
ESTIMATION — SOME EXAMPLES

1. The simple linear regression model

Recall that in this model, we have some non-random design points
x1 < · · · < xn with n ≥ 3, we observe some random variables Y1, ..., Yn,
and the model says that for some real a and b and some εi i.i.d. N(0, σ2)
for some unknown σ > 0, we have

(1) Yj = a+ bxj + εj, j = 1, ..., n.

In y-on-x regression, one estimates a and b by minimizing∑n

j=1
(Yj − a− bxj)

2. Gauss was apparently the first to show (in 1809)
that maximum likelihood estimation, using the assumption on the εj,
gives the same estimates of a and b. It also gives us a way of estimating
σ2.

Theorem 1. (a) Maximum likelihood estimation of the parameters in
the model (1) gives the same estimates of a and b as does y-on-x least
squares regression.
(b) Let S be the minimum with respect to a and b of

∑n

j=1
(Yj−a−bxj)

2.

Then the maximum likelihood estimate of σ2 is S/n.

Proof. The model (1) gives that εj = Yj − a− bxj are i.i.d. N(0, σ2),
so for given xj and Yj the likelihood as a function of a, b, and σ2 is

(2) (σ
√
2π)−n

n∏

j=1

exp

(
−(Yj − a− bxj)

2

2σ2

)

= (σ
√
2π)−n exp

(
− 1

2σ2

n∑

j=1

(Yj − a− bxj)
2

)
.

For any fixed σ > 0, this is maximized by minimizing the sum in the
exponent, proving part (a). By the assumption on the xj we know that

s2x > 0, and that the estimates â of a and b̂ of b satisfy Y = â + b̂x.

The estimated slope b̂ equals

(3) b̂ = scov(x, Y )/s2x.

The minimum value S is attained for this value of b̂ and â = Y − b̂x.
For n = 2 we will definitely have S = 0 since for x1 < x2 there is a
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line through (xj, Yj) for j = 1 and 2, but for n ≥ 3 as we assumed, it
will be shown that S > 0. In the expression that was minimized with

respect to b to evaluate b, if S = 0 we would have for b = b̂

0 = (n− 1)

[
s2Y − 2 scov(x, Y )2

s2x
+

(scov(x, Y ))2

s2x

]
= s2Y − scov(x, Y )2

s2x
.

It follows that

(4) scov(x, Y )2 = s2xs
2

Y .

For each j = 1, ..., n we have Yj = a+ bxj +εj, and so Y = a+ bx+ε
and

(5) Yj − Y = b(xj − x) + εj − ε.

For all three of the vectors ξ = {ξj}nj=1 being considered, ξ = Y , x, or

ε, we have
∑n

j=1
ξj−ξ = 0. {xj−x}nj=1 is a fixed vector, but {εj−ε}nj=1

has a distribution all over the (n− 1)-dimensional hyperplane

R
n
0 := {{ηj}nj=1 :

n∑

j=1

ηj = 0},

where n− 1 ≥ 2 since n ≥ 3.
We can view scov(x, Y ) as the dot product of the fixed vector {xj −

x}nj=1 and the random vector {Yj − Y }nj=1.

Now b̂ = 0 is equivalent by (3) and (4) to s2Y = 0 and so to equality
of all Yj, but then by (5), {εj − ε}nj=1 is a multiple of the fixed vector
{xj−x}nj=1, which occurs with probability 0 (even though b is a random
variable) since n ≥ 3.

So with probability 1, b̂ 6= 0, scov(x, Y ) 6= 0 and s2Y > 0. But
then (4) implies that the two vectors {Yj − Y }nj=1 and {xj − x}nj=1

are proportional, which by (5) implies that so are {εj − ε}nj=1 and
{xj − x}nj=1, which occurs only with probability 0 since the latter is a
fixed vector and the former is distributed over the n − 1-dimensional
subspace R

n
0 . It follows that S > 0 with probability 1.

Then to maximize with respect to σ, since the (natural) logarithm is
a strictly increasing, differentiable function, is equivalent to maximizing

(6) −(n/2) log(2π)− n log(σ)− S

2σ2
.

We have sx > 0 and with probability 1, sY > 0 and S > 0. So (6) goes
to −∞ as σ ↓ 0. It also goes to −∞ as σ ↑ +∞. So to find a maximum
in the interior 0 < σ < +∞ we can differentiate (6) with respect to σ,
giving −n/σ + S/σ3, or σ2 = S/n, proving (b). �
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2. Estimating parameters of gamma distributions

For 0 < α < ∞ and 0 < λ < ∞ the Γ(α, λ) distribution has the
density

fα,λ(x) = λαxα−1e−λx/Γ(α)

for x > 0 and 0 for x ≤ 0, where the gamma function is defined by

Γ(a) =

∫
∞

0

xa−1e−xdx.

Suppose we’ve observedX1, ..., Xn i.i.d. with a Γ(α, λ) density and want
to estimate the parameters α and λ. The likelihood function is

f(X,α, λ) =
n∏

j=1

λαXα−1

j e−λXj/Γ(α) = λnαT α−1

n exp(−λSn)/Γ(α)
n

where Tn =
∏n

j=1
Xj and Sn =

∑n

j=1
Xj. To maximize this is equivalent

to maximizing its log, as log(·) is an increasing function. The log is
LL(X,α, λ) defined by

(7) nα log(λ) + (α− 1) log(Tn)− λSn − n log Γ(α).

First, for any given α > 0, let’s look for a maximum with respect to
λ. LL(X,α, λ) → −∞ as λ ↓ 0. The gamma distribution implies
that all Xj > 0 with probability 1, and so Sn > 0, which implies that
LL(X,α, λ) → −∞ as λ → +∞. So we’re looking for an interior
maximum with respect to λ given α, for which we set

0 = ∂LL(X,α, λ)/∂λ = nα/λ− Sn,

which gives α/λ = Sn/n = X, or λ = α/X. Note that the expectation
of X1 is α/λ, so setting this equal to X is as in the method of moments.
So let’s plug λ = α/X into (7), giving

nα log(α/X) + (α− 1) log(Tn)− (α/X)Sn − n log Γ(α)

(8) = nα[log(α)− log(X)] + (α− 1) log(Tn)− nα− n log Γ(α).

This quantity goes to −∞ as α → +∞ because log(Γ(α)) via a Stirling
formula for the gamma function is asymptotic to (α− 1

2
) log(α), so terms

±nα log(α) cancel and leave −nα as the dominant term.
As α ↓ 0 we can see how Γ(α) behaves as follows. We have the

recurrence formula Γ(α+1) ≡ αΓ(α) which one gets by integrating by
parts in the definition of gamma function. We have Γ(1) = 0! = 1,
and the gamma function is continuous in a neighborhood of 1. Thus
as α ↓ 0, αΓ(α) = Γ(α + 1) converges to 1, and

log(Γ(α)) + log(α) = log(Γ(α)− log(1/α) → 0,
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so log(Γ(α)) → +∞, and (8) goes to −∞. So to look for an interior
maximum, differentiating (8) with respect to α gives

n[log(α)− log(X)] + n+ log(Tn)− n− nΓ′(α)/Γ(α)

= n[log(α)− log(X)] + log(Tn)− nΓ′(α)/Γ(α).

Setting this equal to 0 doesn’t give a nice closed-form solution. The
function Γ′(α)/Γ(α) is called digamma(α). R has this function, but
still, it takes some numerical search work to find the maximum of (8).
So it’s much easier to estimate α and λ by the method of moments.

3. A disaster for unbiased estimation

Suppose one can observe a positive integer-valued random variable
X which has a Poisson(λ) distribution conditional on X > 0. This
might be the number of radioactive decay particles of a certain type
emitted by a sample of matter. If the number was 0, it could be either
that the sample is not radioactive, or that it is, but the number X
happened to be 0. So there could be interest in estimating e−λ, the
probability of 0 for a Poisson(λ) distribution.
It will be shown that given X = k for k ≥ 1, there is a unique

unbiased estimator of e−λ, and it is (−1)k+1.
Let Tk = T (k) be the value of an unbiased estimator of e−λ when

X = k for k ≥ 1. We have

Pr(X = k|X > 0) =
e−λλk

k!(1− e−λ)
.

Thus unbiasedness says

e−λ =
∞∑

k=1

Tk

e−λλk

k!(1− e−λ)
,

or equivalently

1− e−λ =
∞∑

k=1

Tk

λk

k!
.

If two power series represent the same function, their coefficients must
be equal. So the Taylor series of e−λ gives (−1)k+1 = Tk for all k ≥ 1.
This is an absurd estimator. A reasonable estimator of e−λ should
give a number between 0 and 1 which is small when X is large. So
unbiasedness may not be a good way to choose an estimator.
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4. Notes on history

Stigler (1974) wrote a historical paper on regression (even polynomial
regression), and gives a reference to Gauss (1809). Stigler, himself
a statistician, has published a number of other works on history of
statistics.
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