The turning point test for residuals with equally spaced design points
The classical "simple linear regression model" for y-on- x regression is to assume that x_{1}, \ldots, x_{n} are non-random "design points," and

$$
Y_{i}=a+b x_{i}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where ε_{i} are i.i.d. $N\left(0, \sigma^{2}\right)$ for some unknown $\sigma>0$. Doing the regression we get estimates \widehat{a}, \widehat{b} of a and b and thus we get observed residuals defined by

$$
\widehat{\varepsilon}_{i}=Y_{i}-\widehat{a}-\widehat{b} x_{i}, i=1, \ldots, n
$$

Assume $n \geq 3$. For $i=2, \ldots, n-1$, the residuals are said to have a turning point at i if either $\widehat{\varepsilon}_{i-1}<\widehat{\varepsilon}_{i}>\widehat{\varepsilon}_{i+1}$ (a local maximum at i) or $\widehat{\varepsilon}_{i-1}>\widehat{\varepsilon}_{i}<\widehat{\varepsilon}_{i+1}$ (a local minimum at i). Let \widehat{T}_{n} be the observed number of turning points. There must be at least one, since $\widehat{\varepsilon}_{i}$ cannot be either monotone increasing or decreasing, if \widehat{b} is computed correctly. So $1 \leq \widehat{T}_{n} \leq n-2$.
The distribution of \widehat{T}_{n} when the model is true depends on the design points. To get a unique distribution it's convenient to assume that the x_{i} are equally spaced: for some $h>0, x_{i}-x_{i-1}=h$ for $i=2, \ldots, n$.

In this handout, we're concerned with rejecting the simple linear regression hypothesis H_{0} if \widehat{T}_{n} is too small, and similarly also for quadratic regression.

The following tables are excerpted from the 2010 Ph. D. thesis of Xia Hua, "Testing regression models with residuals as data," available in MIT's DSpace. (The tables themselves are for 2 -sided tests, allowing rejection if \widehat{T}_{n} is too large.) For $n \leq 10$, Table 1 shows that H_{0} can be rejected for $n=7$ at the .05 level, and for $n=8$ or 9 at the .01 level, if $\widehat{T}_{n}=1$; and for $n=9$ at the .05 level, or $n=10$ at the .01 level, if $\widehat{T}_{n} \leq 2$.

Quoting from the thesis:
For the distribution of \hat{T}_{n} under the null hypothesis, critical regions do not exist at the 0.05 or 0.01 levels for $n \leq 5$. The following tables give critical values of \widehat{T}_{n} for $6 \leq n \leq 10$ and critical regions for tests at the 0.05 and 0.01 levels.

Table 1. Critical Values for \widehat{T}_{n} of Simple Linear Regression at 0.05 and 0.01 Levels

n	$P_{0}\left(\widehat{T}_{n} \leq 1\right)$	$P_{0}\left(\widehat{T}_{n} \leq 2\right)$	$P_{0}\left(\widehat{T}_{n} \leq 3\right)$	$P_{0}\left(\widehat{T}_{n}=n-2\right)$	$\alpha=0.05$	$\alpha=0.01$
6	0.0705	0.3791	0.8180	0.1820	$\widehat{N A}^{2}$	NA
7	0.0200	0.1706	0.5410	0.1154	$\widehat{T}_{n} \leq 1$	NA
8	0.0049	0.0658	0.2988	0.0719	$\widehat{T}_{n} \leq 1$	$\widehat{T}_{n} \leq 1$
$9^{* *}$	0.0011	0.0223	0.1421	0.0456	$\widehat{T}_{n} \leq 2$	$\widehat{T}_{n} \leq 1$
10	0.0002	0.0067	0.0595	0.0287	$\widehat{T}_{n} \leq 2$ or $\widehat{T}_{n}=8^{*}$	$\widehat{T}_{n} \leq 2$
${ }^{*} P_{0}\left(\widehat{T}_{n}=0\right)=0$ for any $n \geq 3, P_{0}\left(\widehat{T}_{10}=7\right)=0.1431$						
${ }^{* *}$ For $n=9$, an alternative critical region is $\widehat{T}_{n} \leq 1$ or $\widehat{T}_{n}=7$						

RMD: The quadratic regression model, say H_{Q}, is that

$$
Y_{i}=a+b x_{i}+c x_{i}^{2}+\varepsilon_{i}
$$

where again x_{i} are non-random design points and ε_{i} are i.i.d. $N(0, \sigma)^{2}$. The coefficients a, b, c can be estimated by least squares (with somewhat more algebra than for simple linear regression), and then we can define residuals as before. For quadratic regression, always $\widehat{T}_{n} \geq 2$. For $n \leq 10$, we can reject H_{Q} at level 0.05 for $n=8$ or 9 , and at level 0.01 for $n=10$, if $\widehat{T}_{n} \leq 2$; for $n=10$ we can reject H_{Q} at level .05 if $\widehat{T}_{n} \leq 3$ (footnote ${ }^{* *}$) by the following table from the thesis:

Table 2. Critical Values for \widehat{T}_{n} of Quadratic Regression at 0.05 and 0.01 Levels

n	$P_{0}\left(\widehat{T}_{n} \leq 2\right)$	$P_{0}\left(\widehat{T}_{n} \leq 3\right)$	$P_{0}\left(\widehat{T}_{n}=n-2\right)$	$\alpha=0.05$	$\alpha=0.01$
6	0.3247	0.7459	0.2541	NA	NA
7	0.1366	0.4540	0.1322	NA	NA
8	0.0497	0.2355	0.0878	$\widehat{T}_{n} \leq 2$	NA
9	0.0164	0.1070	0.0508	$\widehat{T}_{n} \leq 2$	NA
$10^{* *}$	0.0049	0.0433	0.0330	$\widehat{T}_{n} \leq 2$ or $\widehat{T}_{n}=8^{*}$	$\widehat{T}_{n} \leq 2$
${ }^{*} P_{0}\left(\widehat{T}_{n} \leq 1\right)=0$ for any $n \geq 3, P_{0}\left(\widehat{T}_{10}=4\right)=0.1695, P_{0}\left(\widehat{T}_{10}=7\right)=0.1431$					
** For $n=10$, an alternative critical region is $\widehat{T}_{n} \leq 3$					

For $11 \leq n \leq 50$, let $\hat{k_{0}}$ be the largest k such that $P_{0}\left(\widehat{T}_{n} \leq k\right) \leq 0.025$ and $\hat{k_{1}}$ the smallest k such that $P_{0}\left(\widehat{T}_{n} \geq k\right) \leq 0.025$. Let $\hat{l_{0}}$ be the largest l such that $P_{0}\left(\widehat{T}_{n} \leq l\right) \leq$ 0.005 and $\hat{l_{1}}$ the smallest l such that $P_{0}\left(\widehat{T}_{n} \geq l\right) \leq 0.005$. We define $\hat{F}_{n}^{l}(j):=P_{0}\left(\widehat{T}_{n} \leq j\right)$ and $\hat{F}_{n}^{r}(j):=P_{0}\left(\widehat{T}_{n} \geq j\right)$.

RMD: for rejection when \widehat{T}_{n} is too small, we can ignore the right-hand halves of the following two tables. For each $n, 11 \leq n \leq 50$, we can reject the hypothesis (linear or quadratic regression respectively in the two tables) at level .05 if $\widehat{T}_{n} \leq K_{n}$ where $K_{n}=\hat{k}_{0}$ or $\hat{k}_{0}+1$, depending on n as seen from the tables. Similarly we can reject at level 0.01 if $\widehat{T}_{n} \leq L_{n}$ where $L_{n}=\hat{l}_{0}$ or $\hat{l}_{0}+1$.

Table 3. Critical Values and Probabilities for \widehat{T}_{n} of Simple Linear Regression

Table 4. Critical Values and Probabilities for \widehat{T}_{n} of Quadratic Regression

