LINEAR MODELS; THE SIMPLE LINEAR REGRESSION MODEL

1. LINEAR MODELS

Suppose we have a set X, which may be the set of real numbers, and some real-valued functions $f_0 \equiv 1$ and $f_1, ..., f_k$ which are linearly independent, meaning that there are no constants $c_0, c_1, ..., c_k$, not all 0, such that $\sum_{i=0}^k c_i f_i \equiv 0$. Let $x_1, ..., x_n$ be some points of X, with k < n. We observe some random variables $Y_1, Y_2, ..., Y_n$. The *linear model* for $(x_j, Y_j), j = 1, ..., n$, based on $f_1, ..., f_k$ is that for some $\varepsilon_1, ..., \varepsilon_n$ i.i.d. $N(0, \sigma^2)$ for some unknown $\sigma > 0$, for some unknown real numbers $a_1, ..., a_k$,

(1)
$$Y_j = \sum_{i=0}^k a_i f_i(x_j) + \varepsilon_j.$$

"Linear model" means that the model is linear with respect to the coefficients $a_0, a_1, ..., a_k$. If X is a vector space, such as the real line, the functions f_i need not be linear on it.

In R, one can fit the linear model (1) to data (x_j, Y_j) for j = 1, ..., n, where x_j are fixed non-random design points, by a command of the form

(2)
$$\operatorname{regrobj} = \operatorname{lm}(Y \sim f_1, ..., f_k)$$

where "regrobj" can be replaced by any name, not already defined in the R system, one chooses to give the regression "object". Then summary(regrobj) will output estimates \hat{a}_i of the coefficients a_0 ("Intercept") and a_i (coefficient of f_i) for i = 1, ..., k. Here \hat{a}_i are random variables under the model, as they depend on the random ε_j . These random variables will be written \hat{a}_i^{rv} . On the other hand for given observed $Y_1, ..., Y_n$, solving for the estimates \hat{a}_i gives constants that will be called \hat{a}_i^{obs} . The *p*-value of the estimate \hat{a}_i is the probability under the model with $a_i = 0$, of obtaining as large a value \hat{a}_i as the one observed,

$$\Pr(|\widehat{a}_i^{rv}| \ge |\widehat{a}_i^{obs}|).$$

If the p-value of \hat{a} is less than 0.05, one rejects the hypothesis that $a_i = 0$ and decides that $a_i \neq 0$.

Date: 18.650, Sept. 23, 2015.

In the multiple regression, R outputs p-values for the hypothesis that $a_i = 0$ for each *i*. R computes the p-values based on the assumption that the errors ε_j are i.i.d. $N(0, \sigma^2)$, which leads to t distributions.

2. SIMPLE AND QUADRATIC REGRESSION MODELS

In the simple linear regression model, X is the real line, k = 1, and $f_1(x) \equiv x$. Thus a straight line y = a + bx or equivalently $a_0 + a_1 x$ is fitted to data $(x_j, Y_j), j = 1, ..., n$, in fact performing y-on-x regression.

In the quadratic regression model we have the larger model with k = 2and $f_2(x) = x^2$. If the simple linear regression model is valid, then so is the quadratic regression model, with $a_2 = 0$. If we find in quadratic regression that the hypothesis $a_2 = 0$ has a small p-value (say, less than 0.05) then we can reject the simple linear regression model. In R, the special case of (2) for quadratic regression is written for example as

 $qobj = lm(Y \sim x + I(x^2))$

where $I(\cdot)$ is the identity function but R requires it to be written.

3. Residuals

Once one has fitted a linear model 1, then one has estimates \hat{a}_i of the coefficients a_i for i = 0, 1, ..., k. The *residuals* are the quantities $\hat{\varepsilon}_j = Y_j - \sum_{i=0}^k \hat{a}_i f_i(x_j)$. The "summary" gives a few of the residuals: the smallest, the lower quartile, the median, the upper quartile, and the largest (we haven't defined quartiles or even median yet in the course). By the command

residuals(regrobj)

one gets a list of the residuals $\hat{\varepsilon}_1, ..., \hat{\varepsilon}_n$. If the x_i satisfy $x_1 < x_2 < \cdots < x_n$ as they normally should, then if the residuals appear "random" it seems that the regression has worked well. If a pattern, such as a convex (like x^2) or concave (like $-x^2$) one, is visible in the residuals, then the regression does not fit the data well. If the residuals are for a simple linear regression, it seems a quadratic regression might fit the data better.