Confidence intervals for normal parameters

18.650, Sept. 11, 2015

1 Introduction

This is a continuation of the handout "Normal distributions and sample statistics," to be called briefly "Normal samples" (normalsamples.pdf on the course website).

Suppose we observe X_{1}, \ldots, X_{n} assumed to be i.i.d. $N\left(\mu, \sigma^{2}\right)$ for some unknown real μ and some $\sigma>0$. We can estimate μ by the sample mean \bar{X} and σ^{2} by the sample variance s_{X}^{2}. Somewhat similarly as experimental scientists give "error bars" for their estimates, what will be done next is to give "confidence intervals" for μ and for σ.

2 Confidence intervals for σ and σ^{2}

Although in practice, μ may be more interesting than σ, it's simpler first to give confidence intervals for σ, as follows. Consider Theorem 3(b) of "Normal samples." Two paragraphs above the theorem, $\chi^{2}(d)$ distributions with d "degrees of freedom," abbreviated "df," were defined, and Theorem $3(\mathrm{~b})$ says that

$$
\begin{equation*}
\frac{(n-1) s_{X}^{2}}{\sigma^{2}}=\frac{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\sigma^{2}} \tag{1}
\end{equation*}
$$

has a $\chi^{2}(n-1)$ distribution. Rice, Appendix B, p. A8, gives a "table of percentiles" of the χ^{2} distribution. For $d=d f=1,2,3, \ldots, 16,18,24,30,40,60,120$ and $q=0.005,0.01,0.025,0.05,0.1$, and $1-q$ in place of q for these values of q, the table gives numbers $\chi_{q}^{2}(d)$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(\chi^{2}(d) \leq \chi_{q}^{2}(d)\right)=q . \tag{2}
\end{equation*}
$$

For our given observations $X=\left(X_{1}, \ldots, X_{n}\right)$, their sample variance s_{X}^{2}, and some small α such as $\alpha=0.05$ or 0.01 , we'd like to find an interval $[a, b]=$ $[a(X), b(X)]$ with $0<a<b<+\infty$ such that $\operatorname{Pr}\left(a \leq \sigma^{2} \leq b\right)=1-\alpha$. For such a "two-sided" interval, it's usual to do this by making $\operatorname{Pr}\left(\sigma^{2}<a\right)=$ $\operatorname{Pr}\left(\sigma^{2}>b\right)=\alpha / 2$.

From (1) we have for $q=\alpha / 2$ first by (2), then by multiplying by σ^{2} and dividing by $\chi_{q}^{2}(n-1)$,

$$
\begin{equation*}
q=\operatorname{Pr}\left(\frac{(n-1) s_{X}^{2}}{\sigma^{2}}<\chi_{q}^{2}(n-1)\right)=\operatorname{Pr}\left(\sigma^{2}>\frac{(n-1) s_{X}^{2}}{\chi_{q}^{2}(n-1)}\right), \tag{3}
\end{equation*}
$$

and likewise

$$
\begin{equation*}
q=\operatorname{Pr}\left(\frac{(n-1) s_{X}^{2}}{\sigma^{2}}>\chi_{1-q}^{2}(n-1)\right)=\operatorname{Pr}\left(\sigma^{2}<\frac{(n-1) s_{X}^{2}}{\chi_{1-q}^{2}(n-1)}\right) . \tag{4}
\end{equation*}
$$

Combining (3) and (4) gives that

$$
\begin{equation*}
\operatorname{Pr}\left(a(X) \leq \sigma^{2} \leq b(X)\right)=1-2 q=1-\alpha \tag{5}
\end{equation*}
$$

for $a(X)=(n-1) s_{X}^{2} / \chi_{1-q}^{2}(n-1)$ by (4) and $b(X)=(n-1) s_{X}^{2} / \chi_{q}^{2}(n-1)$ by (3). Then, $[a(X), b(X)]$ is said to be a $100(1-\alpha) \%$ confidence interval for σ^{2}, specifically a 95% confidence interval if $\alpha=0.05$, so $q=0.025$ and $1-q=0.975$, or a 99% confidence interval if $\alpha=0.01$, so $q=0.005$ and $1-q=0.995$ (respectively the smallest and largest values of q or $1-q$ given in Rice's table).

To get corresponding confidence intervals for σ, we can just take square roots and use $[\sqrt{a(X)}, \sqrt{b(X)}]$. Note that these confidence intervals are not of "error bar" form: s_{X}^{2} is not the midpoint of the confidence intervals for σ^{2}, nor is s_{X} the midpoint of those for σ.

3 Confidence intervals for the mean μ, and t distributions

To get a confidence interval for μ is a bit more complicated. We know from Theorem 2 of "Normal samples" that the sample mean \bar{X} has a $N\left(\mu, \sigma^{2} / n\right)$
distribution. Thus $\sqrt{n}(\bar{X}-\mu) / \sigma$ has a $N(0,1)$ distribution. But σ is unknown. Suppose we substitute for it the sample standard deviation s_{X}, then what distribution does

$$
\begin{equation*}
\frac{\sqrt{n}(\bar{X}-\mu)}{s_{X}}=\frac{\sqrt{n}(\bar{X}-\mu) / \sigma}{s_{X} / \sigma} \tag{6}
\end{equation*}
$$

have? The numerator always has a $N(0,1)$ distribution, and it is independent of the denominator by Theorem 3(a) of "Normal samples." By Theorem 3(b), the denominator has the distribution of the square root of a $\chi^{2}(n-1)$ variable, divided by its number $n-1$ of degrees of freedom. So the distribution of the quotient is of the following form, for $d=n-1$:

Definition. A random variable T has a t distribution with d degrees of freedom, or a $t(d)$ distribution, if it has the distribution of $Z / \sqrt{U / d}$ where Z has $N(0,1)$ distribution, U has a $\chi^{2}(d)$ distribution, and Z and U are independent.

The distribution of such a T is symmetric around 0 , in other words T and $-T$ have the same distribution, because $-Z$ also has $N(0,1)$. Rice, Appendix B, p. A9, Table 4, is a table of the $t(d)$ distribution for $d=$ $1,2, \ldots, 29,30,40,60,120, \infty$, giving $t_{q}(d)$ such that $\operatorname{Pr}\left(t(d) \leq t_{q}(d)\right)=q$ or equivalently $\operatorname{Pr}\left(t(d) \geq t_{q}(d)\right)=1-q$ and so $\operatorname{Pr}\left(|t(d)| \geq t_{q}(d)\right)=2(1-q)=\alpha$ for $\alpha=0.01,0.02,0.05,0.1$, or some larger values. As $d \rightarrow+\infty, U / d \rightarrow 1$ by the law of large numbers, so the $t(d)$ distribution converges to the $N(0,1)$ distribution. To get a $100(1-\alpha) \%$ confidence interval for μ with endpoints $c(X, \alpha)$ and $d(X, \alpha)$, we have from (6) and the definition of t distribution that
$1-\alpha=\operatorname{Pr}\left(\frac{\sqrt{n}|\bar{X}-\mu|}{s_{X}} \leq t_{1-\alpha / 2}(n-1)\right)=\operatorname{Pr}\left(|\bar{X}-\mu| \leq \frac{t_{1-\alpha / 2}(n-1) s_{X}}{\sqrt{n}}\right)$,
so the endpoints of the confidence interval for μ are

$$
\bar{X} \pm \frac{t_{1-\alpha / 2}(n-1) s_{X}}{\sqrt{n}}
$$

For μ, \bar{X} is at the midpoint of the confidence intervals.

