DECIDING BETWEEN TWO SIMPLE HYPOTHESES

1. Definitions of size and power of tests

Let H_{0} be any simple hypothesis, specifying a likelihood function $f_{0}=f_{0}(x)$. For any test of the hypothesis, the size of the test is the probability of rejecting H_{0} when it's true. The convention we have been using has been to set sizes α of tests at .05 , but in testing against a simple alternative, other sizes with $0 \leq \alpha<1$ are possible. If a test statistic has a discrete set of values, there may be no test based on it of size equal to 0.05 .

Suppose H_{1} is another simple hypothesis such that exactly one of H_{0} and H_{1} is true. Then the power of a test of H_{0} against the alternative H_{1} is the probability of (correctly) rejecting H_{0} (and deciding in favor of H_{1}) if H_{1} is true. Both small size and large power are good properties, but there is a tradeoff between the two.

Suppose we have two hypotheses, H_{0} and H_{1}, such that if H_{i} holds, the likelihood function for one observation is f_{i} for $i=0,1$. In one sense, what we want to do is test the simple hypothesis H_{0} against the simple alternative H_{1}. Another view is that we want to decide on one of H_{0} or H_{1}.

2. The likelihood ratio and the Neyman-Pearson lemma

Let's define the likelihood ratio $L R(x)$ as $f_{1}(x) / f_{0}(x)$ if this is defined and finite; as $+\infty$ if $f_{0}(x)=0<f_{1}(x)$; and as 0 if $f_{1}(x)=f_{0}(x)=0$. If we have X_{1}, \ldots, X_{n} i.i.d. f_{i} where i is the same for all $X_{j}, i=0$ or 1 , and i is unknown, we get a likelihood ratio $\prod_{j=1}^{n}\left(f_{1} / f_{0}\right)\left(X_{j}\right)$. An undefined product $0 \cdot \infty$ is not possible because if, say, $f_{1}\left(X_{j}\right)=0$, then with probability $1, i=0$, and then $f_{0}\left(X_{k}\right)>0$ for all $k=1, \ldots, n$. For each C with $0<C<+\infty$ we can define two likelihood ratio tests of H_{0} vs. H_{1} : one is to reject H_{0} and decide in favor of H_{1} if $L R(x) \geq C$, and the other is similar but with $>C$ instead of $\geq C$. If $L R(x)$ has a continuous distribution under each of H_{0} and H_{1}, then the probability that $L R(x)=C$ is 0 under either hypothesis and the two tests are essentially equivalent.

For deciding between H_{0} and H_{1}, a basic fact is the following:

Theorem 1 (Neyman-Pearson Lemma). For any simple hypothesis H_{0} and simple alternative H_{1}, for any $0<C<+\infty$, and either likelihood ratio test T of H_{0} vs. H_{1} for that C, the power of T against H_{1} is as large, or larger, than that of any other test U of H_{0} vs. H_{1} whose size is less or equal to that of T.

This fact follows from the formulation of the Neyman-Pearson Lemma given in Rice, p. 332, and proved there. A correction to Rice's statement: "and significance level α " should be "has significance level α." In the terminology here one could say "has size α."

3. Costs of errors

The question then is, how to choose C. One consideration is the costs of errors. Let c_{i} be the cost (or loss) if H_{i} is true but not chosen, for $i=$ 0,1 . Then c_{0} and c_{1} may be very different. For example, let H_{0} be the hypothesis that an individual being tested does not have a disease D, and H_{1} the hypothesis that the individual does have D. If the physician or tester decides in favor of H_{1} while H_{0} is true ("false positive"), then c_{0} would include the cost (in money and time) of further tests until it was eventually realized that H_{0} is true. Whereas, if a decision in favor of H_{0} is made when H_{1} is true, and if D is serious, and there are good treatments for it, but it goes untreated for a while in the given patient, the disease may get worse and lead to quite a high cost c_{1}. Such a situation is asymmetric: there is no reason to think that $c_{0}=c_{1}$.

If a test has size α at H_{0} and power β against H_{1}, then if H_{0} is true, the risk (expected cost) is αc_{0}. If H_{1} is true, the risk is $(1-\beta) c_{1}$. One might perhaps want to choose C in a likelihood ratio test so as to minimize the maximum of these two risks.

4. Prior probabilities

But there is yet another consideration. There may be information available, based on which one may be able to assign a prior probability π_{0} that H_{0} is true, and so $\pi_{1}=1-\pi_{0}$ that H_{1} is true, before doing the test. In the example, the disease D may have a known prevalence (relative frequency of occurring) in a population including the person being tested of π_{1}, and then $\pi_{0}=1-\pi_{1}$. Including the prior probabilities, the overall risk of the test would be $\pi_{0} \alpha c_{0}+\pi_{1}(1-\beta) c_{1}$ and we'd like to choose C in the likelihood ratio test to minimize this overall risk.

The overall likelihood function is $f(x)=\pi_{0} f_{0}(x)+\pi_{1} f_{1}(x)$. After doing the test, the posterior probability of H_{0}, or the conditional
probability that H_{0} is true given that x is observed, is

$$
\begin{equation*}
P\left(H_{0} \mid x\right)=\frac{\pi_{0} f_{0}(x)}{\pi_{0} f_{0}(x)+\pi_{1} f_{1}(x)} \tag{1}
\end{equation*}
$$

which follows from Bayes' theorem (or formula) in case of discrete distributions. For continuous distributions of x we can consider the bivariate distribution of (i, x) where $i=0$ or 1 . The marginal density of x is f and its conditional density given i is f_{i}. The conditional probability that H_{0} is true given x is as shown in (1). Likewise, the conditional, or posterior, probability that H_{1} is true given that x is observed is

$$
\begin{equation*}
P\left(H_{1} \mid x\right)=\frac{\pi_{1} f_{1}(x)}{\pi_{0} f_{0}(x)+\pi_{1} f_{1}(x)} \tag{2}
\end{equation*}
$$

If x is observed, the conditional $=$ posterior risk (expected cost) of choosing H_{1} is

$$
\begin{equation*}
\frac{\pi_{0} f_{0}(x) c_{0}}{\pi_{0} f_{0}(x)+\pi_{1} f_{1}(x)}, \tag{3}
\end{equation*}
$$

and the conditional risk (expected cost) of choosing H_{0} is

$$
\begin{equation*}
\frac{\pi_{1} f_{1}(x) c_{1}}{\pi_{0} f_{0}(x)+\pi_{1} f_{1}(x)} \tag{4}
\end{equation*}
$$

We want to decide in favor of the hypothesis having smaller posterior risk. Since the denominators of (3) and (4) are the same, this means we want to choose H_{1} if $\pi_{1} f_{1}(x) c_{1}>\pi_{0} f_{0}(x) c_{0}$, choose H_{0} if $\pi_{1} f_{1}(x) c_{1}<\pi_{0} f_{0}(x) c_{0}$, and expect equal costs for either choice if $\pi_{1} f_{1}(x) c_{1}=\pi_{0} f_{0}(x) c_{0}$. All factors make intuitive sense: for any of π_{i}, $f_{i}(x)$, or c_{i} to be larger than the corresponding numbers with $1-i$ in place of i will incline us to choose H_{i}. We will choose H_{1} if

$$
L R(x)=\frac{f_{1}(x)}{f_{0}(x)}>\frac{\pi_{0} c_{0}}{\pi_{1} c_{1}},
$$

which is a likelihood ratio test with $C=\pi_{0} c_{0} /\left(\pi_{1} c_{1}\right)$.

