(m,n), m, n ≥ 0.

232. [3] Continuing the previous problem, we have

(n+2)f(n+2, n+2) = 3(2n+3)f(n+1, n+1)− (n+1)f(n, n), n ≥ 0.

233. [2] Let 1 ≤ n < m. The number of lattice paths from (0, 0) to (m,n)
with steps (1, 0) and (0, 1) that intersect the line y = x only at (0, 0)
is given by m−n

m+n

(

m+n
m

)

.

Note. There is an exceptionally elegant proof based on the formula

m− n

m+ n

(

m+ n

m

)

=

(

m+ n− 1

n

)

−
(

m+ n− 1

m

)

.

234. [2+] Let S = {(a, b) : a = 1, 2, . . . , n, b = 1, 2, 3}. A rook tour
of S is a polygonal path made up of line segments connecting points
p1, p2, . . . , p3n in sequence such that

(i) pi ∈ S,

(ii) pi and pi+1 are a unit distance apart, for 1 ≤ i < 3n,
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(iii) for each p ∈ S there is a unique i such that pi = p.

The number of rook tours that begin at (1, 1) and end at (n, 1) is 2n−2.
(An example of such a rook tour for n = 5 is depicted below.)

235. [*] Let f(m,n) denote the number of triples (α, β, γ), where α, β, γ
are lattice paths from (0, 0) to (m,n) with steps (1, 0) and (0, 1), and
where β and γ never rise above α. For instance, let m = n = 1. If α is
the path (0, 0), (0, 1), (1, 1), then there are 22 choices for (β, γ), while
if α is the path (0, 0), (1, 0), (1, 1) there are 12 choices for (β, γ). Hence
f(1, 1) = 5. In general,

f(m,n) =
(m+ n + 1)! (2m+ 2n+ 1)!

(m+ 1)! (2m+ 1)! (n+ 1)! (2n+ 1)!
.

236. Let ai,j(n) (respectively, āi,j(n)) denote the number of lattice paths
of length n from (0, 0) to (i, j), with steps (±1, 0) and (0,±1), never
touching a point (−k, 0) with k ≥ 0 (respectively, k > 0) once leaving
the starting point. Then:

(a) [?] a0,1(2n+ 1) = 4nCn

(b) [3] a1,0(2n+ 1) = C2n+1

(c) [?] a−1,1(2n) =
1

2
C2n

(d) [?] a1,1(2n) = 4n−1Cn +
1

2
C2n

(e) [?] ā0,0(2n) = 2 · 4nCn − C2n+1.

237. Let bi,j(n) (respectively, b̄i,j(n)) denote the number of walks in n steps
from (0, 0) to (i, j), with steps (±1,±1), never touching a point (−k, 0)
with k ≥ 0 (respectively, k > 0) once leaving the starting point. Then:

(a) [3–] b1,1(2n+ 1) = C2n+1
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(b) [?] b−1,1(2n+ 1) = 2 · 4nCn − C2n+1

(c) [3–] b0,2(2n) = C2n

(d) [?] b2i,0(2n) =
i

n

(

2i

i

)(

2n

n− i

)

4n−i, i ≥ 1. (The case i = 1 has a

known bijective proof.)

(e) [?] b̄0,0(2n) = 4nCn.

238. [*] The number of lattice paths with steps (−1, 0), (0,−1), and (1, 1)
from (0, 0) to (i, 0) of length 3n+2i, and staying within the first quad-
rant (i.e., any point (a, b) along the path satisfies a, b ≥ 0) is given
by

4n(2i+ 1)

(n+ i+ 1)(2n+ 2i+ 1)

(

2i

i

)(

3n+ 2i

n

)

.

A (difficult) bijective proof is known for the case i = 0.

239. [3] Let f(n) be the number of n-elements subsets S of N× N with the
following properties.

(a) For some k ≥ 0, {(0, k), (1, k − 1), (2, k − 2), . . . , (k, 0)} ⊆ S.

(b) Let k be as in (a). Then (i, j) ∈ S ⇒ i+ j ≥ k.

(c) Let k be as in (a). For any point (i, j) ∈ S, there is a lattice path
L from some point (a, b) with a + b = k to (i, j) with steps (1, 0)
and (0, 1), such that all vertices of L lie in S.

Then f(n) = 3n. (Problem 186 is similar.)

240. [*] Let fk(m,n) denote the number of ways a rook can move from a
square S on an m× n chessboard back to S in k moves. Show that

fk(m,n) =

(m+ n− 2)k + (n− 1)(m− 2)k + (m− 1)(n− 2)k + (m− 1)(n− 1)(−2)k

mn
.

241. [3–] In this problem all lattice paths have steps (1, 0) and (0,−1). An n-
path is an n-tuple L = (L1, . . . , Ln) of lattice paths. Let α, β, γ, δ ∈ Nn.
We say that L is of type (α, β, γ, δ) if Li goes from (βi, γi) to (αi, δi).
(Clearly then αi ≥ βi and γi ≥ δi.) L is intersecting if for some i 6= j, Li
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and Lj have a point in common; otherwise L is nonintersecting. The
diagram below illustrates a nonintersecting 3-path of type ((3, 4, 6),
(0, 1, 1), (2, 4, 6), (0, 0, 1)).

(0,0)

Let B(α, β, γ, δ) be the number of nonintersecting n-paths of type
(α, β, γ, δ). Suppose that for any nonidentity permutation π of 1, 2, . . . , n,
there does not exist a nonintersecting n-path whose paths go from
(βi, γi) to (απ(i), δπ(i)). (This is the case e.g. if α1 < · · · < αn, β1 ≤
· · · ≤ βn, γ1 < · · · < γn, and δ1 ≤ · · · ≤ δn.) Then

B(α, β, γ, δ) = det

[(

αj − βi + δj − γi
αj − βi

)]n

i,j=1

.

242. [1+] The number of ways to tile a 2 × n board with n dominos (two
edgewise adjacent squares, oriented either horizontally or vertically) is
the Fibonacci number Fn+1.

243. [3] Given a finite sequence α = (2a1, 2a2, . . . , 2ak) of positive even in-
tegers, let B(α) be the array of squares (or “board”) consisting of 2ai
squares in the ith row (read top to bottom), with the centers of the
rows lying on a vertical line. The Aztec diamond of order n is the board

AZn = B(2, 4, 6, . . . , 2n− 4, 2n− 2, 2n, 2n, 2n− 2, 2n− 4, . . . , 6, 4, 2).
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For instance, AZ3 looks like

The number of domino tilings of AZ(n) is 2(
n+1

2 ).

244. [3–] The augmented Aztec diamond of order n is the board

AAZn = B(2, 4, 6, . . . , 2n−4, 2n−2, 2n, 2n, 2n, 2n−2, 2n−4, . . . , 6, 4, 2).

In other words, AAZn is obtained from AZn by adding a new row of
length 2n in the middle. The number of domino tilings of AAZn is
equal to the number f(n) of lattice paths with steps (1, 0), (0, 1), and
(1, 1) from (0, 0) to (n, n), as defined in Problem 230.

245. [3–] The half Aztec diamond of order n is the board

HAZn = B(2, 4, 6, . . . , 2n, 2n).

The number of domino tilings of HAZn is the number of lattice paths
with steps (1, 0), (0, 1), and (1, 1) from (0, 0) to (n, n) that never rise
above the line y = x.

246. [2+] Let r, s, t ∈ P. The number of tilings of a centrally-symmetric
hexagon with side lengths r, s, t, r, s, t by rhombi with side lengths one
is equal to the number of plane partitions with at most r rows, at
most s columns, and with largest part at most t (given explicitly by
equation (12)). Figure 2 shows an example with (r, s, t) = (2, 3, 4).

Hint. Stare at Figure 2.
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Figure 2: A centrally-symmetric hexagon tiled by rhombi

247. [*] The number N(m,n) of domino tilings of a 2m× 2n chessboard is
given by

N(m,n) = 4mn
m
∏

j=1

n
∏

k=1

(

cos2
jπ

2m+ 1
+ cos2

kπ

2n + 1

)

.

Note. A combinatorial proof of this famous formula of Kasteleyn
would consist of something like expanding the product, replacing the
cosines with their expressions in terms of complex exponentials, find-
ing a one-to-one correspondence between the chessboard tilings being
counted and certain terms equal to 1 of the expanded product, and
showing that the remaining terms all cancel out.

248. [3–] A snake on the m × n chessboard is a nonempty subset S of the
squares of the board with the following property: Start at one of the
squares and continue walking one step up or to the right, stopping at
any time. The squares visited are the squares of the snake. Here is an
example of the 8× 8 chessboard covered with disjoint snakes.
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The total number of ways to cover an m × n chessboard (and many
other nonrectangular boards as well, such as the Young diagram of a
partition) with disjoint snakes is a product of Fibonacci numbers.

249. [3] The Somos-4 sequence a0, a1, . . . is defined by

anan+4 = an+1an+3 + a2n+2, n ≥ 0, (13)

with the initial conditions a0 = a1 = a2 = a3 = 1. Show that each
an is an integer by finding a combinatorial interpretation of an and
verifying combinatorially that (13) holds. The known combinatorial
interpretation of an is as the number of matchings (vertex-disjoint sets
of edges covering all the vertices) of certain graphs Gn.

Note. A similar interpretation is known for the terms of the Somos-5
sequence, defined by

anan+5 = an+1an+4 + an+2an+3, n ≥ 0,

with a0 = a1 = a2 = a3 = a4 = 1. It is known the terms of the Somos-
6 and Somos-7 sequences are integers, but no combinatorial proof (or
simple proof in general) is known. These sequences are defined by

anan+6 = an+1an+5 + an+2an+4 + a2n+3, n ≥ 0,
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with a0 = · · · = a5 = 1, and

anan+7 = an+1an+6 + an+2an+5 + an+3an+4, n ≥ 0,

with a0 = · · · = a6 = 1. By now it should be obvious what the definition
of the Somos-k sequence is for any k ≥ 2. Somewhat surprisingly, the
terms of the Somos-8 sequence (and presumably Somos-k for all k > 8,
though I’m not sure whether this is known) are not all integers; the
first noninteger for Somos-8 is a17 = 420514/7.
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Bonus Chess Problem
(related to Problem 235)

(C) R. Stanley, 3rd Prize

E. Bonsdorff 80th birthday tourney, 2002

Z Z Z Z

Z Z Z Z

ZkO Z Z

ZpOpZ Z

ZPZPZ Z

Z ZPZPZN

Z ZPZPo

Z J ZBZ

Serieshelpmate in 14: how many solutions?
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CHRONOLOGY OF NEW PROBLEMS (beginning 9/8/08)

151. September 8, 2008

91. September 11, 2008

58. August 18, 2009

59. August 18, 2009
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