
R. Dudley, April 3, 2007

An exposition of the Uhlmann (1966) inequality

bounding hypergeometric by binomial tail probabilities

This exposition is adapted from one originally written for a seminar in 1980. Its

latest reference is from 1968, except for a recently added one from 1999.

Let S be a finite set with N elements and A a subset of S with m elements. Let B

be a subset of S with r elements, chosen at random with probability 1/
(

N
r

)

of choosing

each of the
(

N
r

)

subsets with r elements. The set A could also be chosen randomly with

an arbitrary distribution as long as B is chosen independently of A and with a uniform

distribution. Let h(k, m, r, N) be the probability that A∩B contains exactly k elements.

Then

h(k, m, r, N) =

(

m

k

)(

N − m

r − k

)

/

(

N

r

)

=
m!(N − m)!r!(N − r)!

k!(m − k)!(r − k)!(N − m − r + k)!N !
(1)

if max(0, r +m−N) ≤ k ≤ min(m, r) (for an integer j < 0 let j! := +∞ and 1/j! := 0),

and let h(k, m, r, N) := 0 otherwise. It follows directly from (1) that h(k, m, r, N) ≡

h(k, r, m, N).

A random variable X will be said to have a hypergeometric (m, r, N) distribution

if Pr(X = k) = h(k, m, r, N) for each k. Let H(k, m, r, N) := Pr(X ≤ k) be the

probability that A ∩ B has at most k elements, so that

H(k, m, r, N) =
k
∑

j=0

h(j, m, r, N).

Then h is called an individual hypergeometric probability and H a cumulative hyperge-

ometric probability.

Recall the individual binomial probability defined by b(k, n, p) :=
(

n
k

)

pk(1 − p)n−k

for 0 ≤ p ≤ 1 and k = 0, 1, ..., n, and the cumulative binomial probability defined by

B(k, n, p) :=
∑k

j=0 b(j, n, p).

It is well known, and not hard to prove, that as t → ∞ through positive integers,

while j, m, r, and N stay fixed, we have h(j, m, rt, Nt) → b(j, m, r/N), so

H(j, m, rt, Nt) → B(j, m, r/N). (2)

The idea is that viewing h(j, m, rt, Nt) as h(j, rt, m, Nt), so that m elements are chosen

at random from a large set of Nt elements of which rt have a given property, even if
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the m elements (where m is fixed and finite) were chosen with replacement (as in the

binomial case), they would with probability converging to 1 all be different, as in the

hypergeometric case.

The mean of a hypergeometric variable is easily seen to be given by

EX =
m
∑

j=0

jh(j, m, r, N) = mr/N.

If k < rm/N , it’s plausible that the hypergeometric tail probability H(k, m, r, N) should

be less than (or equal to) the corresponding binomial tail probability B(k, m, r/N), and

likewise for the upper tail probabilities. This is not quite correct if k is within 1 of rm/N ,

otherwise the hypergeometric and binomial tail probabilities would have to be equal, as

they are not. But for k at least 1 away from the mean, the domination holds, as was

apparently first proved by Uhlmann (1966). In fact, he showed that the convergence in

(2) is monotone in t:

Theorem 1 (Uhlmann). For any positive integers N , m ≤ N , r ≤ N and k such that

k ≤ (rm/N) − 1, for any t = 1, 2, ...,

H(k, m, rt, Nt) ≤ H(k, m, r(t + 1), N(t + 1)). (3)

Thus as t ↑∞, H(k, m, rt, Nt) ↑B(k, m, r/N), so

H(k, m, r, N) ≤ B(k, m, r/N). (4)

Proof. The proof will be as given by Uhlmann (1966), with a few minor changes and

some details filled in. Actually, a somewhat stronger result will be proved, where r and

N are not necessarily integers.

Since H(k, m, r, N) = H(N − m − r + k, N − m, N − r, N), and N − m − r + k ≤

((N − m)(N − r)/N)− 1 if and only if k ≤ (mr/N)− 1, we can assume that m ≤ N/2.

If k = m− 1, we must have r = N and then H(k, m, r, N) = 0. The cases k = 0 and

m − 1 will be dealt with specially in Proposition 7 below. For the present we assume

1 ≤ k ≤ m − 2, and thus

3 ≤ m ≤ N/2. (5)

Remark. Also, Theorem 1 for k = 0 and 0 < r < N follows from the inequality

A(A − 1) · · · (A − j)

B(B − 1) · · · (B − j)
≤

C(C − 1) · · · (C − j)

D(D − 1) · · · (D − j)
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if 0 < A/B = C/D ≤ 1, 0 < A ≤ C, j ≤ A, and j < B; then the inequality is

strict if A < C and A < B. (Let A := (N − r)t, B := Nt, C := (N − r)(t + 1), and

D := N(t + 1).)

For any real number c and nonnegative integer k, the binomial coefficient
(

c
k

)

is

defined by
(

c
k

)

:= c(c − 1) · · · (c − k + 1)/k! for k ≥ 1, and
(

c
0

)

:= 1. For 0 ≤ p ≤ 1 let

L(k, m, N, p) :=
k
∑

j=0

(

Np

j

)(

N − Np

m − j

)

/

(

N

m

)

. (6)

This equals H(k, m, Np, N) if Np is an integer. Until further notice, k, m, and N will

be fixed. Then let L(p) := L(k, m, N, p). Here L is a polynomial in p of degree m.

We will use the following:

Proposition 2. For any real number p and integers 0 ≤ m ≤ N we have

m
∑

j=0

(

Np

j

)(

N − Np

m − j

)

=

(

N

m

)

.

Proof. If m = 0 the equation becomes 1 = 1, so let 0 < m ≤ N . For p = i/N ,

i = 0, 1, ..., N , the equation holds as
∑m

j=0 h(j, m, i, N) = 1. The left side is a polynomial

of degree m in p and the right side is constant in p. The equation has at least N +1 > m

roots, so it holds identically. �

In case m ≤ N min(p, 1− p), we get a kind of extended hypergeometric distribution

which is a special case of what Wimmer and Altmann (1999) call the “Kemp family” of

distributions with probability at x equal to
(

a
x

)(

b
n−x

)

/
(

a+b
n

)

for integers 0 ≤ x ≤ n and

under some further restrictions.

We have L(i/N) = 1 for i = 0, 1, ..., k and L(i/N) = 0 for i = N − m + k + 1, ..., N .

Thus by Rolle’s theorem, dL/dp has zeroes at p1, ..., pm−1 with

0 < p1 <
1

N
< p2 <

2

N
< · · · <

k − 1

M
< pk <

k

N
<

<
N − m + k + 1

N
< pk+1 < · · · <

N − 1

N
< pm−1 < 1.

Since dL/dp has degree m − 1 in p, the pj must be all of its roots. Hence we have:

Proposition 3. L(p) is strictly decreasing for k/N ≤ p ≤ (N − m + k + 1)/N .
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Since the pj are simple roots of dL/dp, they must be alternately local maxima and

minima of L, where pk is a local maximum and pk+1 is a local minimum, etc. Again by

Rolle’s theorem, d2L/dp2 has zeroes aj with

pj < aj < pj+1, j = 1, ..., m − 2, (7)

and these are all the zeroes of d2L/dp2. Set a0 := 0 and am−1 := 1. Using Proposition

3, and since ak−1 < pk < ak < pk+1 < ak+1, we have

d2L

dp2







< 0, ak−1 < p < ak;

> 0, ak < p < ak+1.
(8)

We next consider some differences of L:

Lemma 4. For 0 ≤ p ≤ 1 − 1/N , we have L(p) − L
(

p + 1
N

)

=
(

Np
k

)(

N−Np−1
m−k−1

)

/
(

N
m

)

.

Proof. We can multiply both sides by
(

N
m

)

. Then for k = 0 the Lemma says

(

N − Np

m

)

−

(

N − Np − 1

m

)

=

(

N − Np − 1

m − 1

)

,

which is true (Pascal’s identity, with its algebraic rather than combinatorial proof). To

induct from k − 1 to k we have, again by Pascal’s identity,
(

Np

k − 1

)(

N − Np − 1

m − k

)

+

(

Np

k

)(

N − Np

m − k

)

−

(

Np + 1

k

)(

N − Np − 1

m − k

)

=

(

Np

k

)(

N − Np

m − k

)

−

(

Np

k

)(

N − Np − 1

m − k

)

=

(

Np

k

)(

N − Np − 1

m − k − 1

)

,

which finishes the proof of the lemma. �

For 1 ≤ k ≤ m − 2, Lemma 4 gives the second difference

L
(

p −
1

N

)

− 2L(p) + L
(

p +
1

N

)

=

{(

Np − 1

k

)(

N − Np

m − k − 1

)

−

(

Np

k

)(

N − Np − 1

m − k − 1

)}

/

(

N

m

)

=

(

Np − 1

k − 1

)(

N − Np − 1

m − k − 2

)

T/

(

N

m

)

where

T :=
(Np − k)(N − Np) − Np(N − Np − 1 − [m − k − 2])

k(m − k − 1)
=

N((m − 1)p − k)

k(m − k − 1)
.
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Thus T = 0 when p = c := k/(m − 1). Let δ := 1/N . So the following three points

are on a straight line L: (c − δ, L(c − δ); (c, L(c)); and (c + δ, L(c + δ)). By the mean

value theorem there are points where dL/dp equals the slope of L in each of the intervals

(c− δ, c) and (c, c + δ). Thus d2L/dp2 = 0 somewhere in the interval (c− δ, c + δ). Since

2m ≤ N from (5), and 1 ≤ k ≤ m − 2, we have

pk < k/N ≤ c − δ < c + δ < 1 − (m − k − 1)/N < pk+1.

So by (7), and since d2L/dp2 has a unique zero ak in [pk, pk+1], we have

c − δ < ak < c + δ. (9)

Lemma 5. For k/N ≤ p ≤ k/(m− 1), the chord Cp through the points (p− 1/N, L(p−

1/N)) and (p, L(p)) is entirely below the graph G of L, i.e. for 0 < λ < 1,

L
(

λ
(

p −
1

N

)

+ (1 − λ)p
)

> λL
(

p −
1

N

)

+ (1 − λ)L(p),

or λ(L(p − (1/N)) − L(p)) < L(p − (λ/N)) − L(p).

For k/(m − 1) + (1/N) ≤ p ≤ 1 − (m − k − 2)/N , the chord Cp lies above G, so for

0 < λ < 1,

λ(L(p − (1/N)) − L(p)) > L(p − (λ/N)) − L(p).

Proof. Whenever 0 ≤ u < v ≤ 1 let Cuv := C(u, v) be the chord (line segment) joining

(u, L(u)) to (v, L(v)) and let suv be its slope. Then sc−δ,c = sc,c+δ = sL, the slope of L.

In the first sentence of the lemma we assume k/N ≤ p ≤ c. Recall that in the interval

[pk, pk+1], L′′ = d2L/dp2 has just one zero, namely ak, and by (9), c − δ < ak < c + δ.

On [ak−1, ak], L is strictly concave, hence above all its chords.

Claim 1. Cc−δ,c is below G.

Proof. If Cc−δ,c+δ intersects G at (s, L(s)) for some s ∈ (c − δ, c + δ) other than s = c,

then L′ = sc−δ,c at three or more points in (c−δ, c+δ), and L′′ = 0 at two or more points

in the interval, a contradiction. Also L′(c) 6= sL for the same reason. So in (c − δ, c), L

is entirely on one side of L and in (c, c+ δ), on the other side. Since L′′ is first negative,

then positive, we must have L′(c) < sL and Cc−δ,c is below G, proving Claim 1.

Claim 2. The chords Cx,k/n are below G for (k − 1)/N ≤ x < k/N .

Proof. Since L > 1 on ((k − 1)/N, k/N), the horizontal chord C(k−1)/N,k/N is below G.

For x ≥ ak−1, the claim holds by concavity. For (k − 1)/N ≤ x < ak−1, L′ is positive
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and increasing, while sx,k/N < 0, so Cx,k/N lies below the part of G between x and ak−1,

hence also below the chord and graph from ak−1 to k/N by concavity, proving Claim 2.

Claim 3. For (k − 1)/N ≤ u < k/N ≤ v ≤ ak, Cuv is below G.

Proof. We have su,k/N > L′(k/N) by Claim 2, and L′(k/N) > sk/N,v by concavity, so

Claim 3 follows.

Claim 4. Each chord Cc−δ,q for c − δ < q ≤ c is below G.

Proof. For q ≤ ak, the claim holds by concavity. If ak < q ≤ c, then on [ak, c], L′ is

increasing but L′ < sL. Thus the (perpendicular or vertical) distance to L is decreasing

there, while on Cc−δ,q it is increasing. So, as in Claim 2, each chord Cc−δ,q is below the

part of G between ak and q, and thus below G on (c − δ, q), proving Claim 4.

Now to finish the proof of Lemma 5, consider any chord Cp = Cp−δ,p for k/N ≤ p ≤ c.

If p ≤ ak, then Cp is below G by Claim 3 if p − δ ≤ k/N and by concavity otherwise.

If ak−1 ≤ p − δ < ak < p, where p − δ ≤ c − δ < ak by (9) and Claim 3 dealt with

ak ≥ p, then since p ≤ c,

sp−δ,c−δ > L′(c − δ) > sc−δ,ak
> sc−δ,p

where the first two inequalities hold by concavity and the third by Claim 4. Since for

the same reasons, Cp−δ,c−δ and Cc−δ,p are both below G, Cp−δ,p is below G as desired.

The remaining case is

(k − 1)/N ≤ p − δ < ak−1 < k/N ≤ c − δ < ak < p, (10)

because the first, third, fourth and fifth inequalities always hold, we just treated the

case where the second fails, and Claim 3 treated the case that the sixth fails.

If (10) holds we have sp−δ,k/N > sak−1,k/N by Claim 2, which is larger than sk/N,c−δ >

sc−δ,ak
by concavity, which is larger than sc−δ,p by Claim 4. Since the chords from p− δ

to k/N to c − δ to p are each below G, and their slopes decrease from each to the next,

Cp−δ,p is below G. This proves the first sentence of the Lemma.

The proof of the second sentence is symmetrical, specifically as follows. We have

1 − L(1 − p) = 1 −
k
∑

j=0

(

N(1 − p)

j

)(

Np

m − j

)

/

(

N

m

)

.
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By Proposition 2 and a change of indices this equals

m
∑

j=k+1

(

N(1 − p)

j

)(

Np

m − j

)

/

(

N

m

)

=
m−k−1
∑

r=0

(

Np

r

)(

N(1 − p)

m − r

)

/

(

N

m

)

= L(m − k − 1, m, N, p).

By the first sentence of the Lemma applied to m− k − 1 in place of k, the chords Cp of

this function of p are below its graph for (m − k − 1)/N ≤ p ≤ (m − k − 1)/(m − 1) =

1−k/(m−1). Thus for the function p 7→ L(1−p), the chords connecting (p−δ, L(1−p+δ))

to (p, L(1 − p)) are above the graph of the function for the same interval of values of p.

Via the substitution x ↔ 1−x for the x coordinates while leaving the arguments of L and

so the y coordinates unchanged, the chords will join points on the graph of L itself and

be above it. Letting q := 1−p+δ, it follows that the chord Cq connecting (q−δ, L(q−δ))

to (q, L(q)) is above the graph of L for δ + k/(m − 1) ≤ q ≤ 1 − (m − k − 2)/N , which

gives the second sentence of the lemma and so completes its proof. �

Using Lemma 4 in Lemma 5 gives:

Lemma 6. Let 0 < k < m − 1 < N and 0 < λ < 1. Then if k/N ≤ p < k/(m − 1), we

have

L

(

p −
λ

N

)

− L(p) > λ

(

Np − 1

k

)(

N − Np

m − k − 1

)

/

(

N

m

)

.

Or, if k/(m − 1) + (1/N) ≤ p < 1 − (m − k − 2)/N , then we have

L

(

p −
λ

N

)

− L(p) < λ

(

Np − 1

k

)(

N − Np

m − k − 1

)

/

(

N

m

)

.

Now we consider zeroes of the polynomials

Q(p) := Q(k, m, N, p) := L(k, m, N, p) − L(k, m, N + 1, p).

We have Q(0) = Q(1) = 0. If k > 1, then L(k, m, N + 1, j/(N + 1)) = 1 for j = k, k −

1, . . . , 1, while L(k, m, N, j/(N+1)), by the facts mentioned in the paragraphs just before

and after Proposition 3, is alternately > 1 and < 1 since (j − 1)/N < j/(N + 1) < j/N

for j = 1, . . . , k. So each of the k−1 intervals ((j−1)/(N +1), j/(N +1)) for j = 2, ..., k

contains at least one zero of Q. Likewise, if k < m − 2, so does each of the m − k − 2

open intervals (1 − (j + 1)/(N + 1), 1 − j/(N + 1)) for j = 1, ..., m − k − 2. For

0 < k < m− 1 we have by Proposition 3 since k/(N +1) < k/N < 1− (m− k− 1)/N <

(N + 2 − m + k)/(N + 1),

L(k, m, N + 1, k/N) < 1 = L(k, m, N, k/N), (11)
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and

L(k, m, N + 1, 1 − (m − k − 1)/N) > 0 = L(k, m, N, 1 − (m − k − 1)/N). (12)

Thus the interval (k/N, 1 − (m − k − 1)/N) contains another zero of Q. So we have

mentioned altogether m different zeroes of Q if 2 ≤ k < m − 2. If k = 0, 1, m − 2, or

m − 1, then we omit the parts of the above argument which do not apply and find that

we have still counted m zeroes of Q. For m ≥ 3 by (5), we see that Q is not identically

0: in case 0 < k < m − 1 for p = k/N by (11); or by the case “k > 1” if k = m − 1, for

p = 2/(N + 1); or the case “k < m − 2” if k = 0 with p = 1 − 2/(N + 1). So all the m

roots have been counted.

Let

J(k, m, N, p) :=



















1, 0 ≤ p ≤ k/N ;

L(k, m, N, p), k/N ≤ p ≤ (N − m + k + 1)/N ;

0, (N − m + k + 1)/N ≤ p ≤ 1.

(13)

Then J(k, m, N, p) = H(k, m, Np, N) whenever Np is an integer and 0 ≤ p ≤ 1. Let

D := D(k, m, N, p) := J(k, m, N, p) − J(k, m, N + 1, p). (14)

By the Remark after (5), and by Proposition 2 for the second statement, we have the

following for the special cases k = 0 or m − 1:

Proposition 7. If k = 0 < m ≤ N , then D = 0 if p = 0 or if 1 − (m − 1)/(N + 1) ≤

p ≤ 1; for 0 < p < 1 − (m − 1)/(N + 1) we have D < 0.

For 1 ≤ k = m− 1 < N , we have D = 0 for 0 ≤ p ≤ (m− 1)/(N + 1) and for p = 1;

if (m − 1)/(N + 1) < p < 1 we have D > 0.

From the above treatment of zeroes of Q, we have:

Lemma 8. If 0 < k < m − 1 < N there is exactly one p0 with k/N < p0 < (N − m +

k + 1)/N and D(k, m, N, p0) = 0.

If m ≥ 3 is odd, k = (m − 1)/2, and m − 1 < N , then

L(k, m, N, 1/2) =
k
∑

j=0

(

N/2

j

)(

N/2

m − j

)

=
1

2

where the second equation holds by interchanging j and m− j and Proposition 2. Thus

in this case, p0 in Lemma 8 equals 1/2. Hence Proposition 3, Lemma 8, (11) and (12)

imply:
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Proposition 9. If m is odd, m ≥ 3, and k = (m − 1)/2, then D = 0 for 0 ≤ p ≤

(m − 1)/(2N + 2), also for p = 1/2 and for 1 − (m − 1)/(2N + 2) ≤ p ≤ 1; for other

p < 1/2 we have D > 0, and for other p > 1/2, we have D < 0.

For 0 ≤ k < m ≤ N we have
(

N

m

)

(L(k, m, N, p) − L(k, m, N + 1, p))

=
∑k

j=0

(

Np
j

)(

N−Np
m−j

)

− N−m+1
N+1

∑k
j=0

(

Np+p
j

)(

N−Np−p+1
m−j

)

=
(

N
m

)

(L(k, m, N, p) − L(k, m, N, p + (p/N))) (15)

+
k
∑

j=0

(

Np + p

j

)(

N − Np − p

m − j − 1

)

j − mp

m − j

because

N − Np − p − m + j + 1 −
(N − m + 1)(N − Np − p + 1)

N + 1
= j − mp.

Next we have:

Lemma 10. For 0 ≤ k < m we have

k
∑

j=0

(

Np + p

j

)(

N − Np − p

m − j − 1

)

j − mp

m − j
= −p

(

Np + p − 1

k

)(

N − Np − p

m − k − 1

)

.

Proof. We use induction on k. For k = 0 the result is clear. Assuming it holds for k− 1,

where 1 ≤ k < m, we have

∑k
j=0

(

Np+p
j

)(

N−Np−p
m−j−1

)

j−mp
m−j

= −p
(

Np+p−1
k−1

)(

N−Np−p
m−k

)

+
(

Np+p
k

)(

N−Np−p
m−k−1

)

k−mp
m−k

=
(

Np+p−1
k−1

)(

N−Np−p
m−k−1

)

F

where

F := −
p(N − Np − p − m + k + 1)

m − k
+

(k − mp)(Np + p)

k(m − k)
,

so
(

Np + p − 1

k − 1

)(

N − Np − p

m − k − 1

)

F = −p

(

Np + p − 1

k

)(

N − Np − p

m − k − 1

)

,

which proves the lemma. �
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Substituting Lemma 10 into (15) gives

(

N
m

)

(L(k, m, N, p) − L(k, m, N + 1, p)) =
(

N
m

)

(L(k, m, N, p) − L(k, m, N, p + (p/N))) − p
(

Np+p−1
k

)(

N−Np−p
m−k−1

)

. (16)

Next we can prove a basic monotonicity fact:

Proposition 11. Suppose 0 < k < m − 1 < N . Then for D = D(k, m, N, p) defined by

(14), D = 0 for 0 ≤ p ≤ k/(N + 1) and for 1 − (m − k − 1)/(N + 1) ≤ p ≤ 1; D > 0

for k/(N + 1) < p ≤ kN/((m − 1)(N + 1)); and D < 0 for

k

m − 1
+

m − k − 1

(m − 1)(N + 1)
≤ p < 1 −

m − k − 1

N + 1
.

Proof. For 0 ≤ p ≤ k/N or 1 − (m − k − 1)/N ≤ p ≤ 1, the result follows from (13),

i.e. the definition of J , and Proposition 3. For the remaining p we can replace J by L.

Using Lemma 6 with p replaced by p + p/N and λ = p gives
(

N

m

)

(L(k, m, N, p) − L(k, m, N, p + p/N) > p

(

Np + p − 1

k

)(

N − Np − p

m − k − 1

)

for k/N ≤ p+p/N ≤ k/(m−1), or equivalently for k/(N+1) ≤ p ≤ kN/((m−1)(N+1)).

Substituting this in (16) gives the desired result.

Likewise for
k

m − 1
+

1

N
≤ p +

p

N
< 1 −

m − k − 2

N
,

or equivalently for

k

m − 1
+

m − k − 1

(m − 1)(N + 1)
≤ p < 1 −

m − k − 1

N + 1
,

we get from the second half of Lemma 6 that
(

N

m

)

(L(k, m, N, p) − L(k, m, N, p + p/N) < p

(

Np + p − 1

k

)(

N − Np − p

m − k − 1

)

.

Thus Proposition 11 is proved. �

To check that Proposition 11 implies Theorem 1, note that if k ≤ mp − 1, where

p := r/N , then

p ≥
k + 1

m
≥

k

m − 1
+

m − k − 1

(m − 1)(N + 1)
≥

k

m − 1
+

m − k − 1

(m − 1)(Nt + 1)

10



since (k+1)(m−1)(N +1) ≥ km(N +1)+(m−k−1)m, using 0 ≤ (m−k−1)(N−m+1).

Thus by Proposition 11 and its proof,

0 > D(k, m, Nt, P ) = J(k, m, Nt, p) − J(k, m, Nt + 1, p)

= L(k, m, Nt, p) − L(k, m, Nt + 1, p).

The same holds if we replace Nt by Nt + i − 1 for i = 1, ..., N , so by induction we get

H(k, m, rt, Nt) = L(k, m, Nt, p) < · · · < L(k, m, Nt+N, p) = H(k, m, r(t+1), N(t+1)),

proving (3) and thus Theorem 1. �

NOTES

The above proof is mainly as in Uhlmann (1966) with some details, especially the proof

of Lemma 6 above, filled in. This exposition was originally prepared for a seminar in

October 1980. Small revisions and corrections have been made in 2007.

Beside Theorem 1 and other facts developed in its proof, Uhlmann’s 1966 paper

contains two other theorems:

(a) the fact that both for hypergeometric and for binomial distributions, the median

and the mean differ by at most 1. Using Theorem 1 (and its symmetrical form for upper

tails) it suffices to prove this for binomial distributions. For this Uhlmann (1966) uses

results from Uhlmann (1963). Jogdeo and Samuels (1968) gave an independent proof

for binomial distributions.

(b) Finally, Uhlmann (1966) gives an incorrect theorem (and proof) conflicting with

a result of Anderson and Samuels (1965).
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