
COMPOSITE HYPOTHESES FOR MULTINOMIAL

DISTRIBUTIONS

1. Definitions and an example

Let X1, ..., Xk be observed with a multinomial (n, π1, ..., πk) distribu-

tion where π1, ..., πk are unknown with πj ≥ 0 and
∑k

j=1
πj = 1. The di-

mension of this full multinomial modelH1 with k categories is d = k−1.
Suppose we have an m-dimensional composite hypothesis H0 under
which πj = pj(θ) for a parameter θ in an m-dimensional set M0 with
m < k − 1. An example for k = 3 and m = 1 is the Hardy–Weinberg
equilibrium model with θ = p, 0 < p < 1, p1(p) = p2, p2(p) = 2p(1−p),
and p3(p) = (1− p)2. Here M0 is the interval [0, 1].
It would be inconvenient if any pj(θ) could be 0, especially if θ is the

true value of the parameter. If we then estimated θ by some θ′ so that
pj(θ

′) is close to 0, then npj(θ
′) might be less than 5 and one could not

apply chi-squared tests under the usual rule. So, it will be assumed
that pj(θ) > 0 for all j = 1, ..., k and all θ ∈ M0.

2. The Wilks test

Let X be the data vector (X1, ..., Xk). It is given as grouped data.
If we can test H0 by the Wilks likelihood ratio test, then we must be

able to find the maximum likelihood estimate θ̂ of θ ∈ M0 based on
X. In many cases θ̂ is hard to compute, but we’re assuming it can be
computed in this case. Then we can also evaluate the χ2 statistic

(1) X̂2

n =
k∑

j=1

(Xj − npj(θ̂))
2

npj(θ̂)
.

If H0 is true, then the distribution of X̂2

n converges as n → ∞ to that
of χ2(k − 1 − m), as shown in “χ2 tests for composite hypotheses,

asymptotic distributions,” chisqcmp.pdf. It follows that X̂2

n remains
bounded in probability as n → ∞, i.e. for any ε > 0 there is an M <

+∞ such that Pr(X̂2

n > M) < ε for all n. This implies that for any
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sequence an → +∞, Pr(X̂2

n > an) → 0. Thus for each j

(2) Pr(|Xj − npj(θ̂)| >
√
nan = Pr

(∣∣∣∣
Xj

n
− pj(θ̂)

∣∣∣∣ > n−1/2an

)
→ 0.

For example, let an = nδ for 0 < δ < 1/2. Also, by Wilks’s theorem,

the Wilks statistic W = −2 log(Λ), where Λ = Λ(θ̂) from its definition,
has the same limit distribution as n → ∞.

3. Asymptotic equality of two statistics if H0 holds

UnderH0, not only do X̂
2 andW have the same limiting distribution,

but their difference approaches 0:

Theorem 1. If H0 holds then X̂2 −W → 0 in probability as n → ∞.

Proof. For H0 to hold means there exists a true θ0 ∈ M0, so that
{Xj}kj=1

have a multinomial (n, {pj(θ0)}kj=1
) distribution. From the

assumptions, pj(θ0) > 0 for all j. Since k ≥ 2 it also follows that
pj(θ0) < 1. Each Xj has a binomial (n, pj(θ0)) distribution, with mean
npj(θ0) and variance npj(θ0)(1 − pj(θ0)). It follows from Chebyshev’s
inequality that

(3) Pr(Xj ≤ npj(θ0)/2) ≤
npj(θ0)

(npj(θ0)/2)2
=

4

npj(θ0)
→ 0

as n → ∞. It also follows from Chebyshev’s inequality that

(4) Pr(|Xj−npj(θ0)| >
√
nan) = Pr

(∣∣∣∣
Xj

n
− pj(θ0)

∣∣∣∣ > n−1/2an

)
→ 0.

Combining with (2) gives that for each j = 1, ..., k, pj(θ̂) → pj(θ0) in

probability, i.e. for every ε > 0, Pr(|pj(θ̂)−pj(θ0)| > ε) → 0 as n → ∞.
On H1 we have the likelihood function

(5) L1(X, π) =

(
n

X1, ..., Xk

) k∏

j=1

π
Xj

j .

On H0 the likelihood is

(6) L(X, θ) =

(
n

X1, ..., Xk

) k∏

j=1

pj(θ)
Xj .

For the Wilks test, the MLEs (maximum likelihood estimates) of πj

under the full multinomial model H1 are simply π̂j = Xj/n for j =
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1, ..., k, since under H1, Xj has a binomial (n, πj) distribution for each
j. The likelihood (5) maximized over H1 is

(7)

(
n

X1, ..., Xk

) k∏

j=1

(
Xj

n

)Xj

.

The ratio Λ(θ) of the likelihood at θ ∈ M0 given in (6) to the likelihood
(7), which is maximized over H1, is

(8) Λ(θ) =
k∏

j=1

(npj(θ)/Xj)
Xj .

In forming the Wilks statistic, W = −2 lnΛ, the likelihood ratio Λ

used is the maximum of Λ(θ) over θ ∈ M0, which is Λ(θ̂).
Maximizing Λ(θ) is equivalent to maximizing its (natural) logarithm,

which at θ̂ equals

log(Λ(θ̂)) =
k∑

j=1

Xj log(npj(θ̂)/Xj)

=
k∑

j=1

Xj log

(
Xj − (Xj − npj(θ̂))

Xj

)

=
k∑

j=1

Xj log

(
1− Xj − npj(θ̂)

Xj

)
.(9)

To relate this to X2 statistics, an idea is to use the Taylor series
log(1− u) = −u− u2/2− u3/3− · · · , valid for |u| < 1, and moreover,
to use the series when |u| is small enough so that the first two terms
−u− u2/2 give a sufficient approximation. In our case, for

(10) uj =
Xj − npj(θ̂)

Xj

= 1− npj(θ̂)

Xj

,

we’d like each Xj|uj|3 to be small, for which it suffices that n|uj|3 are
small for all j. By (2) with an = n0.1, the probability that |Xj −
npj(θ̂)| ≤ n3/5 converges to 1. Then by (3),

uj = |Xj − npj(θ̂)|/Xj ≤ n3/5/(npj(θ0))

and n|u3

j | ≤ n−1/5/pj(θ0) → 0 as n → ∞, as desired. Further, we get
that

(11) npj(θ̂)/Xj → 1
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in probability as n → ∞. Then

log(Λ(θ̂))
.
=

k∑

j=1

Xj

(
−Xj + npj(θ̂)

Xj

)
− Xj

2

(
Xj − npj(θ̂)

Xj

)2

=
k∑

j=1

−Xj + npj(θ̂)−
1

2

(Xj − npj(θ̂))
2

Xj

.(12)

For the first order terms, we have

(13)
k∑

j=1

−Xj + npj(θ̂) = −n+ n = 0,

because
∑k

j=1
pj(θ̂) = 1. [Note however that if pj are not exact but only

computed to some fixed number of decimal places, say four, then their
sum might equal for example 1.0001 or .9999 and then the expression in
(13 would have absolute value 0.0001n → ∞ as n → ∞.] Returning to
the situation where (13) holds exactly (if necessary by some adjustment

to rounded numbers), we get for W (θ̂) = −2 log Λ(θ̂) by (11) and (12)

(14) W (θ̂)− X̂2 → 0

in probability, proving the theorem. �

It also follows from (14) that choosing θ′ ∈ M0 to maximize the
likelihood is approximately the same as the “minimum χ2 estimate,”
choosing θ′ ∈ M0 to minimize the right side of (1).


