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χ2 TESTS FOR COMPOSITE HYPOTHESES – ASYMPTOTIC DISTRIBUTIONS

Recall that we have a multinomial (n, π1, ..., πk) distribution, where
πj is the probability of the jth of k possible outcomes on each of n

independent trials. Thus πj ≥ 0 and
∑k

j=1 πj = 1. Let Xj be the
number of times that the jth outcome occurs in the n trials. In testing
a composite hypothesis πj = πj(θ) indexed by θ in an m-dimensional
parameter space Θ, where πj(θ) > 0 for all j = 1, ..., k and all θ in Θ,

and m < k − 1, we estimate θ by some θ̂ and compute the chi-squared
statistic

X̂2 =
k∑

j=1

(Xj − nπj(θ̂))
2

nπj(θ̂)
.

In this handout, we’ll show that for two ways of estimating θ, maxi-

mum likelihood (based on the Xj) and minimizing X̂2 (“minimum χ2

estimation”), the distribution of X̂2 will converge as n → ∞ to that of
χ2(k −m− 1). For other estimation methods, such as those based on

continuous or otherwise ungrouped data, the limit distribution of X̂2

can be different.

1. Preliminaries

1.1. Notations O(·), Op, o(·), op, ∼, and ≍. We’ll be using notations
defined as follows. For two functions f and g with g > 0 one says that
f = o(g) if f(x)/g(x) → 0 or f = O(g) if f/g remains bounded
under some limiting condition, here where g(x) → 0 (but it would
be used similarly if g(x) → +∞). The same notations are also used
for sequences, so that xn = O(yn) means yn > 0 and xn = o(yn)
means xn/yn → 0 as n → ∞, while xn = O(yn) means xn/yn remains
bounded. The notation f = o(1) means f(x) → 0 under some limiting
condition, likewise xn = o(1) means xn → 0 as n → ∞, and xn = O(1)
means xn is a bounded sequence.
For a sequence Xn of random variables, Xn = Op(1) will mean that

Xn are bounded in probability, meaning that for any ε > 0 there is
an M < +∞ such that P (|Xn| > M) < ε for all n. If Yn > 0 are
random variables then Xn = Op(Yn) will mean that Xn/Yn = Op(1).
Xn = op(1) will mean that Xn → 0 in probability, i.e. for every ε > 0,
P (|Xn| > ε) → 0 as n → ∞. If Yn > 0 are random variables then
Xn = op(Yn) will mean Xn/Yn = op(1).
Recall that f ∼ g means f/g → 1, and likewise for sequences. Lastly

f ≍ g will mean that f = O(g) and g = O(f), in other words f and g
1
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are of the same order of magnitude, under whatever limiting condition
is given.

1.2. Some linear algebra. . For any x = {xi}ji=1 ∈ R
j and j =

1, 2, 3, ..., we take the usual Euclidean norm |x| = (x2
1 + · · · + x2

j)
1/2.

Let A be a k ×m real matrix A = {Aij}1≤i≤k,1≤j≤m. Taking elements
x = {xj}mj=1 of R

m as column vectors, A defines a linear transformation,

also to be called A, of Rm into R
k, by y = Ax where yi =

∑m
j=1 Aijxj.

If m ≤ k, the rank of A is defined as the maximum number of linearly
independent columns of A, in other words, the dimension of the linear
subspace L of Rk onto which A transforms Rm. A is said to have full
rank if this rank is m, in other words, A defines a one-to-one linear
transformation of R

m onto L. This implies that for some M with
1 ≤ M < +∞, for all x 6= 0 in R

m,

(1) 1/M ≤ |Ax|/|x| ≤ M,

noting that |Ax| is taken in R
k and |x| in R

m.

2. Chi-squared statistics using maximum likelihood

estimates

A maximum likelihood estimate (MLE) of θ will be a θ̂, if it exists,

which maximizes
∏k

j=1 πj(θ)
Xj with respect to θ ∈ Θ. If it is unique it

is called the MLE. Let Pk be the set of all k-tuples π = {πj}kj=1 such

that πj > 0 for each j and
∑k

j=1 πj = 1 (mathematicians might describe

this as the interior of a (k− 1)-dimensional simplex). Let V be the set
of all v(θ) = {πj(θ)}kj=1 for θ in Θ. We will assume that v is a one-to-
one function from Θ onto V , continuous with a continuous inverse (a
homeomorphism). Moreover, we will want V to be a sufficiently smooth
subset (surface or manifold) of Pk. It does not have to be very smooth.
For those who know differential geometry, it would suffice for it to be
a C1 submanifold. In fact somewhat less suffices, as a statistician M.
W. Birch proved in 1964. I had given expositions of Birch’s theorem
and proof in some 1976 lecture notes and a 1979 paper but seemingly
not in this course until 2011. The set V ⊂ Pk will be called a Birch
m-submanifold of Pk if for all v ∈ V , V has a tangent hyperplane F
at v. Specifically, there exist some γ > 0 and ζ > 0 and a function
w defined on the neighborhood U = {x : |x| < ζ} of 0 in R

m such
that w(0) = v, and w(·) is a homeomorphism of U onto a subset of V
including {w ∈ V : |w − v| < γ}. Assume also that the vector-valued
function w has a first Fréchet derivative at 0, namely, the first partial
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derivatives Aij := ∂wi/∂xj|x=0 exist for all i = 1, ..., k and j = 1, ...,m,
and

(2) |w(x)− v − Ax|/|x| → 0

as |x| → 0. Further, assume that the matrix Aij has full rank m.

Theorem 1 (Birch’s theorem). Let V be any Birch m-submanifold of
Pk where 0 < m < k − 1, then for any p ∈ V , if (X1, ..., Xk) have a
multinomial (n, {pj}kj=1) distribution, as n → ∞, the probability that

at least one MLE θ̂ exists converges to 1, and for any choices θ̂ = θ̂n
of MLE, the distribution of X̂2 converges to that of χ2(k −m− 1).

Proof. Maximizing the likelihood is, as usual, equivalent to maximizing
the log likelihood, which in this case is

∑k
j=1Xj log(πj(θ)). Letting

rj := Xj/n for j = 1, ..., k, we have r = {rj}kj=1 ∈ Pk provided that
Xj ≥ 1 for all j, which will occur with probability → 1 as n → ∞ since
all pj > 0.

Equivalently, we want to maximize
∑k

j=1 rj log(vj/rj) with respect

to v = {vj}kj=1 ∈ V or to minimize
∑k

j=1 rj log(rj/vj). The proof will

be based on a sequence of lemmas. Let 0 · log(x/0) = 0 for all y ≥ 0
and x · log(x/0) = +∞ for all x > 0.

Lemma 2. For any x and y in [0, 1], x · log(x/y) ≥ x− y+ 1
2
(x− y)2.

Proof. If x or y is 0, the statement holds by our conventions. If x >
0 < y, then Taylor’s theorem with remainder gives

x · log(x) = y · log(y) + (1 + log y)(x− y) + (x− y)2/(2w)

for some w between x and y. Thus 1/w ≥ 1 and the Lemma follows.
Q.E.D.

Lemma 3. For any r and v in Pk,

L(r, v) :=
k∑

j=1

rj log(rj/vj) ≥
1

2
|r − v|2.

Proof. By Lemma 2, for each j,

rj log(rj/vj) ≥ rj − vj +
1

2
(rj − vj)

2.

Then summing over j gives the conclusion since
∑k

j=1 rj−vj = 1−1 =
0, Q.E.D.

Lemma 4. For any p ∈ V and (X1, ..., Xk) multinomial (n, p1, ..., pk),
let r = {rj}kj=1 as defined above. Then r = rn → p with probability 1
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as n → ∞, and the probability that an MLE θ̂ (not necessarily unique)

exists converges to 1 as n → ∞. Letting v = v(r) = v(n) = π(θ̂), any
such v(n) converge to p as n → ∞.

Proof. Each Xj has a binomial (n, pj) distribution, so rj = Xj/n con-
verges to pj with probability 1 as n → ∞ by the law of large numbers,
and r → p. Given ε > 0, we will have L(r, p) < ε2/2 and |r − p| < ε
for n large enough. Let W := {v ∈ V : |v − p| ≤ 2ε}. We have

inf
v∈V

L(r, v) ≤ inf
v∈W

L(r, v) ≤ L(r, p) < ε2/2.

On the other hand, for v ∈ V not in W , we have |v − r| > ε and so
L(r, v) > ε2/2 by Lemma 3. Thus

inf
v∈V

L(r, v) ≤ inf
v∈W

L(r, v) < inf
v∈V,v /∈W

L(r, v).

Since W is a closed and bounded (compact) set, there exists a v ∈ W
at which the infimum is attained, giving an MLE. As n becomes large,
and ε ↓ 0, W shrinks down to p, so the MLEs v(n) converge to p, Q.E.D.

For each p ∈ Pk, an inner product (dot product) on R
k is defined by

(x, y)p :=
k∑

j=1

xjyj/pj.

Let |x|p := (x, x)
1/2
p . For a fixed p, or for p with all pj bounded away

from 0, there is a constant M < ∞ such that

|x|/M ≤ |x|p ≤ M |x|
for all x ∈ R

k. Thus in a statement such as |xn|p = o(|yn|p), the p
subscript makes no difference.

Lemma 5. As r → p and v → p with v ∈ V ,

(3) −2
k∑

j=1

rj log(vj/rj) = |r − v|2p + o(|r − p|2 + |v − p|2).

Proof. By assumption pj > 0 and vj > 0 for all j, and we can assume
rj > 0 for all j. Then by the proofs of Lemmas 2 and 3,

−2
k∑

j=1

rj log(vj/rj) =
k∑

j=1

(vj − rj)
2/wj

where wj is between rj and vj for each j. Then 1/wj − 1/pj → 0.
Now (rj − vj)

2 ≤ 2(rj − pj)
2 + 2(vj − pj)

2 since for all real x and y,
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(x + y)2 ≤ 2x2 + 2y2. Thus |r − v|2p ≤ 2M2(|r − p|2 + |p − v|2) and
Lemma 5 follows, Q.E.D.

Now let F be the tangent hyperplane to V at p. Then F is the set of
all p+w′(0)u for u ∈ R

s where w′(0) is given by the k×m matrix A as
in the definition (2) of Birch m-submanifold. For x ∈ R

k let f(x) ∈ F
be such that |x− f(x)|p = min{|x− y|p : y ∈ F}. In other words, f is
the orthogonal projection into F for the (·, ·)p inner product.

Lemma 6. As v → p with v ∈ V , |v − f(v)| = o(|v − p|).

Proof. By the definition of Birch m-submanifold and definitions in it
applied to v = p, the function w(·) on U is a homeomorphism onto a
subset of V including {v ∈ V : |v−p| < γ}. Letting x(·) be the inverse
function of w, we have x(v) → 0 if and only if v → p, and by (2), then
|v − p − Ax(v)| = o(|x(v)|). Since A is of full rank m we have by (1)
|Ax(v)| ≍ |x(v)|. It follows then that |v − p| ∼ |Ax(v)|. By definition
of f , we have |v − f(v)| ≤ |v − p − Ax(v)| = o(|x(v)|) which we now
see is o(|v − p|), Q.E.D.

Lemma 7. As r → p and v → p with v ∈ V ,
(4)

−2
k∑

j=1

rj log(vj/rj) = |r−f(r)|2p+ |f(r)−f(v)|2p+o(|r−p|2+ |v−p|2).

Proof. Apply Lemma 6 to get on the right in (3)

|r − f(v)|2p + o
(
|r − p|2 + |v − p|2

)
.

Then since r− f(r) is perpendicular to differences of members of F for
(·, ·)p,

|r − f(v)|2p = |r − f(r)|2p + |f(r)− f(v)|2p,
and the conclusion follows, Q.E.D.

Lemma 8. (a) For r close enough to p, |v(r)− p|p ≤ 2|r − p|p;
(b) As r → p, |f(r)− f(v(r))| = o(|p− r|);
(c) |v(r)− f(r)| = o(|p− r|).
Proof. By Lemma 4, v(r) exists (not necessarily unique) and converges
to p as r → p. Then f(r) = p + Au for some u = u(r) → 0 as in the
definition of Birch submanifold, and |w(u) − f(r)| = o(|u|). By (1),
o(|u|) = o(|Au|) = o(|f(r)− p|) = o(|r − p|). Thus |f(w(u))− f(r)| =
o(|r − p|).
In (4), the left side is minimized at v = v(r) by definition, so it

must be smaller there than at v = w = w(u(r)), where as just shown,
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|f(r)−f(w)| = o(|r−p|), so on the right in (4), the term |f(r)−f(w)|2p
can be included in the o(·) error term. Thus

|f(r)− f(v(r))|2 = o(|r − p|2 + |v(r)− p|2 + |w(u(r))− p|2).
We have |w(u(r))− p|2 = O(|f(r)− p|2) = O(|r − p|2) and so

(5) |f(r)− f(v(r))|2 = o(|r − p|2 + |v(r)− p|2).
If (a) fails, take a sequence rn = r → p with |p−v(r)|p > 2|p−r|p. Then
|f(r)−f(v(r))| = o(|v(r)−p|) by (5), and |f(v(r))−v(r)| = o(|v(r)−p|)
by Lemma 6. Then |f(r) − v(r)| = o(|p − v(r)|), and |v(r) − p|p is
asymptotic to |f(r)− p|p which is ≤ |r− p|p as r → p, a contradiction.
Thus (a) is proved. By (5), (b) follows.
Next, |v(r) − f(v(r))| = o(|v(r) − p|) = o(|r − p|) by Lemma 6 and

part (a). This gives part (c), proving Lemma 8, Q.E.D.

Lemma 9. As r → p, w → p, and v → p with v ∈ V ,

|r − v|2w =
k∑

j=1

(rj − vj)
2/wj = |r − f(v)|2p + o

(
|r − p|2 + |v − p|2

)
.

Proof. 1/wi = 1/pi + o(1), so the proof of Lemma 5 applies. Also use
Lemma 6 to replace v by f(v). Q.E.D.

Lemma 10. As r → p,

Y 2 :=
k∑

j=1

(rj − vj(r))
2/vj(r) = |r − f(r)|2p + o(|r − p|2).

Proof. By Lemma 4, v(r) → p. Then by Lemma 9 and Lemma 8(a),

Y 2 = |r − f(v(r))|2p + o(|r − p|2).
By Lemma 8(b) and since (r−f(r), f(r)−f(v(r)))p = 0, the conclusion
follows, Q.E.D.

Proof of Theorem 1. By the multidimensional central limit theorem,
as we saw in the proof of the asymptotic χ2(k − 1) distribution of
the X2 statistic for a simple hypothesis, the k-variate distribution of
{n(rj−pj)/

√
npj}kj=1 converges as n → ∞ to a normal distribution with

mean vector 0 and covariance matrix Cij = δij−√
pipj for i, j = 1, ..., k.

It follows that no(|r − p|2p) → 0 in probability as n → ∞. By Lemma

10, nY 2 has the same limit distribution as n|r − f(r)|2p. Now for any
r ∈ Pk,

r = (r − f(r)) + (f(r)− p) + p
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where the three summands are all orthogonal for (·, ·)p. In fact, for any
x and y in Pk, (x−y, p)p = 0, and for any a and b in F , (r−f(r), a−b)p =
0. Thus

|r − p|2p = |r − f(r)|2p + |f(r)− p|2p.
By the case of a simple hypothesis, we know that the distribution of
n|r − p|2p converges to that of χ2(k − 1) as n → ∞. Let Z be the

(k − 1)-dimensional hyperplane of all z = {zj}kj=1 with
∑k

j=1 zj = 0.
For any z ∈ Z,

|z|2p = |p+ z − f(p+ z)|2p + |f(p+ z)− p|2p.

Also, for any y ∈ R
k, y ∈ Z if and only if (y, p)p = 0. Let g(z) :=

f(p + z) − p. Then g is linear on Z, with range F − p := {x − p :
x ∈ F} a linear subspace of dimension m. In the definition of Birch

m-submanifold, we have
∑k

i=1 wi(x) = 1 for all x ∈ U and thus for
each j = 1, . . . ,m,

k∑

i=1

∂wi(x)/∂xj|x=0 = 0.

So the columns of A are in Z, the range of A is included in Z, and
F − p ⊂ Z.
The map from z to z− g(z) (the identity minus g) is also linear, and

its range is orthogonal to F − p and to p for (·, ·)p. Since F ⊂ p+Z it
does not contain 0, so it spans a linear subspace of dimension m + 1.
Thus I−g has rank at most k−m−1. By the Fisher–Cochran Theorem
(Corollary 15 in the Appendix below), we see that the distribution of
n|r − f(r)|2p converges to that of χ2(k − 1 − m), proving Theorem 1
(Birch’s theorem), Q.E.D.

3. Minimum χ2 estimates

Given a composite hypothesis V ⊂ Pk, a minimum χ2 estimate is a
ξ ∈ V , if it exists, that minimizes |r − ξ|2ξ , or equivalently minimizes

n|r−ξ|2ξ . Let X̂2
min := infξ∈V n|r−ξ|2ξ , which is the value of the statistic

X2 at a minimum χ2 estimate if one exists. The value of X2 at an
MLE v(r) is n|r − v(r)|2v(r). It turns out that the two values of X2 are
asymptotically the same:

Theorem 11. If m < k − 1, V is a Birch m-submanifold of Pk, and
if H0: p = (p1, . . . , pk) ∈ V is true, then as n → ∞,

(6) inf
ξ∈V

|r − ξ|2ξ = |r − v(r)|2v(r) + op(1/n),
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or equivalently

X̂2
min = n|r − v(r)|2v(r) + op(1),

so that the distribution of X̂2
min also converges as n → ∞ to that of

χ2(k −m− 1).

Proof. UnderH0 we have Erj = pj for each j and E((rj−pj)
2) = pj(1−

pj)/n. It follows that E(|r − p|2) < 1/n. Since pj > 0 for all k, there
is an M < ∞ such that 1/pj < M for all j. Thus E(|r − p|2p) < M/n

and |r − p|2 = Op(1/n). By Lemma 10,

(7) |r − v(r)|2v(r) = |r − f(r)|2p + o(|r − p|2) ≤ |r − p|2p + op(1/n).

It follows that for any minimum χ2 estimate ξ, or any ξ ∈ V such that
|r − ξ|2ξ ≤ |r − v(r)|2v(r), we have |r − ξ|2 = Op(1/n) so ξ is close to
r with high probability as n becomes large, and both are close to p.
Then for w = v = ξ in Lemma 9,

|r − ξ|2ξ = |r − f(ξ)|2p + o(|r − p|2)(8)

= |r − f(r)|2p + |f(r)− f(ξ)|2p + o(|r − p|2).

Since o(|r−p|2) = op(1/n), in X̂2
min, to minimize the left side of (8), we

need to choose ξ ∈ V so that |f(r) − f(ξ)|2p is also small, specifically,
also op(1/n). Then by (7)

X̂2
min = n|r − f(r)|2p + op(1) = n|r − v(r)|2v(r) + op(1),

proving the theorem, Q.E.D.

4. Appendix: Partition theorems for quadratic forms and

χ2 variables

On the finite-dimensional real vector space R
d, consisting of points

x = {xj}dj=1, let (x, y) :=
∑d

j=1 xjyj be the usual inner product. Taking

vectors x ∈ R
d as column vectors, for a d × d matrix A and vector x,

the matrix product y = Ax with entries yi = (Ax)i =
∑d

j=1 Aijxj gives
another column vector y. A quadratic form is a real-valued function
Q which can be written as Q(x) = (Ax, x) =

∑d
i=1

∑d
j=1 Aijxixj for

some d × d matrix A = {Aij}di,j=1. Clearly the notion of quadratic
form doesn’t depend on the choice of coordinates, although of course
the coefficients Aij do. We can always take A to be symmetric, namely
with Aij = Aji for all i and j, since we can replace both Aij and Aji

by (Aij + Aji)/2 without changing Q. A coordinate free definition of
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symmetric (also called self-adjoint) is that (Ax, y) = (x,Ay) for all x
and y.

Proposition 12. If Q is any quadratic form with Q(x) = (Ax, x) for
all x ∈ R

d and A is symmetric, then A is uniquely determined.

Proof. For any x, y and symmetric B we have the polarization identity

4(Bx, y) = (B(x+ y), x+ y)− (B(x− y), x− y).)

Thus if (Az, z) = (Cz, z) for all z where A and C are symmetric, let
B = A − C. Then (Bx, y) = 0 for all x and y, which implies Bx = 0
(as a vector) for all x, which implies B = 0, so A = C, Q.E.D.

For any linear subspace J of Rd let J (p) = {y : (x, y) = 0 for all
x ∈ J}. J (p) is sometimes called the orthogonal complement of J . Two
linear subspaces J1 and J2 are called orthogonal, or J1 ⊥ J2, if and only
if (x, y) = 0 for all x ∈ J1 and y ∈ J2. Also let ker(A) be defined as
{x : A(x) = 0}. The range of A or ran A is defined as {Ax : x ∈ R

d}.
A symmetric matrix is called an orthogonal projection if A(Ax) = Ax
for all x (in other words A2 = A for matrix multiplication). Then
Ax = x for all x ∈ ran(A).

Proposition 13. If A is symmetric then ker(A) = ran(A)(p).

Proof. Ax = 0 if and only if (Ax, y) = 0 for all y, if and only if
(x,Ay) = 0 for all y, i.e. x ∈ ran(A)(p), Q.E.D.

Given a quadratic form Q(x) ≡ (Ax, x) with A symmetric, the rank
of Q or A is defined as the dimension of the range of A, which is some
integer r(A) with 0 ≤ r(A) ≤ d.

Theorem 14. Let Q1, ..., QK be quadratic forms on R
d with for each

j = 1, ..., K, Qj(x) ≡ (Ajx, x) for Aj symmetric. Let rj be the rank
of Qj and Aj for each j. Assume that for every x ∈ R

d, (x, x) =∑K
j=1Qj(x). Then

∑K
j=1 rj = d if and only if the Aj are orthogonal

projections onto orthogonal subspaces.

Proof. By Proposition 12,
∑K

j=1Aj = I, the identity d×dmatrix. The

“if” part is clear. To prove “only if,” take x ∈ H1 := ∩K
j=2 ker(Aj) =(∑K

j=2 ran(Aj)
)(p)

by Proposition 13. Then A1x = x. Thus ran(A1) ⊃
H1. Since the dimension dim

(∑K
j=2 ran(Aj)

)
≤ ∑K

j=2 rj and r1 = d−∑K
j=2 rj it follows that r1 = dim(H1) and ran(A1) = H1. Inductively,

for each j, likewise, the subspaces ran(Aj) are all orthogonal, with
sum R

d. By Proposition 13, each Aj is the orthogonal projection onto
its range, Q.E.D.
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Corollary 15 (The Fisher–Cochran partition theorem for χ2). Let P
be a normal distribution with mean 0 on R

d. Suppose Qi for i = 1, ..., K
are quadratic forms on R

d of respective ranks di. Let Q(x) :=
∑K

i=1 Qi.

Suppose Q has a χ2(d) distribution. Then
∑K

i=1 di = d if and only if
the Qi are jointly independent and have distributions χ2(di).

Proof. Again the “if” direction is clear. To prove “only if,” we can
choose coordinates (x1, . . . , xd) in which the covariance matrix C is
diagonal, with diagonal entries c1 ≥ c2 ≥ · · · ≥ cd ≥ 0. Let J be
the largest j with cj > 0. Change coordinates again to yj =

√
cjxj if

cj > 0 (j ≤ J) and yj = xj otherwise. In the yj coordinates C becomes
an orthogonal projection, diagonal with first J diagonal entries equal
to 1 and other entries 0. Thus P (yi = 0) = 1 for all i > J . Let
Q(x) = (Ay, y) in the y coordinates. Without changing the distribution
of Q we can assume that Aij = 0 if i > J or j > J . In the coordinates
y1, . . . , jJ , C is the identity matrix, so by a rotation (not changing
C) we can make A diagonal with diagonal entries a1, . . . , aJ . Then

Q =
∑J

j=1 ajy
2
j where yj are i.i.d. N(0, 1). If any aj < 0 then with

positive probability, Q would have negative values, contradicting its
χ2(d) distribution. Also, any aj = 0 can be omitted from the sum, so
we can assume that aj > 0 for all j.
The moment generating function of a χ2(1) random variable is

E exp(uχ2(1)) = (2π)−1/2

∫ ∞

−∞

exp

(
ux2 − x2

2

)
dx,

which is finite if and only if u < 1/2. By the substitution y =
√
1− 2ux

we find that the moment generating function equals (1− 2u)−1/2 as is
well known (a special case of the Γ generating function given by Rice,
Appendix A, p. A2). Thus for u < (1/2)min(1,minj 1/aj),

J∏

j=1

(1− 2aju)
−1/2 = (1− 2u)−d/2

since Q has a χ2(d) distribution. Taking the −2 power of both sides
gives

J∏

j=1

(1− 2aju) = (1− 2u)d.

Two polynomials equal for all u in a half-line (−∞, c) for some c > 0
must be identically equal. The right side has a root only at u = 1/2.
Thus aj = 1 for all j and J = d. So in the y coordinates C is the
identity C = I and Q(y) ≡ (y, y). Then application of Theorem 14
gives the corollary. Q.E.D.
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NOTES

Although Theorem 1 allows non-unique maximum likelihood esti-
mates, such cases would involve harder computations. One would find
points where the gradient of the (log) likelihood is zero (the “likelihood
equations” hold), then one to decide which of these are local maxima
or minima or saddle points, and among the maxima, pick the global
one(s). Often, the MLE is unique and fairly easily computed. Dis-
tributions for minimum χ2 estimates can provide useful bounds even
though such estimates are generally hard to compute.
Fisher (1924) first gave a statement of the conclusion of Theorem

1 with non-rigorous hypotheses and proof. H. Cramér (1945), in ap-
parently the first mathematically rigorous statistics textbook, assumed
that the function w(·) is twice continuously differentiable (C2), i.e.
all the second partial derivatives ∂2wi(x)/∂xj∂xs for i = 1, ..., k and
j, s = 1, ...,m exist and are continuous. Cramér showed that there
exists at least one sequence of solutions of the likelihood equations
converging to the true value, but a criticism is, how does one recog-
nize such solutions? C. R. Rao (1965, 1972) gave a proof assuming
that w is just C1 (once continuously differentiable). Birch’s (1964)
proof assumed only existence of a Fréchet derivative everywhere, not
necessarily continuous. In practice, the manifolds considered are very
smooth (C∞). As assuming more smoothness seems to make the proof
no easier, one was given here only under Birch’s assumption.
Birch (1964) took Θ to be an open subset of Rm. The definition is

changed here because, first, one might want to consider other cases such
as that Θ is a circle, sphere, or cylinder, e.g. Mardia (1972), Mardia and
Jupp (2000). (Mardia’s 1972 book has over 2,000 citations in published
articles and books according to Google Scholar.) Second, in terms of
differential geometry, the inverse of w is just a local coordinate system
(chart), which is rather arbitrary.
In one case, an asymptotic distribution different from a χ2 dis-

tribution was found. Let real (continuous) X1, . . . , Xn be observed
and let the hypothesis H0 be that they are i.i.d. N(µ, σ2) for some
unknown µ and σ2. Suppose µ and σ2 are estimated by maximum
likelihood from the given (ungrouped) data, namely by µ̂ = X and
σ̂2 = 1

n

∑n
j=1(Xj −X)2. Then decompose the line into some k groups

(intervals, or half-lines) each of which has at least 5 expected obser-
vations according to N(µ̂, σ̂2). If one does a χ2 test, Chernoff and
Lehmann (1954) showed that the approximate distribution of the X2

statistic for large n is that of
∑k−1

j=1 ajG
2
j where Gj are i.i.d. N(0, 1) and

aj = 1 for j = 1, . . . , k − 3 but 0 < aj < 1 for j = k − 2, k − 1. Here
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m = 2, and the distribution is between that of χ2(k−1−m) as for MLE
based on the grouped data, and χ2(k − 1) as for a simple hypothesis.
This way of testing normality is now outdated. The Shapiro–Wilk test
for normality was published in 1965 and in recent years has become
very accessible through R.
I first wrote a proof of Birch’s theorem in lecture notes for a course

in Aarhus, Denmark, in the spring of 1976. Later that same spring I
visited the Banach Center in Warsaw and lectured on Birch’s theorem.
I had (re)discovered the “Fisher–Cochran” theorem, Corollary 15, and
assumed it must be known but didn’t know a reference. The late Jack
Kiefer (1924–1981), a leading statistician to whom I’d sent a copy,
informed me that the fact was indeed well known and was in the book
of Scheffé (1954). The name given to this fact seems to be based
on papers of Fisher (1925) and Cochran (1934). I was able to update
references as the Banach Center lectures were not published until 1979.
The material in this handout on minimum χ2 estimation was not in

the 1976 (or 1979) notes. It was added in March 2011.
William G. Cochran (1909-1980), born in Scotland and educated in

Britain, taught statistics in the United States at 5 different universities
(Iowa State, Princeton, U. North Carolina, Johns Hopkins, Harvard)
from 1939 until he retired from Harvard in 1976. The book Statistical
Methods by George W. Snedecor, joined in editions after the first by
Cochran, has had at least 8 editions including a posthumous one. Dur-
ing the 1970’s it was the most cited item in all mathematical literature,
although that is no longer the case. Snedecor (1881-1974) founded the
first academic statistics department and statistical laboratory in the
United States, both at Iowa State University.
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