
DECIDING BETWEEN TWO SIMPLE HYPOTHESES

1. Definitions of size and power of tests

Let H0 be any simple hypothesis, specifying a likelihood function
f0 = f0(x). For any test of the hypothesis, the size of the test is the
probability of rejecting H0 when it’s true. The convention we have
been using has been to set sizes α of tests at .05, but in testing against
a simple alternative, other sizes with 0 ≤ α < 1 are possible. If a test
statistic has a discrete set of values, there may be no test based on it
of size equal to 0.05.
Suppose H1 is another simple hypothesis such that exactly one of H0

and H1 is true. Then the power of a test of H0 against the alternative
H1 is the probability of (correctly) rejectingH0 (and deciding in favor of
H1) if H1 is true. Both small size and large power are good properties,
but there is a tradeoff between the two.
Suppose we have two hypotheses, H0 and H1, such that if Hi holds,

the likelihood function for one observation is fi for i = 0, 1. In one
sense, what we want to do is test the simple hypothesis H0 against the
simple alternative H1. Another view is that we want to decide on one
of H0 or H1.

2. The likelihood ratio and the Neyman–Pearson lemma

Let’s define the likelihood ratio LR(x) as f1(x)/f0(x) if this is defined
and finite; as +∞ if f0(x) = 0 < f1(x); and as 0 if f1(x) = f0(x) = 0.
If we have X1, ..., Xn i.i.d. fi where i is the same for all Xj, i = 0 or
1, and i is unknown, we get a likelihood ratio

∏n

j=1
(f1/f0)(Xj). An

undefined product 0 ·∞ is not possible because if, say, f1(Xj) = 0, then
with probability 1, i = 0, and then f0(Xk) > 0 for all k = 1, . . . , n. For
each C with 0 < C < +∞ we can define two likelihood ratio tests of
H0 vs. H1: one is to reject H0 and decide in favor of H1 if LR(x) ≥ C,
and the other is similar but with > C instead of ≥ C. If LR(x) has a
continuous distribution under each of H0 and H1, then the probability
that LR(x) = C is 0 under either hypothesis and the two tests are
essentially equivalent.
For deciding between H0 and H1, a basic fact is the following:
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Theorem 1 (Neyman–Pearson Lemma). For any simple hypothesis H0

and simple alternative H1, for any 0 < C < +∞, and either likelihood

ratio test T of H0 vs. H1 for that C, the power of T against H1 is as

large, or larger, than that of any other test U of H0 vs. H1 whose size

is less or equal to that of T .

This fact follows from the formulation of the Neyman–Pearson Lemma
given in Rice, p. 332, and proved there. A correction to Rice’s state-
ment: “and significance level α” should be “has significance level α.”
In the terminology here one could say “has size α.”

3. Costs of errors

The question then is, how to choose C. One consideration is the costs
of errors. Let ci be the cost (or loss) if Hi is true but not chosen, for i =
0, 1. Then c0 and c1 may be very different. For example, let H0 be the
hypothesis that an individual being tested does not have a disease D,
andH1 the hypothesis that the individual does haveD. If the physician
or tester decides in favor of H1 while H0 is true (“false positive”), then
c0 would include the cost (in money and time) of further tests until it
was eventually realized that H0 is true. Whereas, if a decision in favor
of H0 is made when H1 is true, and if D is serious, and there are good
treatments for it, but it goes untreated for a while in the given patient,
the disease may get worse and lead to quite a high cost c1. Such a
situation is asymmetric: there is no reason to think that c0 = c1.
If a test has size α at H0 and power β against H1, then if H0 is

true, the risk (expected cost) is αc0. If H1 is true, the risk is (1− β)c1.
One might perhaps want to choose C in a likelihood ratio test so as to
minimize the maximum of these two risks.

4. Prior probabilities

But there is yet another consideration. There may be information
available, based on which one may be able to assign a prior probability
π0 that H0 is true, and so π1 = 1 − π0 that H1 is true, before doing
the test. In the example, the disease D may have a known prevalence
(relative frequency of occurring) in a population including the person
being tested of π1, and then π0 = 1− π1. Including the prior probabil-
ities, the overall risk of the test would be π0αc0+π1(1−β)c1 and we’d
like to choose C in the likelihood ratio test to minimize this overall
risk.
The overall likelihood function is f(x) = π0f0(x) + π1f1(x). Af-

ter doing the test, the posterior probability of H0, or the conditional
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probability that H0 is true given that x is observed, is

(1) P (H0|x) =
π0f0(x)

π0f0(x) + π1f1(x)
,

which follows from Bayes’ theorem (or formula) in case of discrete dis-
tributions. For continuous distributions of x we can consider the bivari-
ate distribution of (i, x) where i = 0 or 1. The marginal density of x is
f and its conditional density given i is fi. The conditional probability
that H0 is true given x is as shown in (1). Likewise, the conditional,
or posterior, probability that H1 is true given that x is observed is

(2) P (H1|x) =
π1f1(x)

π0f0(x) + π1f1(x)
.

If x is observed, the conditional = posterior risk (expected cost) of
choosing H1 is

(3)
π0f0(x)c0

π0f0(x) + π1f1(x)
,

and the conditional risk (expected cost) of choosing H0 is

(4)
π1f1(x)c1

π0f0(x) + π1f1(x)
.

We want to decide in favor of the hypothesis having smaller poste-
rior risk. Since the denominators of (3) and (4) are the same, this
means we want to choose H1 if π1f1(x)c1 > π0f0(x)c0, choose H0

if π1f1(x)c1 < π0f0(x)c0, and expect equal costs for either choice if
π1f1(x)c1 = π0f0(x)c0. All factors make intuitive sense: for any of πi,
fi(x), or ci to be larger than the corresponding numbers with 1− i in
place of i will incline us to choose Hi. We will choose H1 if

LR(x) =
f1(x)

f0(x)
>

π0c0
π1c1

,

which is a likelihood ratio test with C = π0c0/(π1c1).


