Gamma and beta probabilities

The gamma function is defined for any $a>0$ by

$$
\begin{equation*}
\Gamma(a):=\int_{0}^{\infty} x^{a-1} e^{-x} d x . \tag{1}
\end{equation*}
$$

The integral is finite if (and only if) $a>0$, because $\int_{0}^{1} x^{a-1} d x=1 / a<\infty$, and $x^{a-1}<e^{x / 2}$ for x large enough.

Integration by parts shows that $\Gamma(a+1)=a \Gamma(a)$ for any $a>0$. We have $\Gamma(1)=1$. It follows by induction that $\Gamma(k+1)=k$! for any nonnegative integer k.

For any $a>0$ the function defined by

$$
\begin{equation*}
\gamma_{a}(x):=x^{a-1} e^{-x} / \Gamma(a) \tag{2}
\end{equation*}
$$

for $x>0$, and 0 for $x \leq 0$, is a probability density. The corresponding distribution is called a gamma distribution with parameter a.

If the random variable X has a gamma distribution with parameter a then $E X=a$ since $E X=\Gamma(a+1) / \Gamma(a)$. Likewise $E X^{2}=\Gamma(a+2) / \Gamma(a)=(a+1) a$ so $\operatorname{Var}(X)=a$ and $\sigma_{X}=a^{1 / 2}$.

Recall that for any random variable X with density f and any $c>0, c X$ has a density $c^{-1} f(x / c)$. Applying that to $c=1 / \lambda$ for any $\lambda>0$, if X has density γ_{a} then X / λ has the density $\gamma_{a, \lambda}$ defined by

$$
\gamma_{a, \lambda}(x)=\lambda^{a} x^{a-1} e^{-\lambda x} / \Gamma(a)
$$

for $0<x<+\infty$ and 0 otherwise. A random variable Y with this density will be said to have a gamma (a, λ) distribution. It is easily seen and known to have $E Y=a / \lambda$ and $\operatorname{Var}(Y)=a / \lambda^{2}$.

The Beta function is defined for any $a>0$ and $b>0$ by

$$
\begin{equation*}
B(a, b):=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x \tag{3}
\end{equation*}
$$

Clearly, $0<B(a, b)<\infty$ for any $a>0$ and $b>0$. Letting $y:=1-x$ shows that $B(b, a) \equiv B(a, b)$. Let $\beta_{a, b}(x):=x^{a-1}(1-x)^{b-1} / B(a, b)$ for $0<x<1$ and 0 for $x \leq 0$ or $x \geq 1$. Then $\beta_{a, b}$ is a probability density. The probability
distribution with this density is called a beta distribution with parameters a, b, or $\operatorname{beta}(a, b)$. Its distribution function is then defined as

$$
\begin{equation*}
I_{x}(a, b):=\int_{0}^{x} \beta_{a, b}(t) d t, \quad 0 \leq x \leq 1 \tag{4}
\end{equation*}
$$

The following fact relates gamma distributions with different parameters with each other and relates gamma and beta functions.

Theorem 1 For any $a>0$ and $b>0$,
(a) $B(a, b) \equiv B(b, a) \equiv \Gamma(a) \Gamma(b) / \Gamma(a+b)$.
(b) If X and Y are independent random variables having gamma (a, λ) and $\gamma(b, \lambda)$ distributions respectively, for the same $\lambda>0$, then $U:=X+Y$ has a gamma $(a+b, \lambda)$ distribution.

Proof. First consider (b) and suppose $\lambda=1$. U has a density u given by a convolution of those of X and Y, namely, for any $x>0$,

$$
\begin{gathered}
u(x)=\int_{0}^{x} \gamma_{a}(x-y) \gamma_{b}(y) d y \\
=\int_{0}^{x}(x-y)^{a-1} e^{-(x-y)} y^{b-1} e^{-y} d y /(\Gamma(a) \Gamma(b)) \\
=e^{-x} \int_{0}^{x}(x-y)^{a-1} y^{b-1} d y /(\Gamma(a) \Gamma(b)) .
\end{gathered}
$$

The substitution $y=t x, \quad 0 \leq t \leq 1$ gives

$$
=e^{-x} x^{a+b-1} B(b, a) /(\Gamma(a) \Gamma(b))
$$

Since u must be a probability density, it must be the gamma $(a+b, 1)$ density as desired, and the normalizing constants must agree, so (a) follows. To get (b) for a general $\lambda>0$, just consider X / λ and Y / λ.

Iterating Theorem 1, it follows that if X_{i} are independent identically distributed variables, each having the standard exponential distribution with density e^{-x} for $x \geq 0$ and 0 for $x<0$, so that the X_{i} have gamma distributions with parameter 1 , then for each $n=1,2, \ldots, S_{n}=X_{1}+\cdots+X_{n}$ has a γ_{n} density. If each X_{i} has a $\gamma_{a, \lambda}$ density then S_{n} has a $\gamma_{n a, \lambda}$ density.

It is now easy to find the means and variances of beta distributions. If X has a beta distribution with parameters a, b, in other words has distribution function (4), then $E X=B(a+1, b) / B(a, b)$. Similarly $E X^{2}=$
$B(a+2, b) / B(a, b)=a(a+1) /[(a+b)(a+b+1)]$. Thus

$$
\begin{equation*}
E X=a /(a+b), \quad \operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+1)} \tag{5}
\end{equation*}
$$

Note that $1-X$ has a beta distribution with parameters b, a. Thus $E(1-$ $X)=b /(a+b)$ which equals $1-a /(a+b)$ as it should. Also, $1-X$ has the same variance as X, and so the expression for $\operatorname{Var}(X)$ is preserved by interchanging a and b as it should be.

Let $0<\lambda<\infty$ and let Y be a Poisson random variable with parameter λ. Then some notations are, for any integer $k \geq 0$,

$$
\begin{aligned}
& P(k, \lambda)=\operatorname{Pr}(Y \leq k)=e^{-\lambda} \sum_{j=0}^{k} \lambda^{j} / j! \\
& Q(k, \lambda)=\operatorname{Pr}(Y \geq k)=e^{-\lambda} \sum_{j=k}^{\infty} \lambda^{j} / j!
\end{aligned}
$$

There are identities relating the Poisson and gamma distributions:
Theorem 2 For any positive integer k, if X has a γ_{k} density, we have for any $x \geq 0$,

$$
\begin{equation*}
Q(k, x)=P(X \leq x) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
P(k-1, x)=P(X>x) \tag{7}
\end{equation*}
$$

For $0<\lambda<\infty$, if Y has a $\gamma_{k, \lambda}$ density and $0<t<\infty$, then

$$
\begin{equation*}
P(Y \leq t)=Q(k, \lambda t) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
P(Y>t)=P(k-1, \lambda t) \tag{9}
\end{equation*}
$$

Proof. To prove equation (7), differentiate with respect to x and note that the derivative of $P(k-1, x)$ is

$$
-e^{-x}+e^{-x}-x e^{-x}+\frac{2}{2!} x e^{-x}-\cdots-\frac{x^{k-1}}{(k-1)!}=-\frac{x^{k-1}}{(k-1)!}=-\gamma_{k}(x)
$$

a telescoping sum. Both sides of (7) equal 1 when $x=0$, so (7) follows. Equation (6) follows by taking complements.

Then letting $Y=X / \lambda, Y$ has the given density, (9) follows from (7), and (8) follows by taking complements or from (6).

A similar identity relates beta and binomial probabilities. Let $0<p<1$, $q=1-p$, let X be a binomial (n, p) random variable and

$$
\begin{aligned}
& B(k, n, p)=\operatorname{Pr}(X \leq k)=\sum_{j=0}^{k} b(j, n, p), \\
& E(k, n, p)=\operatorname{Pr}(X \geq k)=\sum_{j=k}^{n} b(j, n, p) .
\end{aligned}
$$

Theorem 3 If $0<p<1$, and $0 \leq k \leq n$ are integers, then

$$
\begin{gathered}
E(k, n, p)=I_{p}(k, n-k+1), \quad \text { if } k \geq 1 \\
B(k, n, p)=I_{1-p}(n-k, k+1), \quad \text { if } k<n .
\end{gathered}
$$

Proof. The first equality again follows from differentiating a finite sum with respect to p which gives a telescoping sum. The second then follows from $B(k, n, p) \equiv E(n-k, n, 1-p)$.

A $\chi^{2}(d)$ distribution, or χ^{2} distribution with d degrees of freedom, is defined as the distribution of $Z_{1}^{2}+\cdots+Z_{d}^{2}$ where $Z_{1}, Z_{2}, \ldots, Z_{d}$ are i.i.d. $N(0,1)$. The following known fact will be proved:

Theorem 4 For any positive integer d, $\chi^{2}(d)$ has a $\gamma(d / 2,1 / 2)$ distribution.
Proof. First let $d=1$. Let Z have $N(0,1)$ distribution. Then for any $t \geq 0$,

$$
\operatorname{Pr}\left(Z^{2} \leq t\right)=\operatorname{Pr}(|Z| \leq \sqrt{t})=\Phi(\sqrt{t})-\Phi(-\sqrt{t})
$$

where Φ is the standard normal distribution function. Thus by the chain rule the density of $\chi^{2}(1)=Z^{2}$ is

$$
2 \phi(\sqrt{t}) \cdot\left(1 /\left(2 t^{1 / 2}\right)=(2 \pi t)^{-1 / 2} e^{-t / 2}\right.
$$

which is the $\gamma(1 / 2,1 / 2)$ density, since $\Gamma(1 / 2)=\sqrt{\pi}$ (if one did not know that, it would follow by unique normalization of probability densities), proving the statement for $d=1$. The statement for a general positive integer d then follows by Theorem 1(b) for $\lambda=1 / 2$ and induction on d.

