COMPOSITE HYPOTHESES FOR MULTINOMIAL DISTRIBUTIONS

1. Definitions and an example

Let X_{1}, \ldots, X_{k} be observed with a multinomial $\left(n, \pi_{1}, \ldots, \pi_{k}\right)$ distribution where π_{1}, \ldots, π_{k} are unknown with $\pi_{j} \geq 0$ and $\sum_{j=1}^{k} \pi_{j}=1$. The dimension of this full multinomial model H_{1} with k categories is $d=k-1$. Suppose we have an m-dimensional composite hypothesis H_{0} under which $\pi_{j}=p_{j}(\theta)$ for a parameter θ in an m-dimensional set M_{0} with $m<k-1$. An example for $k=3$ and $m=1$ is the Hardy-Weinberg equilibrium model with $\theta=p, 0<p<1, p_{1}(p)=p^{2}, p_{2}(p)=2 p(1-p)$, and $p_{3}(p)=(1-p)^{2}$. Here M_{0} is the interval $[0,1]$.

It would be inconvenient if any $p_{j}(\theta)$ could be 0 , especially if θ is the true value of the parameter. If we then estimated θ by some θ^{\prime} so that $p_{j}\left(\theta^{\prime}\right)$ is close to 0 , then $n p_{j}\left(\theta^{\prime}\right)$ might be less than 5 and one could not apply chi-squared tests under the usual rule. So, it will be assumed that $p_{j}(\theta)>0$ for all $j=1, \ldots, k$ and all $\theta \in M_{0}$.

2. The Wilks test

Let X be the data vector $\left(X_{1}, \ldots, X_{k}\right)$. It is given as grouped data. If we can test H_{0} by the Wilks likelihood ratio test, then we must be able to find the maximum likelihood estimate $\widehat{\theta}$ of $\theta \in M_{0}$ based on X. In many cases $\widehat{\theta}$ is hard to compute, but we're assuming it can be computed in this case. Then we can also evaluate the χ^{2} statistic

$$
\begin{equation*}
\widehat{X}_{n}^{2}=\sum_{j=1}^{k} \frac{\left(X_{j}-n p_{j}(\widehat{\theta})\right)^{2}}{n p_{j}(\widehat{\theta})} \tag{1}
\end{equation*}
$$

If H_{0} is true, then the distribution of \widehat{X}_{n}^{2} converges as $n \rightarrow \infty$ to that of $\chi^{2}(k-1-m)$, as shown in " χ^{2} tests for composite hypotheses, asymptotic distributions," chisqcmp.pdf. It follows that \widehat{X}_{n}^{2} remains bounded in probability as $n \rightarrow \infty$, i.e. for any $\varepsilon>0$ there is an $M<$ $+\infty$ such that $\operatorname{Pr}\left(\widehat{X}_{n}^{2}>M\right)<\varepsilon$ for all n. This implies that for any
sequence $a_{n} \rightarrow+\infty, \operatorname{Pr}\left(\widehat{X}_{n}^{2}>a_{n}\right) \rightarrow 0$. Thus for each j

$$
\begin{equation*}
\operatorname{Pr}\left(\left|X_{j}-n p_{j}(\widehat{\theta})\right|>\sqrt{n} a_{n}=\operatorname{Pr}\left(\left|\frac{X_{j}}{n}-p_{j}(\widehat{\theta})\right|>n^{-1 / 2} a_{n}\right) \rightarrow 0\right. \tag{2}
\end{equation*}
$$

For example, let $a_{n}=n^{\delta}$ for $0<\delta<1 / 2$. Also, by Wilks's theorem, the Wilks statistic $W=-2 \log (\Lambda)$, where $\Lambda=\Lambda(\widehat{\theta})$ from its definition, has the same limit distribution as $n \rightarrow \infty$.

3. Asymptotic equality of two statistics if H_{0} Holds

Under H_{0}, not only do \widehat{X}^{2} and W have the same limiting distribution, but their difference approaches 0 :

Theorem 1. If H_{0} holds then $\widehat{X}^{2}-W \rightarrow 0$ in probability as $n \rightarrow \infty$.
Proof. For H_{0} to hold means there exists a true $\theta_{0} \in M_{0}$, so that $\left\{X_{j}\right\}_{j=1}^{k}$ have a multinomial $\left(n,\left\{p_{j}\left(\theta_{0}\right)\right\}_{j=1}^{k}\right)$ distribution. From the assumptions, $p_{j}\left(\theta_{0}\right)>0$ for all j. Since $k \geq 2$ it also follows that $p_{j}\left(\theta_{0}\right)<1$. Each X_{j} has a binomial $\left(n, p_{j}\left(\theta_{0}\right)\right)$ distribution, with mean $n p_{j}\left(\theta_{0}\right)$ and variance $n p_{j}\left(\theta_{0}\right)\left(1-p_{j}\left(\theta_{0}\right)\right)$. It follows from Chebyshev's inequality that

$$
\begin{equation*}
\operatorname{Pr}\left(X_{j} \leq n p_{j}\left(\theta_{0}\right) / 2\right) \leq \frac{n p_{j}\left(\theta_{0}\right)}{\left(n p_{j}\left(\theta_{0}\right) / 2\right)^{2}}=\frac{4}{n p_{j}\left(\theta_{0}\right)} \rightarrow 0 \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$. It also follows from Chebyshev's inequality that

$$
\begin{equation*}
\operatorname{Pr}\left(\left|X_{j}-n p_{j}\left(\theta_{0}\right)\right|>\sqrt{n} a_{n}\right)=\operatorname{Pr}\left(\left|\frac{X_{j}}{n}-p_{j}\left(\theta_{0}\right)\right|>n^{-1 / 2} a_{n}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

Combining with (2) gives that for each $j=1, \ldots, k, p_{j}(\widehat{\theta}) \rightarrow p_{j}\left(\theta_{0}\right)$ in probability, i.e. for every $\varepsilon>0, \operatorname{Pr}\left(\left|p_{j}(\widehat{\theta})-p_{j}\left(\theta_{0}\right)\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.

On H_{1} we have the likelihood function

$$
\begin{equation*}
L_{1}(X, \pi)=\binom{n}{X_{1}, \ldots, X_{k}} \prod_{j=1}^{k} \pi_{j}^{X_{j}} . \tag{5}
\end{equation*}
$$

On H_{0} the likelihood is

$$
\begin{equation*}
L(X, \theta)=\binom{n}{X_{1}, \ldots, X_{k}} \prod_{j=1}^{k} p_{j}(\theta)^{X_{j}} . \tag{6}
\end{equation*}
$$

For the Wilks test, the MLEs (maximum likelihood estimates) of π_{j} under the full multinomial model H_{1} are simply $\hat{\pi}_{j}=X_{j} / n$ for $j=$
$1, \ldots, k$, since under H_{1}, X_{j} has a binomial $\left(n, \pi_{j}\right)$ distribution for each j. The likelihood (5) maximized over H_{1} is

$$
\begin{equation*}
\binom{n}{X_{1}, \ldots, X_{k}} \prod_{j=1}^{k}\left(\frac{X_{j}}{n}\right)^{X_{j}} \tag{7}
\end{equation*}
$$

The ratio $\Lambda(\theta)$ of the likelihood at $\theta \in M_{0}$ given in (6) to the likelihood (7), which is maximized over H_{1}, is

$$
\begin{equation*}
\Lambda(\theta)=\prod_{j=1}^{k}\left(n p_{j}(\theta) / X_{j}\right)^{X_{j}} \tag{8}
\end{equation*}
$$

In forming the Wilks statistic, $W=-2 \ln \Lambda$, the likelihood ratio Λ used is the maximum of $\Lambda(\theta)$ over $\theta \in M_{0}$, which is $\Lambda(\widehat{\theta})$.

Maximizing $\Lambda(\theta)$ is equivalent to maximizing its (natural) logarithm, which at $\widehat{\theta}$ equals

$$
\begin{align*}
\log (\Lambda(\widehat{\theta})) & =\sum_{j=1}^{k} X_{j} \log \left(n p_{j}(\widehat{\theta}) / X_{j}\right) \\
& =\sum_{j=1}^{k} X_{j} \log \left(\frac{X_{j}-\left(X_{j}-n p_{j}(\widehat{\theta})\right)}{X_{j}}\right) \\
& =\sum_{j=1}^{k} X_{j} \log \left(1-\frac{X_{j}-n p_{j}(\widehat{\theta})}{X_{j}}\right) . \tag{9}
\end{align*}
$$

To relate this to X^{2} statistics, an idea is to use the Taylor series $\log (1-u)=-u-u^{2} / 2-u^{3} / 3-\cdots$, valid for $|u|<1$, and moreover, to use the series when $|u|$ is small enough so that the first two terms $-u-u^{2} / 2$ give a sufficient approximation. In our case, for

$$
\begin{equation*}
u_{j}=\frac{X_{j}-n p_{j}(\widehat{\theta})}{X_{j}}=1-\frac{n p_{j}(\widehat{\theta})}{X_{j}}, \tag{10}
\end{equation*}
$$

we'd like each $X_{j}\left|u_{j}\right|^{3}$ to be small, for which it suffices that $n\left|u_{j}\right|^{3}$ are small for all j. By (2) with $a_{n}=n^{0.1}$, the probability that $\mid X_{j}-$ $n p_{j}(\widehat{\theta}) \mid \leq n^{3 / 5}$ converges to 1 . Then by (3),

$$
u_{j}=\left|X_{j}-n p_{j}(\widehat{\theta})\right| / X_{j} \leq n^{3 / 5} /\left(n p_{j}\left(\theta_{0}\right)\right)
$$

and $n\left|u_{j}^{3}\right| \leq n^{-1 / 5} / p_{j}\left(\theta_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$, as desired. Further, we get that

$$
\begin{equation*}
n p_{j}(\widehat{\theta}) / X_{j} \rightarrow 1 \tag{11}
\end{equation*}
$$

in probability as $n \rightarrow \infty$. Then

$$
\begin{align*}
\log (\Lambda(\widehat{\theta})) & \doteq \sum_{j=1}^{k} X_{j}\left(\frac{-X_{j}+n p_{j}(\widehat{\theta})}{X_{j}}\right)-\frac{X_{j}}{2}\left(\frac{X_{j}-n p_{j}(\widehat{\theta})}{X_{j}}\right)^{2} \\
& =\sum_{j=1}^{k}-X_{j}+n p_{j}(\widehat{\theta})-\frac{1}{2} \frac{\left(X_{j}-n p_{j}(\widehat{\theta})\right)^{2}}{X_{j}} . \tag{12}
\end{align*}
$$

For the first order terms, we have

$$
\begin{equation*}
\sum_{j=1}^{k}-X_{j}+n p_{j}(\widehat{\theta})=-n+n=0 \tag{13}
\end{equation*}
$$

because $\sum_{j=1}^{k} p_{j}(\widehat{\theta})=1$. [Note however that if p_{j} are not exact but only computed to some fixed number of decimal places, say four, then their sum might equal for example 1.0001 or . 9999 and then the expression in (13 would have absolute value $0.0001 n \rightarrow \infty$ as $n \rightarrow \infty$.] Returning to the situation where (13) holds exactly (if necessary by some adjustment to rounded numbers), we get for $W(\widehat{\theta})=-2 \log \Lambda(\widehat{\theta})$ by (11) and (12)

$$
\begin{equation*}
W(\widehat{\theta})-\widehat{X}^{2} \rightarrow 0 \tag{14}
\end{equation*}
$$

in probability, proving the theorem.
It also follows from (14) that choosing $\theta^{\prime} \in M_{0}$ to maximize the likelihood is approximately the same as the "minimum χ^{2} estimate," choosing $\theta^{\prime} \in M_{0}$ to minimize the right side of (1).

