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Gamma and beta probabilities

The gamma function is defined for any a > 0 by

Γ(a) :=
∫

∞

0
xa−1e−xdx. (1)

The integral is finite if (and only if) a > 0, because
∫ 1
0 xa−1dx = 1/a < ∞,

and xa−1 < ex/2 for x large enough.
Integration by parts shows that Γ(a+1) = aΓ(a) for any a > 0. We have

Γ(1) = 1. It follows by induction that Γ(k + 1) = k! for any nonnegative
integer k.

For any a > 0 the function defined by

γa(x) := xa−1e−x/Γ(a) (2)

for x > 0, and 0 for x ≤ 0, is a probability density. The corresponding
distribution is called a gamma distribution with parameter a.

If the random variableX has a gamma distribution with parameter a then
EX = a since EX = Γ(a+1)/Γ(a). Likewise EX2 = Γ(a+2)/Γ(a) = (a+1)a
so Var(X) = a and σX = a1/2.

Recall that for any random variable X with density f and any c > 0, cX
has a density c−1f(x/c). Applying that to c = 1/λ for any λ > 0, if X has
density γa then X/λ has the density γa,λ defined by

γa,λ(x) = λaxa−1e−λx/Γ(a)

for 0 < x < +∞ and 0 otherwise. A random variable Y with this density
will be said to have a gamma(a, λ) distribution. It is easily seen and known
to have EY = a/λ and Var(Y ) = a/λ2.

The Beta function is defined for any a > 0 and b > 0 by

B(a, b) :=
∫ 1

0
xa−1(1− x)b−1dx. (3)

Clearly, 0 < B(a, b)< ∞ for any a > 0 and b > 0. Letting y := 1− x shows
that B(b, a) ≡ B(a, b). Let βa,b(x) := xa−1(1 − x)b−1/B(a, b) for 0 < x < 1
and 0 for x ≤ 0 or x ≥ 1. Then βa,b is a probability density. The probability
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distribution with this density is called a beta distribution with parameters
a, b, or beta(a, b). Its distribution function is then defined as

Ix(a, b) :=
∫ x

0
βa,b(t)dt, 0 ≤ x ≤ 1. (4)

The following fact relates gamma distributions with different parameters
with each other and relates gamma and beta functions.

Theorem 1 For any a > 0 and b > 0,
(a) B(a, b) ≡ B(b, a) ≡ Γ(a)Γ(b)/Γ(a+ b).
(b) If X and Y are independent random variables having gamma(a, λ) and
γ(b, λ) distributions respectively, for the same λ > 0, then U := X + Y has
a gamma(a+ b, λ) distribution.

Proof. First consider (b) and suppose λ = 1. U has a density u given by a
convolution of those of X and Y , namely, for any x > 0,

u(x) =
∫ x

0
γa(x− y)γb(y)dy

=
∫ x

0
(x− y)a−1e−(x−y)yb−1e−ydy/(Γ(a)Γ(b))

= e−x
∫ x

0
(x− y)a−1yb−1dy/(Γ(a)Γ(b)).

The substitution y = tx, 0 ≤ t ≤ 1 gives

= e−xxa+b−1B(b, a)/(Γ(a)Γ(b)).

Since u must be a probability density, it must be the gamma(a+b, 1) density
as desired, and the normalizing constants must agree, so (a) follows. To get
(b) for a general λ > 0, just consider X/λ and Y/λ. �

Iterating Theorem 1, it follows that if Xi are independent identically dis-
tributed variables, each having the standard exponential distribution with
density e−x for x ≥ 0 and 0 for x < 0, so that the Xi have gamma distribu-
tions with parameter 1, then for each n = 1, 2, ..., Sn = X1 + · · ·+Xn has a
γn density. If each Xi has a γa,λ density then Sn has a γna,λ density.

It is now easy to find the means and variances of beta distributions. If X
has a beta distribution with parameters a, b, in other words has distribution
function (4), then EX = B(a+ 1, b)/B(a, b). Similarly EX2 =
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B(a+ 2, b)/B(a, b) = a(a+ 1)/[(a+ b)(a+ b+ 1)]. Thus

EX = a/(a+ b), Var(X) =
ab

(a+ b)2(a+ b+ 1)
. (5)

Note that 1 − X has a beta distribution with parameters b, a. Thus E(1 −
X) = b/(a + b) which equals 1 − a/(a + b) as it should. Also, 1 − X has
the same variance as X, and so the expression for Var(X) is preserved by
interchanging a and b as it should be.

Let 0 < λ < ∞ and let Y be a Poisson random variable with parameter
λ. Then some notations are, for any integer k ≥ 0,

P (k, λ) = Pr(Y ≤ k) = e−λ
k∑

j=0

λj/j!,

Q(k, λ) = Pr(Y ≥ k) = e−λ
∞∑
j=k

λj/j!.

There are identities relating the Poisson and gamma distributions:

Theorem 2 For any positive integer k, if X has a γk density, we have for
any x ≥ 0,

Q(k, x) = P (X ≤ x) (6)

and
P (k − 1, x) = P (X > x). (7)

For 0 < λ < ∞, if Y has a γk,λ density and 0 < t < ∞, then

P (Y ≤ t) = Q(k, λt) (8)

and
P (Y > t) = P (k − 1, λt). (9)

Proof. To prove equation (7), differentiate with respect to x and note that
the derivative of P (k − 1, x) is

−e−x + e−x − xe−x +
2

2!
xe−x − · · · − xk−1

(k − 1)!
= − xk−1

(k − 1)!
= −γk(x),

a telescoping sum. Both sides of (7) equal 1 when x = 0, so (7) follows.
Equation (6) follows by taking complements.
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Then letting Y = X/λ, Y has the given density, (9) follows from (7), and
(8) follows by taking complements or from (6). �

A similar identity relates beta and binomial probabilities. Let 0 < p < 1,
q = 1− p, let X be a binomial (n, p) random variable and

B(k, n, p) = Pr(X ≤ k) =
k∑

j=0

b(j, n, p),

E(k, n, p) = Pr(X ≥ k) =
n∑

j=k

b(j, n, p).

Theorem 3 If 0 < p < 1, and 0 ≤ k ≤ n are integers, then

E(k, n, p) = Ip(k, n− k + 1), if k ≥ 1;

B(k, n, p) = I1−p(n− k, k + 1), if k < n.

Proof. The first equality again follows from differentiating a finite sum with
respect to p which gives a telescoping sum. The second then follows from
B(k, n, p) ≡ E(n− k, n, 1− p).

�

A χ2(d) distribution, or χ2 distribution with d degrees of freedom, is
defined as the distribution of Z2

1 + · · · + Z2
d where Z1, Z2, ..., Zd are i.i.d.

N(0, 1). The following known fact will be proved:

Theorem 4 For any positive integer d, χ2(d) has a γ(d/2, 1/2) distribution.

Proof. First let d = 1. Let Z have N(0, 1) distribution. Then for any t ≥ 0,

Pr(Z2 ≤ t) = Pr(|Z| ≤
√
t) = Φ(

√
t)− Φ(−

√
t)

where Φ is the standard normal distribution function. Thus by the chain
rule the density of χ2(1) = Z2 is

2φ(
√
t) · (1/(2t1/2) = (2πt)−1/2e−t/2

which is the γ(1/2, 1/2) density, since Γ(1/2) =
√
π (if one did not know that,

it would follow by unique normalization of probability densities), proving the
statement for d = 1. The statement for a general positive integer d then
follows by Theorem 1(b) for λ = 1/2 and induction on d. �
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