
Meeting in honor of Evarist’s 70th birthday

Cambridge, 24 June 2014

Some reminiscences relating to Evarist

and

some explorations about the bootstrap

1



Evarist was my 4th Ph. D. student
and third at MIT. Originally from Ca-
talonia, he arrived in the Fall of 1970
from Venezuela, where he had been teach-
ing. His thesis, finished in 1973, was on
“Invariant tests for uniformity on com-
pact Riemannian manifolds based on So-
bolev norms.” It was published in Ann.
Stat. in 1975.
After finishing at MIT Evarist went

back to Venezuela for a year. He spent
the academic year 1974–75 in Berkeley
on a short-term faculty appointment.
Then he again returned to Venezuela to
fulfill the obligation of his 3-year gradu-
ate fellowship to MIT. He was at “IVIC,”
the Venezuelan institute of scientific re-
search.
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INFINITE-DIMENSIONAL LIMIT THEOREMS

The one previous meeting I’ve been
to in the UK was in late July 1974, in
Durham, a London Mathematical So-
ciety Symposium on Functional Anal-
ysis and Stochastic Processes. I was
struck by the remarkably cool midsum-
mer weather in Durham, as I was also
by remarkably warm February weather
here in Cambridge on my one previous
visit, as a tourist for a day in 1976.
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In 1955–56 R. Fortet and E. Mourier
had proved that the CLT (central limit
theorem) held in Lp spaces for 2 ≤ p <
∞ for i.i.d. random variables Xj with

EX1 = 0 and E‖X1‖2 < ∞. In 1968
Volker Strassen and I proved that in
C[0, 1] the CLT could fail even for bounded
random variables but held under a met-
ric entropy condition.
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In 1974 as far as I knew, in Lp for 1 <
p < 2 the question was still open, but I
thought it was due to be solved and said
we should solve it there in Durham. At
the end of my talk Gilles Pisier came up
to me and told me it had been solved
in the negative. The paper by Jørgen
Hoffmann-Jørgensen and Gilles appeared
in Ann. Prob. in 1976, characterizing
the Banach spaces in which the CLT
held under the classical conditions as
those of type 2, which Lp spaces for
1 ≤ p < 2 are not.
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In 1976, Evarist began to publish on
central limit theorems in Banach spaces.
I think since then, he (and others) have
known more than I do about limit the-
orems in separable Banach spaces. In
1980 Aloisio Araujo and Evarist pub-
lished the bookThe Central Limit The-
orem for Real and Banach Space Val-
ued Random Variables. The book is
by far Evarist’s most cited work (Google
Scholar).
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I was lucky that my work on empiri-
cal processes was synergistic with that
of people working at first in separable
Banach spaces. In some fields of statis-
tics I entered later I seemed to be more
of a contrarian.
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Related to my other topic today are
Evarist’s second and third-most cited
works, both with Joel Zinn, in Ann.
Prob.: “Some limit theorems for empir-
ical processes,” 1984, and “Bootstrap-
ping general empirical measures,” 1990.
When first reading the “Some limit

theorems” paper, I noticed a lot of tech-
nical facts on symmetrization, desym-
metrization, and randomization such as
Poissonization. In the bootstrap paper,
I saw how the technical facts are useful.
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In January of some year, about 1989
or 1990, I visited the statistics depart-
ments in Seattle and Berkeley, lectur-
ing on Evarist and Joel’s work on the
bootstrap, as I thought that was more
interesting than any research I was do-
ing around that time. My handout for
those lectures was a mixture of pages
from a preprint of Evarist and Joel’s
1990 paper and copies of proofs by oth-
ers it relied on, aiming to give self-contained
proofs of Evarist and Joel’s theorems.
I’ve taught about the bootstrap from

a more applied point of view, a week or
two each time, in graduate nonparamet-
ric statistics courses since 2007. Prepar-
ing this talk has helped me get ready for
teaching that next spring.
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Let S be a sample space. Let P be
a probability measure on S and sup-
pose we haveX1, X2, ..., S-valued, i.i.d.
P . Let Pn := 1

n
∑n
j=1 δXj

. Suppose we

have a functional T (·) defined on prob-
ability measures on S. A point esti-
mate of T (P ) is T (Pn). To estimate the
amount of variability in T that could oc-
cur with different samples, there is the
bootstrap, invented by B. Efron (1979
Ann. Stat.). Let XB

ni, i = 1, ...,m, be
i.i.d. (Pn). The case I’m familiar with is
to take m = n, as I think statisticians
generally do, although Evarist and oth-
ers have treated m = o(n).
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Then let PB
n := 1

n
∑n
i=1 δXB

ni
, the boot-

strap empirical measure. Under some
conditions, the conditional distribution
of PB

n given Pn may be such that for
some functional(s) T , T (PB

n ) − T (Pn)
given Pn may behave as T (P ′

n)−T (P ),
where P ′

n is a random empirical mea-
sure for P as contrasted with the fixed
given Pn. More precisely, for some se-
quence of constants an such as

√
n,

(an(T (P
B
n )− T (Pn))|Pn)

∼ an(T (P
′
n)− T (P )),

with ∼ indicating closeness in distribu-
tion, where an(T (P

′
n)−T (P )) is bounded

away from 0 in probability.
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Let F be a class of real-valued mea-
surable functions on S. It is called a
Donsker class for P if the empirical pro-
cess

√
n(Pn − P ) converges in distri-

bution to a limiting Gaussian process
GP indexed by F with respect to uni-
form convergence overF . In 1978 I gave
a definition of Donsker class (of sets),
then later twice changed the definition,
extended to classes of functions. The fi-
nal definition, by Hoffmann-Jørgensen,
defines convergence in distribution of
a sequence of possibly nonmeasurable
random elements to a measurable ran-
dom variable limit such as GP .
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Details are in my book Uniform Cen-
tral Limit Theorems (Cambridge Uni-
versity Press; a second edition appeared
early this year) or in van der Vaart and
Wellner, Weak Convergence and Em-
pirical Processes. F is called a boot-
strap P -Donsker class in probability if
the bounded Lipschitz distance between
the distribution of

√
n(PB

n −Pn) given
Pn and that of GP converges to 0 in
outer probability as n → ∞.
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Disclaimer: Although some people kindly put my

name on it, I did not define the bounded Lipschitz met-

ric in separable metric spaces, Fortet and Mourier did in

the 1950’s. Also, I did not prove that weak convergence

implies convergence in the bounded Lipschitz norm, R.

Ranga Rao did in a paper I was lucky to see while in grad-

uate school because my adviser assigned me the paper to

referee. It seems I did first prove that bounded Lipschitz

convergence implies weak convergence in any separable

metric space, which moreover need not be complete, and

I was involved in extending the definition to nonseparable

metric spaces, which we need for empirical processes.
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Evarist and Joel proved in their 1990
Ann. Prob. paper that P -Donsker im-
plies bootstrap P -Donsker in probabil-
ity. I include a proof of that in my
book UCLT (both editions), although
not the almost sure version which they
also proved. I think statisticians gen-
erally apply the bootstrap for a fixed
sample, as opposed to sequentially us-
ing it for increasing samples. F is called
a uniform Donsker class if the conver-
gence is also uniform in all P on the
same σ-algebra in S. Evarist and Joel
in 1991 characterized uniform Donsker
classes as those which are uniformly pre-
gaussian or finitely uniformly pregaus-
sian.

15



I put a proof of the theorem into the
second edition (2014) of my book. I
also put in a proof of the Bousquet,
Koltchinskii, and Panchenko (2002) the-
orem that the convex hull of a uniformly
bounded uniform Donsker class is still
uniform Donsker. It seems to me that
in bootstrapping, little may be known
about P except for the observed Pn,
so the uniform Donsker property of F
may be desirable, although it is highly
restrictive, requiring F to be uniformly
bounded up to additive constants. Pol-
lard’s entropy condition provides a use-
ful sufficient condition for uniform Donsker.
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Slow convergence in the central

limit theorem for empirical pro-

cesses. József Beck in 1985 (ZW) proved
that for the uniform distribution P on
the unit cube in Rd, for d ≥ 2, for the
class B(d) of all balls, which as a nicely
measurable VC class of sets is a uni-
form Donsker class of functions, we have
for the limiting Gaussian process GP ,
supB∈B(d) |[

√
n(Pn−P )−GP ](B)| is

no smaller than of order n−1/(2d), which
seems disappointingly slow.
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In a seminar in the Fall of 2006, which
alternated between MIT and University
of Connecticut, Storrs, we verified that
Beck’s proof was essentially correct al-
though some details needed fixing. I
and Richard Nickl, then a postdoc with
Evarist, gave most or perhaps all of the
talks, but Dmitry Panchenko and a then
graduate student, Wen Dong, contributed
useful ideas.

Richard was familiar with the very relevant series of
papers by different authors called “Irregularities of dis-
tribution.” There is a 1987 book with that title by Beck
and W. W. L. Chen.
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“Fast” convergence — O((log n)/
√
n).

For the 1-dimensional empirical process√
n(Fn−F )(x), the rate of convergence

in sup norm to bF (x) for a Brownian

bridge process bt is O((log n)/
√
n) as

stated by Komlós–Major–Tusnády and
proved with not too large constants by
Bretagnolle and Massart. Just after the
first edition of my book UCLT appeared
(1999) I gave an exposition of the Bre-
tagnolle–Massart theorem and proof with
more details, which is now in the second
edition. I also put in a proof of Mas-
sart’s form of the Dvoretzky–Kiefer–Wol-
fowitz inequality with sharp constant,
detailed except that in one step, a proof
by calculus is replaced by numerical ver-
ification on a grid.
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Quantiles and sample quantiles. If
F is a continuous distribution function,
strictly increasing on F−1((0, 1)), and
0 < q < 1, the qth quantile of F is
F−1(q). If one observesX1, ..., Xn i.i.d.
for such an F , one can give confidence
intervals for F−1(q) with endpoints or-
der statistics of Xj, without bootstrap-
ping, although the bootstrap gives a rel-
atively easy, off-the-shelf method.

For an empirical distribution function Fn, eight books,

two on the bootstrap and six beginning statistics text-

books, give 9 different definitions of sample qth quantile

for 0 < q < 1 as order statistics, e.g. X(⌈nq⌉), or as con-
vex combinations of adjoining ones. The difference in

definitions is not crucial here.
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If instead of n we have R, the number of bootstrap

replications, sometimes called B, two books on the boot-

strap give definitions whereby the sample quantiles used

are order statistics: B. Efron and R. Tibshirani, An In-

troduction to the Bootstrap, 1993, and A. C. Davison

and D. V. Hinkley Bootstrap Methods and Their Ap-

plication, 1997, who give

X(k) for k = (R + 1)q

if that is an integer, as they arrange for usual q’s for

example by setting

R = 999

so that R + 1 is a round number. Also, having R odd

gives a nice sample median (q = 1/2).
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Bootstrap confidence intervals

The percentile interval. Let T be a
real-valued functional, defined on some
set P of probability measures P on a
set S, containing all possible empirical
measures Pn. Let X1, ..., Xn be i.i.d.
P for some P ∈ P , and take the em-
pirical measure Pn. To get an approxi-
mate confidence interval for T (P ), form
i.i.d. bootstrap empirical measures PB

ni
for i = 1, ..., R and let Ti := T (PB

ni),
i = 1, ..., R. Form the order statistics
T(1) ≤ T(2) ≤ · · · ≤ T(R). Given

0 < α < 1/2, let TL and TU be the
α/2 and 1 − (α/2) sample quantiles of
the Ti.
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Then Efron had defined [TL, TU ] as
the 1 − α two-sided percentile confi-
dence interval for T (P ), as also in Efron
and R. Tibshirani, 1993. I have not seen
any precise, general statements as to
under what conditions and with what
accuracy the percentile interval, or for
that matter any bootstrap-based inter-
val, works.
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The BCa interval. Efron and Tibshi-
rani defined, along with the percentile
interval, the “Bias-corrected, accelerated”
BCa intervals. I won’t give here the
complicated-looking definitions, in which
there are transformations to and from
normal scale. The endpoints of the BCa
1 − α intervals are some qlo, qhi sam-
ple quantiles of the Ti, but instead of
α/2 and 1− α/2, the q’s are adjusted.
The bias correction is based on the de-
viation from 1/2 of the fraction of the
bootstrap sampled statistics Ti that are
≤ T (Pn). The “acceleration” is a cor-
rection for skewness.
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The “basic” interval. If the bootstrap
works, i.e. an(T (P

B
n )−T (Pn)) given Pn

is close to an(T (P
′
n)− T (P )) in distri-

bution, then since Pr(TL < T (PB
n ) <

TU |Pn) has been estimated as 1−α, we
would also approximate

Pr(TL − T (Pn) < T (P ′
n)− T (P )

< TU − T (Pn)) ∼ 1− α.

Davison and Hinkley (1997) proposed,
it seems to me, to plug Pn in place of P

′
n

in the above approximation. That may
be plausible, as in some ways, we are
treating Pn as a typical value of P ′

n, but
it seems to me it is not clearly justified.
One might say that Pn is fixed and P ′

n
is independent of it?
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The plug-in yields

Pr (2T (Pn)− TU < T (P ) < 2T (Pn)− TL)

∼ 1− α.

Davison and Hinkley call the interval
[2T (Pn)− TU , 2T (Pn)− TL] the basic
bootstrap confidence interval for T (P ).
It provides an interesting alternative to
the percentile and other intervals, to be
tried out to see how the intervals com-
pare. The basic and percentile intervals
are reflections of one another in T (Pn).
The percentile, basic, BCa, and a nor-
mal interval are all implemented in the
R system library “boot” and treated by
W. N. Venables and B. D. Ripley, Mod-
ern Applied Statistics with S, 4th Ed.
2002. Venables and Ripley, and others,
prefer the basic interval.
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But Davison and Hinkley (1997) (its
inventors?) do not find it best at all.
They say “The studentized bootstrap
and adjusted percentile [i.e. BCa ] meth-
ods for calculating confidence limits are
inherently more accurate than the ba-
sic bootstrap and percentile methods.”
They empirically compare 8 different
bootstrap-based confidence intervals for
the functional

T (P,Q) =
∫

x dP (x)/
∫

y dQ(y)

for P and Q specified gamma distri-
butions. In this case both the lower
and upper endpoints of the basic inter-
val tend to be substantially too small.
The errors for the basic interval are the
worst of those shown.“Studentized, log
scale” intervals perform well.
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The basic interval can give strange end-
points. Suppose for example that T
takes values any positive number 0 <
T < +∞. Then 0 < TL < TU . But
2T (Pn) − TU can be negative. Also, if
T (Pn) < T (P )/2, then T (P ) will never
be in the basic interval, for arbitrarily
small α. Letting α ↓ 0, use of the ba-
sic interval seems to entail the usually
untrue statement

Pr(T (Pn) < T (P )/2) = 0,

perhaps a contradiction.
Neither of these possibilities can oc-

cur for the percentile nor BCa intervals,
with endpoints order statistics of the
bootstrap sample, unless T (P ) < T(1)
or T(R) < T (P ), which would rarely
occur for the R ≥ 1000 generally used.

28



In teaching about the bootstrap since
2007 I had recommended the basic in-
terval, following Venables and Ripley.
Now, I think it may not even be the
second-best of the intervals mentioned.
For p > 1 the Pareto(p) distribution

has a density (p− 1)/xp for x ≥ 1 and
0 for x < 1. It has a finite mean if and
only if p > 2 and finite variance if and
only if p > 3. For sample means of 100
i.i.d. Pareto (7/2) variables I found by
simulation that the basic interval has
significantly worse coverage properties
than the percentile interval.

29



In Efron and Tibshirani’s Section 13.4,
titled “Is the percentile interval back-
wards?”, as one book called it, they say
that sometimes, it’s rather the basic in-
terval that is backwards (skewed in the
wrong direction), as I found for the mean
in the Pareto (7/2) case.
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Efron and Tibshirani, §13.4, say nei-
ther the percentile nor the basic interval
works well in all cases. In §14.3 they say
that the BCa method has “two signifi-
cant theoretical advantages.” For one,
it is transformation respecting, mean-
ing preserved by (monotone) transfor-
mations of T [such as taking log(T ) if
T > 0], as the percentile intervals also
are. The other stated advantage is second-
order accuracy, meaning that coverage
probabilities are approximated within
O(1/n) as opposed toO(1/

√
n) for first-

order accuracy with the other methods.
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There are bootstrap confidence inter-
vals assuming approximate normal dis-
tribution of the Ti, using normal or t
distributions, but for lack of time I won’t
say much more about these. Venables
and Ripley, p. 136, say that if the dis-
tribution of the Ti is asymmetric, “in-
tervals based on normality are not ade-
quate.”
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Bootstrapping of the mean. Here
one considers means T (P ) = ∫ f dP for
a fixed function f , so that T (Pn) are
sample means. The bootstrap works in
this case by the Giné–Zinn theorem if
f ∈ L2(P ). They showed in a 1989
paper that the weaker condition that f
be in the domain of attraction of a nor-
mal law suffices. Athreya (1987) had
shown that if the distribution of f for
P is in the domain of attraction of a
stable law of index α with 1 < α < 2,
then the bootstrap fails, as the sample
means can be centered and normalized
to have a limiting α-stable law, but cor-
responding bootstrapped sample means
have a random limit law depending on
the sequence X1, X2, ... .
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Using Athreya’s result, Giné and Zinn
(1989) proved that for the bootstrap to
work, being in the domain of attraction
of a normal is necessary. For statistics,
it seems that the main interest will be
in f ∈ L2, or better.
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In 200 experiments on 90% confidence
intervals for the mean for Pareto(9/2),
again with n = 100, the number of
cases of non-coverage by the normal,
basic, percentile, and BCa intervals re-
spectively was 33, 37, 33, and 31 respec-
tively. None of these is consistent with
true average coverage probability of 0.9;
BCa comes closest.
Conditioning on disagreement in cov-

erage between the kinds of intervals,
which occurred in just 16 of the 200 ex-
periments, the apparent superiority of
the BCa (relatively best, 11 coverages)
over the basic (relatively worst, 5 cover-
ages) interval was not significant in it-
self, even without a correction for mul-
tiple testing.
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Bootstrap of the variance

Googling “Bootstrap of the mean” (with
the quotes) gave me 47,300 hits (although
beyond some point, Google may begin
to disrespect the literal quotes), but “boot-
strap of the variance” gave just two (4
June 2014). The topic is mentioned in
Davison and Hinkley. One of the two
papers was on time series, leaving only
one about i.i.d. data, a Report from Up-
psala University by S. Amiri, D. von
Rosen, and S. Zwanzig (2008) “On the
comparison of parametric and nonpara-
metric bootstrap,” concerned with es-
timates and not, as far as I saw, with
confidence intervals.
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If T is the variance functional T (P ) =
VarP (x) for distributions P on the line,

T (Pn) = s′X
2
:=

1

n

n
∑

j=1
(Xj −X)2.

It is well known thatET (Pn) =
n−1
n T (P ).

It follows, for Pn in place of P , that

E(T (PB
n )|Pn) =

n− 1

n
T (Pn).

The unbiased sample variance is a U-
statistic,

1

n− 1

n
∑

j=1
(Xj −X)2 =

1
(n
2

)

∑

1≤i<k≤n

1

2
(Xi −Xk)

2.

I have that in §11.9 on U-statistics of
my book Real Analysis and Probabil-
ity, 1989; 2002 Cambridge University
Press.
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My source on history of the bootstrap
of U-statistics was Evarist’s St.-Flour
Lectures from 1996. The central limit
theorem for nondegenerate U statistics
of order 2, as this one is, holds under a
hypothesis which in this case amounts
to E(X4

1) < ∞. It follows from results
of von Mises (1947) on what are now
called V -statistics. The corresponding
bootstrap central limit theorem for or-
der 2 also holds under the same hypoth-
esis as shown by Bickel and Freedman,
Ann. Stat. 1981.
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For small n, the biases are not negli-
gible. They are nonparametric, holding
for all distributions with finite variance.
I did 100 experiments, in each of which

I generated 20 i.i.d. N(0, 1) variables,
and noted which of the normal, basic,
percentile, and BCa 90% intervals for
the variance covered the target σ2 = 1.
There were respectively 19, 20, 19, and
11 cases of non-coverage. Seemingly be-
cause of the bias(es), the normal, basic,
and percentile intervals for the variance
are to the left of where they should be
and have inferior coverage frequencies.
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The probability of 81 or fewer suc-
cesses in 100 independent trials with prob-
ability 0.9 of success on each is 0.00458.
Multiplying by 3 to correct for multi-
ple tests (Bonferroni) gives 0.0137. So
there is evidence that the normal, basic,
and percentile intervals with target 90%
confidence do not attain the target in
this case. The BCa interval does much
better. As its name implies, it does bias
correction. A confidence interval for its
coverage probability is [0.828, 0.932], in-
cluding 0.9.
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I took n = 20 as suggested by the
Wikipedia articleBootstrapping (statis-
tics), accessed May 26, 2014, which said
that the coverage probability of the per-
centile 90% confidence interval in this
case is 0.78. The 0.81 I found gives a
90% confidence interval for that cover-
age probability of [0.738, 0.866], which
indeed contains 0.78. The article favors
the basic interval, but does not give a
number for it to compare to 0.78. From
my data, it seems no better.
Davison and Hinkley give a table of

coverage probabilities of “confidence in-
tervals for normal variance ... for 10
samples each of size two,” in which the
BCa interval does very well, much bet-
ter than the basic or percentile intervals.
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One should consider non-normal dis-
tributions of Xj. I experimented with
i.i.d. Pareto (11/2) variables, which do
have fourth moments, EX4

1 = 9. I
took samples of n = 200 of them at a
time, checking the coverage of the nor-
mal, basic, percentile and BCa target
90% confidence intervals for the vari-
ance. In 100 experiments, non-coverage
of σ2 occurred respectively 29, 33, 29,
and 22 times. There is a strong ten-
dency for intervals to be to the left of
where they should be. Of the total 113
non-coverages, in 111 the right endpoint
of the interval was less than σ2. The
other two cases were both for the BCa
interval.
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The target fraction of non-coverages
on each side is .05, so one could say it’s
a merit of the BCa interval that on the
right it had two and the others none.
The BCa interval, intended to compen-
sate for bias and skewness, has only par-
tial success in this case; it is only rela-
tively better than the other intervals.
In 5 of the 100 experiments, the sam-

ple variance T (Pn) was less than half
the true variance T (P ), meaning that
the basic 1− α interval could not have
covered T (P ) no matter for how small
α > 0.

43


