
Normal Distributions and Sample Statistics

18.650, Sept. 9, 2015

1 Review of some probability

Recall that for a real-valued random variable X, its distribution function
is the function F (x) := FX(x) = Pr(X ≤ x). Distribution functions are
characterized by the properties of being nondecreasing, continuous from the
right, and satisfying limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1. A probabil-
ity density is a function f(x) ≥ 0 such that

∫∞
−∞f(x)dx = 1. It is related to

a distribution function F by F (x) ≡ ∫ x
−∞ f(u)du, and F ′(x) = f(x) except

possibly for x in a set A over which
∫

A f(x)dx = 0.
Recall that exp(y) is a notation for ey. A basic normal distribution is the

standard normal distribution which has the standard normal density φ given
by φ(x) = (2π)−1/2 exp(−x2/2), −∞ < x < ∞. From it we get the standard
normal distribution function Φ, Φ(x) =

∫ x
−∞ φ(u)du. It is tabulated in Rice,

Appendix B, Table 2, p. A7, for 0 ≤ x ≤ 3.49. For x > 0, Φ(−x) can be
found as 1− Φ(x), because φ(−x) ≡ φ(x), so

Φ(−x) =
∫ −x

−∞
φ(u)du =

∫ +∞

x
φ(v)dv = 1− Φ(x).

The probability Φ(−3.5)
.
= 0.0002363, which is quite small.

There are families of probability distributions depending on what are
called parameters. Two examples for discrete distributions are:
(i) Binomial distributions: let X be the number of successes in n independent
trials with probability p of success on each trial. Then Pr(X = k) =
(

n
k

)

pk(1− p)n−k for k = 0, 1, ..., n. For a fixed n, p is the parameter.

(ii) Poisson distributions, having one parameter λ, with 0 ≤ λ < +∞, and
Pr(X = k) = e−λλk/k! for k = 0, 1, 2, ... (00 is defined as 1). This distribution
is the limit of binomial distributions where n → ∞, p → 0, and np → λ.
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For any probability density f on the real line, one can create what is
called a location-scale family as follows. For any σ > 0 and any real µ,

fµ,σ(x) =
1

σ
f
(

x− µ

σ

)

always defines a probability density. If the distribution with density f has
mean 0 and variance 1, then the one with density fµ,σ will have mean µ and
variance σ2, thus standard deviation σ, as one can see from the change of
variables z = (x− µ)/σ, x = σz + µ in integrals. Here µ is called a location
parameter and σ a scale parameter.

By far the most important example of a location-scale family on the line
is the family of normal distributions, which one gets starting with f equal to
the standard normal density φ. The normal distribution with mean µ and
variance σ2, with notation N(µ, σ2), has a density defined for any real µ and
0 < σ < ∞ by

fµ,σ(x) =
1

σ
√
2π

exp

(

−(x− µ)2

2σ2

)

, −∞ < x < ∞.

Such distributions are sometimes called Gaussian by probabilists. For reasons
that statisticians don’t call them that, see the historical notes in normalap-
pend.pdf on the course website.

Normal distributions arise as limits in the central limit theorem. Variables
X1, ..., Xn are called i.i.d. (independent and identically distributed) if they
are jointly independent and all have the same distribution. If Xj are i.i.d.
with a distribution having a finite variance σ2 > 0 (and consequently a finite
mean µ), and Sn := X1 + · · · +Xn then the central limit theorem (given in
many probability texts) says that as n → ∞, (Sn − nµ)/(

√
nσ) converges in

distribution to N(0, 1), in other words for all x,

Pr

(

Sn − nµ√
nσ

≤ x

)

→ Φ(x)

as n → ∞. Informally, one can say that Sn itself has approximately a
N(nµ, nσ2) distribution.

There is a more general form of the central limit theorem saying that
the sum of small, independent random variables is approximately normal
(Lindeberg’s Theorem, normalappend.pdf). For example, errors in physical
measurements have been thought to be normal because they may result from
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small, independent contributions. Here for a sum Si =
∑ni

j=1Xij and a large
ni, for Xij to be “small” means small in relation to the sum Si: no individual
term has a major effect on the sum. But, as is seen in problem set 1, mea-
surements of the same physical quantity may not be normal, even though
repeated measurements with the same method and apparatus might be, but
measurements in different laboratories, and/or by different methods, could
have different means and/or variances. Even repeated measurements by one
method in one lab might not be (exactly) normal or independent.

If X1, ..., Xn are i.i.d. each with a N(µ, σ2) density, then their joint n-
dimensional density is

1

(σ
√
2π)n

n
∏

j=1

exp

(

−(xj − µ)2

2σ2

)

=
1

(σ
√
2π)n

exp



− 1

2σ2

n
∑

j=1

(xj − µ)2



 . (1)

2 Statistics

In statistics, one typically begins with some data (observations) X1, ..., Xn.
Suppose they are real-valued. One doesn’t necessarily have a good reason to
assume they are i.i.d. normal.

A text file “rsystem” on the R computer language and system for statistics
is posted on the course website. One can test whether a given data set x =
(X1, ..., Xn) are i.i.d. N(µ, σ2) for some unspecified µ and σ by the Shapiro–
Wilk test, which is implemented in the R system by “shapiro.test(x)”. The
test will issue a “p-value,” and if that is less than the conventional level 0.05,
one would reject the hypothesis of normality. It might not then be justified
to assume that the data are normal. If the hypothesis is not rejected, that
doesn’t mean it is proved or “accepted.” For example, recall that the U [0, 1]
(uniform) distribution has density f(x) = 1 for 0 ≤ x ≤ 1 and 0 elsewhere.
Suppose as in PS1, one generates 25 variables i.i.d. U [0, 1] by the command x
= runif(25) and then tests the data vector for normality by shapiro.test(x),
giving a p-value larger than .05, so that normality is not rejected. But it
certainly is not accepted, because we know the sample was generated as
U [0, 1], not normal. Rather, we can say that for n = 25 the Shapiro–Wilk
test is not powerful enough to reject normality for the U [0, 1] sample. For a
large enough n, it would be rejected.

For a sample of real data, non-rejection of normality means one is justified
for the time being in going ahead and using methods based on assuming
normality.
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If the Xj are i.i.d. normal, then, as usually in statistics, µ and σ are
unknown, but they can be estimated from the data. The mean µ can be
estimated by the sample mean X = Sn/n where Sn =

∑n
j=1 Xj. The variance

σ2 can be estimated for n ≥ 2 by

S2 =
1

n− 1

n
∑

j=1

(Xj −X)2.

Rice uses the notation S2 for this. It is sometimes called s2x (some calculators
display sx) or s

2
X . S, or sX , is called the sample standard deviation for the

sample X = (X1, ...., Xn). The factor 1/(n − 1) is used, for one reason,
because if Xj are i.i.d. with any distribution having a variance σ2 with 0 <
σ < ∞, then Es2X = σ2 (the expectation of the sample variance equals the
true variance), whereas

E
1

n

n
∑

j=1

(Xj −X)2 =
n− 1

n
σ2.

But for some purposes, a factor 1/n rather than 1/(n− 1) will be used.
The sample mean X is an approximation to the true mean µ which tends

to get better as n increases. To see this quantitatively we need to look at
the distribution of X for given µ, σ, and n.

3 More probability

The notation X ∼ P means the random variable X has the probability
distribution P . The sum of two independent normal variables, with any
means and variances, is normal:

Theorem 1 If X and Y are independent random variables with normal dis-
tributions, X ∼ N(µ, σ2) and Y ∼ N(ν, τ 2) then X + Y is also normal, with
X + Y ∼ N(µ+ ν, σ2 + τ 2).

This is proved in the “addnormals.pdf” handout posted on the course website.
Paper copies aren’t being distributed because we assume many of you know
this fact from a probability course.

The next fact is stated early in Section 6.3 of Rice, p. 195.

Theorem 2 Let X1, . . . , Xn be i.i.d. N(µ, σ2). Then X has the distribution
N(µ, σ2/n).
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Proof. For any distribution F having finite mean µ and variance σ2, if
X1, . . . , Xn are i.i.d. (F ), then X has mean µ and variance σ2/n. So the only
problem is to show that X has a normal distribution in this case. Now, Sn

defined as X1 + · · ·+Xn has a normal distribution, specifically N(nµ, nσ2),
by Theorem 1 and induction. Multiplying by a constant 1/n gives X which
then has the stated distribution, Q.E.D.

4 χ2 distributions

To describe the distribution of the random variable S2 = s2X , and for other
purposes in statistics, we need the notion of a chi-squared (χ2) distribution.
If Z1, ..., Zd are i.i.d., each having a N(0, 1) distribution, then Z2

1 + · · ·+Z2
d is

said to have a χ2(d) distribution, or a chi-squared distribution with d degrees
of freedom.

Next, we have a theorem that includes Corollary A and Theorem B in
Section 6.3 of Rice. It gives the distribution of s2X (depending on σ2) and its
independence of X in the normal case.

Theorem 3 If X1, ..., Xn are i.i.d. N(µ, σ2), n ≥ 2, then
(a) X and s2X are independent random variables;
(b) (n− 1)s2X/σ

2 has a χ2(n− 1) distribution.

Proof. Let Yj = Xj − µ for j = 1, . . . , n. Then Y1, ..., Yn are i.i.d. N(0, σ2),
Y = X − µ and s2Y = s2X . So we can assume µ = 0.

It’s convenient to make a rotation of coordinates in n-space. Let the
standard basis vectors be δi = {δij}nj=1 where δij = 1 for i = j and 0 for
i 6= j. The first element of the new basis will be e1 = (1/

√
n, . . . , 1/

√
n).

This does have length 1. Then we can always find further orthonormal basis
vectors e2, ..., en, for example
e2 = (1/

√
2,−1/

√
2, 0, . . . , 0), e3 = (1/

√
6, 1/

√
6,−2/

√
6, 0, . . . , 0),...

For any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) (with respect
to the standard basis) we have the usual dot product x · y =

∑n
j=1 xjyj, with

the squared length of x given by |x|2 = x · x.
Now, for the random vector X = (X1, . . . , Xn) we have X = X · e1/

√
n,

and (X, . . . , X) = (X · e1)e1, which is the projection of X to the e1 axis.
The lengths of vectors and their dot products are preserved by rotations of
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coordinates, so
n
∑

j=1

(Xj −X)2 = |X − (X · e1)e1|2 =
n
∑

i=2

(X · ei)2.

Since X1, . . . , Xn are i.i.d. N(0, σ2), their joint density is by (1)

(σ
√
2π)−nΠn

j=1 exp(−x2
j/(2σ

2)) = (σ
√
2π)−n exp(−|x|2/(2σ2)).

This distribution is invariant under any rotation of coordinates (change of
orthonormal basis), specifically |x|2 = (x ·e1)2+(x ·e2)2+ · · ·+(x ·en)2. Thus
X · e1, . . . , X · en are i.i.d. N(0, σ2) and X · ei/σ are i.i.d. N(0, 1). It follows
that X = X · e1/

√
n is independent of s2X = (n− 1)−1∑n

i=2(X · ei)2, proving
(a). Also, (n − 1)s2X/σ

2 =
∑n

i=2(X · ei)2/σ2 has a χ2(n − 1) distribution,
proving (b), Q.E.D.

Here is another way of looking at chi-squared distributions. As noted
in the above proof, if X1, ..., Xd are i.i.d. N(0, 1), their joint density is
(2π)−d/2 exp(−|x|2/2) on d-dimensional space. Let Y = X2

1 + · · · + X2
d ,

so that Y has a χ2(d) distribution. We have P (Y ≤ t) = 0 for t ≤ 0. For
t > 0, P (|Y | ≤ t) is the integral of the density over the region where |x|2 ≤ t,
or equivalently |x| ≤

√
t. Suppose d ≥ 2. Using spherical coordinates,

the integral becomes Ad(2π)
−d/2

∫

√
t

0 rd−1 exp(−r2/2)dr where Ad is a con-
stant depending on d, the (d− 1)-dimensional surface area of the unit sphere
|x| = 1 in d-space. By the substitution x = r2, r =

√
x, dr = dx/(2

√
x), the

integral becomes

Ad(2π)
−d/2

∫ t

0
x(d−2)/2 exp(−x/2)dx/2.

Since (d−2)/2 = (d/2)−1, and a probability density has a unique normalizing
constant, this gives a proof that the χ2(d) distribution is the Γ(d/2, 1/2)
distribution, as proved by another method in gammabeta.pdf, Theorem 4.
Moreover, since we know that the normalizing constant is (1/2)d/2/Γ(d/2), we
can evaluate Ad = 2πd/2/Γ(d/2). For example, if d = 2, since Γ(1) = 0! = 1,
we get A2 = 2π, the circumference of the unit circle as desired. If d = 3,
then by the recursion formula, Γ(3/2) = Γ(1/2)/2 =

√
π/2, so A3 = 4π,

which is in fact the area of the unit sphere in 3 dimensions. Also, the volume
of the unit ball {|x| ≤ 1} in d dimensions is Vd = Ad

∫ 1
0 rd−1dr = Ad/d =

πd/2/Γ((d/2) + 1), giving V2 = π and V3 = 4π/3 as desired.
There are an appendix and notes in a separate file, normalappend.pdf,

on the course website.
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