
CONTINUED FRACTIONS

Lecture notes, R. M. Dudley, Math Lecture Series, January 15, 2014

1. Basic definitions and facts

A continued fraction is given by two sequences of numbers {bn}n≥0 and {an}n≥1.
One traditional way to write a continued fraction is:

(1) Q = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + · · ·
Recall that an infinite sum

∑∞

i=1 ai means the limit as n → ∞ (if it exists) of the
finite sum

∑n
i=1 ai, and an infinite product Π∞

i=1ai means the limit, if it exists, of
the finite products a1a2 · · · an (sometimes with the proviso that none of the factors
ai is 0). Similarly, an infinite continued fraction will be the limit, if it exists, of the
sequence of numbers

Q0 = b0, Q1 = b0 + a1/b1, Q2 = b0 + a1/(b1 + (a2/b2)), ... .

To be more precise, let Tj(z) := Tj(z; aj , bj) := aj/(bj + z) for any number z and
j = 1, 2, . . . (here “:=” means “equals by definition”). Then the nth convergent of
the continued fraction is given by

(2) Qn = b0 + T1(T2(· · · (Tn(0)) · · · ))
if the expression is defined. Here 0/0 is undefined but we define a/0 := ∞ for a 6= 0
and b/(c +∞) := 0 for any finite b, c. To multiply the continued fraction by a con-
stant c, one can multiply both b0 and a1 by c. Clearly, Qn = Qn(b0, ..., bn; a1, ..., an)
is a rational function (quotient of polynomials) of its 2n + 1 arguments. The con-
tinued fraction Q = Q({bk}k≥0, {ak}k≥1) will be called convergent to a finite value
Q if for n large enough, Qn is defined and finite and limn→∞ Qn = Q. For example,
if b0 = a1 = b1 = 0 and a2 = b2 = 1 then Q1 is not defined but Q2 is well defined
and equals 0. A convergent continued fraction is said to terminate at the nth term
for the smallest positive integer n such that an = 0 and Qk is defined for all k > n.
Then Qk = Qn−1 for all k > n.

Since expressions like (1) can take up a lot of space, we will follow several other
authors in writing the continued fraction (1) as

b0 +
a1

b1+

a2

b2+
· · · .

The following formula for a sequence {Xn}n≥−1 is called the Wallis-Euler recur-
rence formula:

(3) Xn = bnXn−1 + anXn−2, n = 1, 2, ... .

Theorem 1 (Wallis–Euler). For the continued fraction (1) and n = 0, 1, 2, ..., we
have Qn = An/Bn where each of the two sequences {An} and {Bn} satisfies (3)
for A−1 := 1, B−1 := 0, A0 := b0, and B0 := 1. Here Qn = An/Bn means that
either both sides are defined and equal, or neither side is defined.
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Proof. Define An recursively for n ≥ 1 by (3) with An in place of Xn, and likewise
define Bn. Clearly Qn = An/Bn for n = 0 or 1. To prove this for n ≥ 2 by
induction, for general sequences and not just fixed sequences {aj}, {bj}, suppose
it holds for a given n. By (2), Qn+1 equals Qn with Tn(0) = an/bn replaced by
Tn(Tn+1(0)), in other words with bn replaced by bn + (an+1/bn+1) (which may be
infinite or undefined if bn+1 = 0). Then by (3) for n and the induction hypothesis,
if bn+1 6= 0,

Qn+1 =

(

bn + an+1

bn+1

)

An−1 + anAn−2
(

bn + an+1

bn+1

)

Bn−1 + anBn−2

=

(

An +
an+1

bn+1
An−1

)

/

(

Bn +
an+1

bn+1
Bn−1

)

= (bn+1An + an+1An−1)/(bn+1Bn + an+1Bn−1) = An+1/Bn+1

by (3) for n + 1, finishing the proof if bn+1 6= 0. Or if bn+1 = 0 and an+1 6= 0 then
Tn+1(0) = ∞ and Tn(Tn+1(0)) = 0 so Qn+1 = Qn−1 and

An+1

Bn+1
=

an+1An−1

an+1Bn−1
=

An−1

Bn−1
= Qn−1 = Qn+1

as stated. Lastly if an+1 = bn+1 = 0 then An+1/Bn+1 = 0/0 undefined and Tn+1(0)
is undefined so Qn+1 is also undefined, finishing the proof. Q.E.D.

From (3) and Theorem 3, it’s clear that An and Bn are polynomials with integer
coefficients in the 2n + 1 variables b0, a1, b1, ..., an, bn. Actually Bn doesn’t depend
on b0 or a1. For j = 0, 1, ..., n let

Qn,j := Qn,j(b0, b1, ..., bn; a1, ..., an) := Qn−j(0, bj+1, ..., bn; aj+1, ..., an).

Then for j = 0, ..., n,

(4) Qn = Qn(b0, b1, ..., bn; a1, ..., an) = Qj(b0, ..., bj−1, bj + Qn,j ; a1, ..., aj).

Theorem 2. Suppose that for given {ai}i≥1 and {bi}i≥0, and a given nonnegative
integer j, the vectors (Aj−1, Aj) and (Bj−1, Bj) are linearly independent in the
plane. Then the set of all sequences {Xi}i≥j−1 satisfying (3) for n ≥ j + 1 is
two-dimensional and has a basis given by {Ai}i≥j−1 and {Bi}i≥j−1. The linear
independence is true if and only if the determinant Dj := Aj−1Bj − Bj−1Aj 6= 0,
and we have

(5) D0 = 1 and Dj = (−1)ja1a2 · · · aj , j ≥ 1.

Proof. D0 = 1 follows from the definitions, and

D1 = b0B1 − A1 = b0b1 − b1b0 − a1 = −a1

as stated. To prove (5) for larger j by induction, suppose it holds for a given j.
Then by (3)

Dj+1 = AjBj+1 − BjAj+1

= Aj(bj+1Bj + aj+1Bj−1) − Bj(bj+1Aj + aj+1Aj−1) = −aj+1Dj

and (5) follows.
The set of all {Xi}i≥j−1 satisfying (3) for the given ai and bi is a vector

space since the equations (3) are linear in the Xi. Once Xj−1 and Xj are given,
the Xi for i > j are uniquely and linearly determined by (3) applied for n =
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j + 1, j + 2, ... . So the set of solutions is indeed two-dimensional and if the two
vectors (Aj−1, Aj), (Bj−1, Bj) are linearly independent, then clearly so are the se-
quences {Ai}i≥j−1, {Bi}i≥j−1. The equivalence of linear independence of vectors
and the given determinant not vanishing is well known from linear algebra, and the
conclusion follows. Q.E.D.

Now, some inequalities for continued fractions will be developed. A continued
fraction (1) will be called fully positive if an ≥ 0 and bn > 0 for all n ≥ 1.

Theorem 3 (Euler). If a continued fraction (1) is fully positive, and if Q converges,
then

Q0 ≤ Q2 ≤ Q4 ≤ · · · ≤ Q ≤ · · · ≤ Q5 ≤ Q3 ≤ Q1.

If also an > 0 for all n then each “≤” can be replaced by the strict inequality “<.”
If Q doesn’t converge, the inequalities remain true if “≤ Q ≤” is omitted.

Proof. By induction on n, from (2), Qn is a nondecreasing function of bn (increas-
ing if all aj > 0) for n even, and a nonincreasing (resp. decreasing) function of it
for n odd. Thus by (4), if j is even, then Qj ≤ Qn for all n ≥ j, while if j is odd,
Qj ≥ Qn for all n ≥ j, and the Theorem follows. Q.E.D.

Theorem 3 implies that for a fully positive convergent continued fraction Q, if
two successive convergents Qn and Qn+1 are close together, then since Q is between
them we have good lower and upper bounds for it. If A is an approximation to
Q, the relative error of the approximation is defined as |(A/Q) − 1|. So given
ε > 0, to compute Q with a relative error < ε we can take n large enough so that
(Q2n+1/Q2n) − 1 < ε and let A = Q2n+1.

A similar thing happens for continued fractions with terms aj alternating in sign,
as follows.

Definition. A continued fraction (1) will be called alternating if the following all
hold:
(i) b0 ≥ 0 and bj ≥ 1 for all j ≥ 1.
(ii) Let K := i + 1 for the least i such that ai = 0, or K := +∞ if there is no such
i. Then for all positive integers j < K, aj = (−1)j+1cj where cj ≥ 0 and if j is
even, cj < 1.

A monotonicity argument like the proof of Theorem 3 also can be applied to
alternating continued fractions. This was noted at least in special cases by A. A.
Markov around 1920. The following formulation is not proved here, see Dudley
(1987). As shown there, some functions (e.g. hypergeometric functions) can be
evaluated more efficiently, in some ranges, via fully positive or alternating continued
fractions than by summing their Taylor series.

Theorem 4. For any alternating continued fraction Q, if Q converges, then

Q1 ≤ Q4 ≤ Q5 ≤ Q8 ≤ · · · ≤ Q ≤ · · · ≤ Q7 ≤ Q6 ≤ Q3 ≤ Q2.

For a convergent alternating continued fraction Q, and any n ≥ 1, Q is between
Qn and Qn+2, so if Qn and Qn+2 are close, then we have good upper and lower
bounds for Q. To compute an alternating continued fraction Q to within a relative
error < ε, one can find k large enough so that (Q4k+2/Q4k+1)− 1 < ε and approx-
imate Q by Q4k+2. Alternating continued fractions won’t be mentioned further in
this talk.
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2. Convergence conditions

A continued fraction (1) and a series
∑

j≥0 cj are called equivalent if for each

n = 0, 1, 2, ..., Qn =
∑n

j=0 cj . In particular, all Qn must be defined. Clearly, for

any continued fraction (1) with all Qn defined, there is a unique equivalent series,
with c0 = b0 and cn = Qn − Qn−1 for all n ≥ 1. Thus by Theorems 1 and 3,

cn = −Dn/(Bn−1Bn) = (−1)n+1a1a2 · · · an/(Bn−1Bn).

Since convergence of a series doesn’t depend on its first term, it follows that:

Theorem 5. A continued fraction (1) with all Qn defined is convergent if and only
if, for Dj as in (5), the following series converges:

(6)

∞
∑

j=1

Dj

Bj−1Bj .

A continued fraction (1) will be called unary if an = 1 for all n ≥ 1. For such a
continued fraction, if bn are small, approaching 0, putting in one more term makes
a big difference: bn is small, but bn + (1/bn+1) is large, and so on. So for the
continued fraction to converge, bn should not be too small.

Theorem 6. A unary continued fraction (1) with
∑

n |bn| < ∞ does not converge.

Proof. For a unary continued fraction we have |Bn| ≤ Πn
j=1(1+|bj |) for all n ≥ 1, as

follows from B−1 = 0, B0 = 1, Theorem 1, which gives |Bn| ≤ |bn||Bn−1|+ |Bn−2|,
and by induction on n. Now

∑

j |bj | < ∞ implies Π∞
j=1(1+|bj |) < ∞ since 1+x ≤ ex

for x ≥ 0. Thus |Bn| remain bounded, and since Dj = ±1, the terms of the series
(6) don’t approach 0, so it diverges, Q.E.D.

Theorem 7 (Seidel and Stern). A unary, fully positive continued fraction (1) is
convergent if and only if

∑∞

n=1 bn = +∞.

Proof. “Only if” follows from Theorem 6. To prove “if,” suppose
∑∞

n=1 bn = +∞.
By Theorems 2 and 5, we need to show that the series (6),

∑∞

j=1(−1)j/(Bj−1Bj)
in this case, converges. By Theorem 1, Bj = bjBj−1 + Bj−2 > Bj−2. Thus the
terms of (6) are alternating in sign and decreasing in absolute value, so it is enough
to show that their absolute values approach 0. It will be shown by induction on n
that for n ≥ 1,

(7) B2n ≥ 1 + b1(b2 + b4 + · · · + b2n), B2n+1 > b1 + b3 + · · · + b2n+1.

We have B1 = b1, B2 = b2b1 + 1, and B3 = b1b2b3 + b3 + b1 > b1 + b3, so (7) holds
for n = 1. Assuming (7) for some n ≥ 1, we get from Theorem 1

B2n+2 = b2n+2B2n+1 + B2n > b2n+2b1 + B2n,

B2n+3 = b2n+3B2n+2 + B2n+1 > b2n+3 + B2n+1,

which gives the induction step. Since
∑

n bn = +∞ and b1 > 0, either B2n → +∞
or B2n+1 → +∞, so the terms of (6) approach 0 and it converges. Q.E.D.

3. Rational approximation of real numbers

A continued fraction (1) will be called canonical if it is unary, b0 ∈ Z :=
{0,±1,±2, ...}, and bn is a positive integer for all n ≥ 1. By Theorem 7, every
canonical continued fraction is convergent.
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Theorem 8. A number q is rational, q ∈ Q, if and only if there is a canonical
continued fraction Q such that Qn = q for some n. Each rational number q has
exactly two such representations. If it has one with n = 0, or n ≥ 1 and bn ≥ 2,
then the other has n replaced by n + 1, bn by bn − 1 and bn+1 := 1. Or if q = Qn

with n ≥ 1 and bn = 1, the other representation has n replaced by n − 1 and bn−1

by bn−1 + 1.

Proof. In a canonical (or any unary) continued fraction, Qn only depends on
b0, b1, . . . , bn, so once we have defined them, the values of bk for k > n won’t change
Qn, e.g. we can set bk = 1 for k > n. If q ∈ Z the theorem holds, with either n = 0
and b0 = q, or n = 1, b0 = q − 1, and b1 = 1. If q /∈ Z, let b0 be the largest integer
< q. So we can reduce to the case b0 = 0 and 0 < q < 1. Let q = k1/m1 where
0 < k1 < m1 are integers and k1/m1 is in lowest terms. There is a unique positive
integer b1 such that 1/(b1 + 1) < k1/m1 ≤ 1/b1. Thus b1 ≤ m1/k1 < b1 + 1. If
b1 = m1/k1 (so k1 = 1) let n = 1 and we get Q1 = q as desired. Otherwise iterate
the process and take the unique positive integer b2 such that

1/(b2 + 1) < k2/m2 := (m1/k1) − b1 ≤ 1/b2,

where k2/m2 is in lowest terms, thus m2 = k1 < m1. We get a decreasing sequence
mj of positive integers, so after finitely many steps, the process ends and gives
q = Qn for some n ≤ m1.

It’s clear that given one representation q = Qn, q has another representation as
described. For any positive integers k and mj for j = 1, ..., k,

0 < Qk(0,m1, ...,mk; 1, 1, ..., 1) ≤ 1,

with equality if and only if k = 1 = m1. This fact, applied to fractions Qn,j as
in (4), implies that there are exactly two representations of q of the given form.
Q.E.D.

For irrational numbers we have:

Theorem 9. There is a one-to-one correspondence between irrational real numbers
x and canonical continued fractions Q = x.

Proof. Let x0 be irrational. Let b0 be the largest integer < x0. Then b0 < x0 <
b0 + 1. For n ≥ 1 a sequence of positive integers bn and irrational numbers xn > 1
will be defined recursively. Let x1 := 1/(x0−b0) > 1. Then x1 is irrational. Given
xn > 1 irrational there is a unique positive integer bn such that bn < xn < bn + 1.
Let xn+1 := 1/(xn − bn), which is irrational and > 1. Then

x0 = b0 +
1

x1
= b0 +

1

b1+

1

x2
= . . . = b0 +

1

b1+

1

b2+
· · · 1

xn
.

By Theorem 7, the continued fraction

Q = b0 +
1

b1+

1

b2+
· · ·

converges. By Theorem 3 and its proof, Q2n < x0 < Q2n+1 for all n. So Q = x0.
The positive integers bj are functions of x0. Let x0 equal a canonical continued

fraction β0 + 1
β1+

1
β2+

· · · . Then it’s easily seen that 0 < x0 − β0 < 1 so β0 = b0.

Considering 1/(x0 − β0) we likewise get β1 = b1, and iterating we get βn = bn

for all n. So the irrational numbers are in 1–1 correspondence with the canonical
continued fractions, Q.E.D.
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So, here is an iteration to find a canonical continued fraction for any real number
x0: for each j = 0, 1, 2, . . . , let bj be the largest integer ≤ xj . If xj − bj = 0, then
x0 = Qj , which eventually happens if and only if x0 is rational, as in Theorem 8.
Otherwise, 0 < xj − bj < 1. Let xj+1 = 1/(xj − bj). So xj = bj + (1/xj+1). Then
for i ≥ 1, bi, if defined, will be a positive integer, bi ≥ 1.

Example. Let x0 = π = 3.14159265358979...
.
= 3.14159265359. Then b0 = 3,

x1 = 1/(π − 3)
.
= 7.0625133059, b1 = 7, x2 = 1/(x1 − b1)

.
= 1/(0.0625133059)

.
=

15.9965944, b2 = 15, x3
.
= 1/0.9965944

.
= 1.003417, b3 = 1, x4

.
= 1/0.003417

.
=

292.6, and b4 = 292. For a calculator working to some fixed number of digits
of accuracy, some digits are lost at each stage, and eventually bk would become
incorrect.

The canonical continued fraction for π, for which we just found the first few
terms, is

π = 3+
1

7+
+

1

15+
+

1

1+
+

1

292+
+

1

1+
+

1

1+
+

1

1+
+

1

2+
+

1

1+
+

1

3+
+

1

14+
+

1

1+
+· · · ,

with no discernible pattern. This continued fraction was found (as far as given) by
J. Wallis in his book Tractatus de Algebra in 1685 and is stated in Perron, p. 242.

As rational approximations to π the continued fraction gives Q0 = 3, Q1 = 22/7
(over 2200 years ago Archimedes proved 223/71 < π < 22/7), Q2 = 333/106,
Q3 = 355/113, an approximation found in China over 1500 years ago. After that
the denominators get much larger: Q4 = 103993/33102.

Note that for canonical continued fractions Q, the quantities An and Bn as
defined in Theorem 1 are all integers and Bn > 0 for n ≥ 0 by (7).

Theorem 10. For any canonical continued fraction Q and any n ≥ 1, the fraction
Qn = An/Bn is in lowest terms, i.e. An and Bn are relatively prime.

Proof. By (5), An−1Bn − AnBn−1 = (−1)na1 · · · an = (−1)n. A common factor
of An and Bn would be a factor of (−1)n, which is impossible, Q.E.D.

Any real number x can be approximated by a rational number r/s for any positive
integer s and some r ∈ Z with an error |x − (r/s)| ≤ 1/(2s). It turns out that for
suitable s, it’s possible to make the error less than 1/s2, and that continued fractions
will give us such rational approximations, as the next fact shows. Conversely, if the
error is less than 1/(2s2), r/s must equal some Qn from the canonical continued
fraction Q (Corollary 1).

Theorem 11 (Lagrange). Let x0 be an irrational real number with canonical con-
tinued fraction (1) from Theorem 9

x0 = Q = Q({bk}k≥0) := Q({bk}k≥0, {ak}k≥1)

where ak = 1 for all k. Then for Bk as usual (Theorem 1), for all n ≥ 0,

|x0 − Qn| < 1/(BnBn+1) ≤ 1/B2
n.

Proof. Let x(n) := Q({bk+n}k≥0) for n = 0, 1, ..., and for any β0, ..., βn,

Qn({βk}n
k=0) := Qn(β0, ..., βn; a1, ..., an)

where a1 = a2 = · · · = an = 1. Then x0 = Qn({βk}n
k=0) where βk = bk for

k = 0, 1, ..., n−1 and βn = x(n). It follows from Theorem 1 that for any n = 1, 2, ...,

(8) x0 = [x(n)An−1 + An−2]/[x(n)Bn−1 + Bn−2].
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Therefore

x0 − Qn−1 =
An−2Bn−1 − An−1Bn−2

Bn−1(x(n)Bn−1 + Bn−2)
.

We have Bk ≥ 0 for all k, Bk > 0 for k ≥ 0, and x(n) > bn. By Theorem 1 and (5) we
then have |x0−Qn−1| < 1/(Bn−1Bn). Replacing n by n+1 gives the first conclusion.
Then noting that for a canonical continued fraction, B0 ≤ B1 < B2 < · · · , we get
the second bound. Q.E.D.

In the example of the canonical continued fraction of π given before Theorem 10
we got Q3 = 355/113

.
= 3.1415929... where the given digits equal those of π except

for the last one. From Theorem 11, we see that

355

113
− π =

θ

1132

for some θ with |θ| < 1. In fact in this case θ
.
= 0.0034, which is small, as is

connected with the unusually large number 292 occurring in the canonical continued
fraction expansion. So 355/113 is a remarkably good rational approximation of π
in relation to its denominator, which is not very large. According to some websites,
this approximation was first discovered in China by Zu or Zhu Chongzhi (spelled
Tsu Ch’ung Chi on another site), who lived from about 430 to 500 A.D., and a son.
It was not improved until about 1,000 years later.

Let |x0 − (r/s)| = θ/s2 where r, s ∈ Z, s > 0, and r/s is in lowest terms. Then
for r/s to equal some Qn for the canonical continued fraction of x0, we have just
seen that θ < 1 is necessary, and it will be shown that θ < 1/2 is sufficient. The
precise necessary and sufficient condition is as follows.

Theorem 12. Let x0 be a real irrational number. Let r, s ∈ Z with s > 0 where
r/s is in lowest terms. Represent r/s = Qn({γk}n

k=0) by Theorem 8 for integers γk

with γk > 0 for k ≥ 1 and n such that (−1)n(x0 − (r/s)) > 0 (by Theorem 8, we
can choose n even or odd). Define

θ := s2(−1)n
[

x0 −
r

s

]

> 0.

Let Ak and Bk for k = −1, 0, ..., n be defined as Ak and Bk for Qn({γk}n
k=0) by

Theorem 1. Then for the canonical continued fraction Q of x0, r/s = Qm for some
m if and only if

(9) θ < Bn/(Bn + Bn−1),

and then n = m.

Proof. The case m = 0 can occur if and only if s = 1. Then r/s = Q0 if and
only if r = b0. Since B0 = 1 and B−1 = 0 by definition, B0/(B0 + B−1) = 1 and
the equivalence holds in this case. So we can assume m ≥ 1 and s ≥ 2. Then also
n ≥ 1 (n = 0 is only possible for s = 1).

To prove “if,” let w := (Bn − θBn−1)/(θBn). Since 0 < θ < 1 and Bn ≥ Bn−1 >
0, we have w > 0. Solving for θ gives

(10) θ = Bn/(wBn + Bn−1).

By Theorem 10, r = An and s = Bn. Thus by definition of θ,

x0 =
r

s
+

(−1)nθ

s2
=

r

s
+

(−1)n

B2
n

· Bn

(wBn + Bn−1)
=

An(wBn + Bn−1) + (−1)n

Bn(wBn + Bn−1)
.
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Now AnBn−1 + (−1)n = An−1Bn by (5), so

(11) x0 = (Anw + An−1)/(Bnw + Bn−1).

Since θ is irrational, so is w by (10). We have w > 1 if and only if (9) holds, by
(10). If w > 1, then by Theorem 9, we have the canonical continued fraction w =
Q({ζk}k≥0) for some positive integers ζk (ζ0 ≥ 1 since w > 1). Let γk := ζk−n−1

for k ≥ n + 1. Then Q({γk}k≥0) is a canonical continued fraction, so it converges

to some ξ, with ξ(n+1) = w from the definitions. Then by (8) applied to ξ and to
n+1 in place of n, ξ = (Anw+An−1)/(Bnw+Bn−1) = x0 by (3.4). Thus Ak = Ak

and Bk = Bk for k = −1, 0, 1, ..., n, and r/s = Qn. So “if” holds, with n = m as
stated. By Theorem 3, since aj ≡ 1 > 0, m is uniquely determined.

[To confirm that the definitions of n and θ in Theorem 12 give n = m as opposed
to n = m ± 1, if r/s < x0 then n is even, and if r/s = Qm then m is also even by
Theorem 3. Likewise if Qm = r/s > x0 then n and m are both odd.]

To prove “only if,” still with m ≥ 1, n ≥ 1, and s ≥ 2, let w < 1, i.e. (9) fails.
Since w > 0 we then have γn + (1/w) > γn + 1. The canonical continued fraction
expansion of γn + 1/w is Q({ci}i≥0) where c0 = γn + u with u ≥ 1. I claim that
x0 = Qn({γ′

k}n
k=0) where γ′

k = γk for k = 0, 1, ..., n − 1 and γ′
n = γn + (1/w). For

this let A′
k and B′

k be defined like Ak and Bk respectively except with γ′
j in place

of γj , and let Q′
k = A′

k/B′
k for k = −1, 0, . . . , n. Then A′

k = Ak and B′
k = Bk for

k = −1, 0, . . . , n − 1, and we have by Theorem 1

Q′
n =

wA′
n

wB′
n

=
(wγn + 1)An−1 + wAn−2

(wγn + 1)Bn−1 + wBn−2
=

wAn + An−1

wBn + Bn−1
= x0

by (3.4), proving the claim.
It follows that in the canonical continued fraction for x0, bk = γk for k =

0, 1, ..., n − 1 and bn = c0 = γn + u. Then Qn−1 = An−1/Bn−1 = An−1/Bn−1 and
Qn = (An + uAn−1)/(Bn + uBn−1), while r/s = An/Bn. Now

Bn−1 = Bn−1 ≤ Bn < Bn + uBn−1 = Bn.

If n ≥ 2, or n = 1 and γ1 > 1, then Bn−1 < Bn and r/s cannot be any Qk, since
s = Bn is not equal to any Bk, using Theorem 10. If n = γ1 = 1, then s = 1, a case
treated at the beginning of the proof. Thus r/s is no Qk of x0 in any case. This
completes the proof of Theorem 12, Q.E.D.

Corollary 1. If x0 is irrational and |x0 − (r/s)| < 1/(2s2), where r and s are
integers and s > 0, then r/s = Qn for some n where Q is the canonical continued
fraction of x0.

Proof. Since Bn ≥ Bn−1, θ < 1/2 implies θ < Bn/(Bn + Bn−1) (9) for any n,
Q.E.D.

4. Musical intervals

A vibrating string (of a piano, violin, etc.) has a basic frequency b and overtones
2b, 3b, . . .. If basic frequencies b and b′ have ratio b/b′ = m/n for small integers m
and n they will have overtones in common and sound “consonant.” The Pythagore-
ans over 2500 years ago noticed the consonance of “octaves” b′/b = 2/1 and “fifths”
b′/b = 3/2. Combining these they got a scale, but to keep the scale finite, an ap-
proximation is needed somewhere because no power of 3/2 exactly equals a power
of 2, for integer powers not both 0.
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To divide an octave into m notes so that the ratio of frequencies of successive
notes is a constant, the constant must be 21/m. To get a good approximation
of a fifth, from each note to the kth note above it, we then need to have 2k/m

approximately 3/2. In other words, we need a good rational approximation k/m
to λ defined as λ = log2(3/2)

.
= 0.58496. The canonical continued fraction ex-

pansion of λ has denominators Bn forming an increasing sequence of possible m’s:
1, 2, 5, 12, 41, .... Choosing among these, we can see that m = 5 or less would give
a coarse scale of too few notes. Whereas, m = 41 gives too many notes: that many
notes crowded into a single octave of a piano would give a fine approximation of
fifths, but it wouldn’t be worth it. So m = 12 is the adopted solution: in each
octave there are 7 white keys and 5 black keys, counting only one of the two ends
of the octave. Pianos, for about the past century, have “equal temperament” where
the octave is divided into 12 half-tones, with ratio of successive frequencies 21/12.
This results in approximations etq of the so-called “just” consonances q = m/n as
follows. Here d represents the absolute error d = |etq − q| and d/q is the corre-
sponding relative error. CF(etq) is the canonical continued fraction of etq and the
last column gives a convergent equal to q.

Interval q = m
n etq d d/q Qk CF(etq)

Octave 2 2 0 0 Q0 2
Fifth 3/2 27/12 0.0017 0.0011 Q1 1 + 1

2+
1

147+ · · ·
Fourth 4/3 25/12 0.0015 0.0011 Q2 1 + 1

2+
1

1+
1

73+ · · ·
Major third 5/4 21/3 0.0099 0.0079 Q2 1 + 1

3+
1

1+
1

5+ · · ·
Minor third 6/5 21/4 0.0107 0.0090 Q1 1 + 1

5+
1

3+ · · ·

For the fifth and fourth, the approximations by equal temperament are close enough
so that the human auditory system generally accepts them as consonances. For the
thirds, the approximations are generally accepted by the broad musical community,
but some specialists dislike them, e.g. Sethares (1998).

Only the first two of the following problems are assigned.

PROBLEMS

1. (a) Find the canonical continued fraction of the number e far enough to evaluate
q = Q5 = m/n for positive integers m = A5 and n = B5.

(b) Evaluate n2|e−q| and check that it’s less than 1, as it should be by Theorem
11. Also check if it’s less than 1/2, so that if we had been given q in advance, we
would have known q must equal Qk for some k (Corollary 1).

(c) Let Sk =
∑k

j=0
1
j! , a sequence of rational numbers (coming from the Taylor

series of ex around 0, evaluated at x = 1) which converges to e rather fast. Find
S4 = µ/ν in lowest terms for positive integers µ and ν.

(d) Find ν2|e−S4|. In terms of this, is the approximation of e by S4 as good as
those given by canonical continued fractions (as in part (b))?

2. In the table for musical intervals, consider the next interval beyond a fifth, which
would have an approximation etq = 28/12 = 22/3.
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(a) Find q for this case (a ratio of single-digit integers). Hint: note that 22/3 =
2/21/3 and look at the “octave” and “major third” lines of the table.

(b) Find the canonical continued fraction of 22/3 to enough terms and with
enough accuracy to do the next part.

(c) For what k does Qk = q, as in the last column of the table?
(d) Let q = m/n with m = Ak and n = Bk integers. Find n2|etq − q| and verify

it’s less than 1.

UNASSIGNED PROBLEMS

You can do Problem 3 for extra credit.

3. In the canonical continued fraction expansion of
√

2,
(a) Show that bk = 2 for all k ≥ 1.
(b) Show that Ak+1 ≡ 5Ak−1 + 2Ak2

and Bk+1 ≡ 5Bk−1 + 2Bk−2 for all k ≥ 0.

4. For the same continued fraction:
(a) Find constants K > 1, C,D,E, F such that for all n, An = CKn + D(−K)−n

and Bn = EKn + F (−K)−n.

(b) Show that B2
n|(An/Bn)−

√
2| is never 0 and converges to a non-zero limit ζ as

n → +∞. Find ζ.
(c) Prove that for any sequences mk and nk of positive integers and qk = mk/nk,

n2
k|qk −

√
2| cannot approach 0 as k → +∞. So, the order of approximation of

irrational numbers by rationals given by Theorem 11 can’t be improved except by
some constant factor.

5. Find the smallest possible value of n2|(m/n) −
√

2| for any positive integers m
and n.

Notes. Authors mentioned, whose works don’t appear in the following short list,
are cited in one or more of the references given. Sections 2 and 3 were based mainly
on Perron (1929).
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