Gamma and beta probabilities

The gamma function is defined for any a > 0 by

$$\Gamma(a) := \int_0^\infty x^{a-1} e^{-x} dx.$$
 (1)

The integral is finite if (and only if) a > 0, because $\int_0^1 x^{a-1} dx = 1/a < \infty$, and $x^{a-1} < e^{x/2}$ for x large enough.

Integration by parts shows that $\Gamma(a+1) = a\Gamma(a)$ for any a > 0. We have $\Gamma(1) = 1$. It follows by induction that $\Gamma(k+1) = k!$ for any nonnegative integer k.

For any a > 0 the function defined by

$$\gamma_a(x) := x^{a-1} e^{-x} / \Gamma(a) \tag{2}$$

for x > 0, and 0 for $x \le 0$, is a probability density. The corresponding distribution is called a *gamma distribution with parameter a*.

If the random variable X has a gamma distribution with parameter a then EX = a since $EX = \Gamma(a+1)/\Gamma(a)$. Likewise $EX^2 = \Gamma(a+2)/\Gamma(a) = (a+1)a$ so Var(X) = a and $\sigma_X = a^{1/2}$.

Recall that for any random variable X with density f and any c > 0, cX has a density $c^{-1}f(x/c)$. Applying that to $c = 1/\lambda$ for any $\lambda > 0$, if X has density γ_a then X/λ has the density $\gamma_{a,\lambda}$ defined by

$$\gamma_{a,\lambda}(x) = \lambda^a x^{a-1} e^{-\lambda x} / \Gamma(a)$$

for $0 < x < +\infty$ and 0 otherwise. A random variable Y with this density will be said to have a gamma (a, λ) distribution. It is easily seen and known to have $EY = a/\lambda$ and $Var(Y) = a/\lambda^2$.

The *Beta function* is defined for any a > 0 and b > 0 by

$$B(a,b) := \int_0^1 x^{a-1} (1-x)^{b-1} dx.$$
(3)

Clearly, $0 < B(a,b) < \infty$ for any a > 0 and b > 0. Letting y := 1-x shows that $B(b,a) \equiv B(a,b)$. Let $\beta_{a,b}(x) := x^{a-1}(1-x)^{b-1}/B(a,b)$ for 0 < x < 1 and 0 for $x \leq 0$ or $x \geq 1$. Then $\beta_{a,b}$ is a probability density. The probability

distribution with this density is called a *beta distribution with parameters* a, b, or beta(a, b). Its distribution function is then defined as

$$I_x(a,b) := \int_0^x \beta_{a,b}(t) dt, \quad 0 \le x \le 1.$$
 (4)

The following fact relates gamma distributions with different parameters with each other and relates gamma and beta functions.

Theorem 1 For any a > 0 and b > 0, (a) $B(a,b) \equiv B(b,a) \equiv \Gamma(a)\Gamma(b)/\Gamma(a+b)$. (b) If X and Y are independent random variables having gamma (a, λ) and $\gamma(b, \lambda)$ distributions respectively, for the same $\lambda > 0$, then U := X + Y has a gamma $(a + b, \lambda)$ distribution.

Proof. First consider (b) and suppose $\lambda = 1$. U has a density u given by a convolution of those of X and Y, namely, for any x > 0,

$$u(x) = \int_0^x \gamma_a(x-y)\gamma_b(y)dy$$

= $\int_0^x (x-y)^{a-1}e^{-(x-y)}y^{b-1}e^{-y}dy/(\Gamma(a)\Gamma(b))$
= $e^{-x}\int_0^x (x-y)^{a-1}y^{b-1}dy/(\Gamma(a)\Gamma(b)).$

The substitution y = tx, $0 \le t \le 1$ gives

$$= e^{-x} x^{a+b-1} B(b,a) / (\Gamma(a)\Gamma(b)).$$

Since u must be a probability density, it must be the gamma(a+b, 1) density as desired, and the normalizing constants must agree, so (a) follows. To get (b) for a general $\lambda > 0$, just consider X/λ and Y/λ .

Iterating Theorem 1, it follows that if X_i are independent identically distributed variables, each having the standard exponential distribution with density e^{-x} for $x \ge 0$ and 0 for x < 0, so that the X_i have gamma distributions with parameter 1, then for each $n = 1, 2, ..., S_n = X_1 + \cdots + X_n$ has a γ_n density. If each X_i has a $\gamma_{a,\lambda}$ density then S_n has a $\gamma_{na,\lambda}$ density.

It is now easy to find the means and variances of beta distributions. If X has a beta distribution with parameters a, b, in other words has distribution function (4), then EX = B(a + 1, b)/B(a, b). Similarly $EX^2 =$

B(a+2,b)/B(a,b) = a(a+1)/[(a+b)(a+b+1)]. Thus

$$EX = a/(a+b), \quad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}.$$
 (5)

Note that 1 - X has a beta distribution with parameters b, a. Thus E(1 - X) = b/(a + b) which equals 1 - a/(a + b) as it should. Also, 1 - X has the same variance as X, and so the expression for Var(X) is preserved by interchanging a and b as it should be.

Let $0 < \lambda < \infty$ and let Y be a Poisson random variable with parameter λ . Then some notations are, for any integer $k \ge 0$,

$$P(k,\lambda) = \Pr(Y \le k) = e^{-\lambda} \sum_{j=0}^{k} \lambda^j / j!,$$
$$Q(k,\lambda) = \Pr(Y \ge k) = e^{-\lambda} \sum_{j=k}^{\infty} \lambda^j / j!.$$

There are identities relating the Poisson and gamma distributions:

Theorem 2 For any positive integer k, if X has a γ_k density, we have for any $x \ge 0$,

$$Q(k,x) = P(X \le x) \tag{6}$$

and

$$P(k-1,x) = P(X > x).$$
(7)

For $0 < \lambda < \infty$, if Y has a $\gamma_{k,\lambda}$ density and $0 < t < \infty$, then

$$P(Y \le t) = Q(k, \lambda t) \tag{8}$$

and

$$P(Y > t) = P(k - 1, \lambda t).$$
(9)

Proof. To prove equation (7), differentiate with respect to x and note that the derivative of P(k-1, x) is

$$-e^{-x} + e^{-x} - xe^{-x} + \frac{2}{2!}xe^{-x} - \dots - \frac{x^{k-1}}{(k-1)!} = -\frac{x^{k-1}}{(k-1)!} = -\gamma_k(x),$$

a telescoping sum. Both sides of (7) equal 1 when x = 0, so (7) follows. Equation (6) follows by taking complements. Then letting $Y = X/\lambda$, Y has the given density, (9) follows from (7), and (8) follows by taking complements or from (6).

A similar identity relates beta and binomial probabilities. Let 0 , <math>q = 1 - p, let X be a binomial (n, p) random variable and

$$B(k, n, p) = \Pr(X \le k) = \sum_{j=0}^{k} b(j, n, p),$$
$$E(k, n, p) = \Pr(X \ge k) = \sum_{j=k}^{n} b(j, n, p).$$

Theorem 3 If $0 , and <math>0 \le k \le n$ are integers, then

$$E(k, n, p) = I_p(k, n - k + 1), \quad if \ k \ge 1;$$

$$B(k, n, p) = I_{1-p}(n - k, k + 1), \quad if \ k < n.$$

Proof. The first equality again follows from differentiating a finite sum with respect to p which gives a telescoping sum. The second then follows from $B(k, n, p) \equiv E(n - k, n, 1 - p)$.

A $\chi^2(d)$ distribution, or χ^2 distribution with d degrees of freedom, is defined as the distribution of $Z_1^2 + \cdots + Z_d^2$ where Z_1, Z_2, \ldots, Z_d are i.i.d. N(0, 1). The following known fact will be proved:

Theorem 4 For any positive integer d, $\chi^2(d)$ has a $\gamma(d/2, 1/2)$ distribution.

Proof. First let d = 1. Let Z have N(0, 1) distribution. Then for any $t \ge 0$,

$$\Pr(Z^2 \le t) = \Pr(|Z| \le \sqrt{t}) = \Phi(\sqrt{t}) - \Phi(-\sqrt{t})$$

where Φ is the standard normal distribution function. Thus by the chain rule the density of $\chi^2(1) = Z^2$ is

$$2\phi(\sqrt{t}) \cdot (1/(2t^{1/2})) = (2\pi t)^{-1/2} e^{-t/2}$$

which is the $\gamma(1/2, 1/2)$ density, since $\Gamma(1/2) = \sqrt{\pi}$ (if one did not know that, it would follow by unique normalization of probability densities), proving the statement for d = 1. The statement for a general positive integer d then follows by Theorem 1(b) for $\lambda = 1/2$ and induction on d.