
SOME TOPICS IN BAYESIAN STATISTICS

1. Introduction

So far in the course, we only encountered the Bayesian viewpoint
(prior and posterior probabilities) in testing a simple hypothesis against
a simple alternative. More generally, we may have priors and posteriors
for a continuous parameter θ.

2. Definition of priors and posteriors for a continuous θ

In this handout Θ will be a parameter space included in a Euclidean
space R

k. For example, for the family of normal distributions, Θ is the
open half-plane {(µ, σ) : −∞ < µ < ∞, 0 < σ < ∞} ⊂ R

2. On Θ, dθ
will mean dθ1 · · · dθk.
Assume given a likelihood function f(X, θ) defined for θ ∈ Θ and X

a vector in R
n. In Bayesian statistics, one assumes before taking any

observations that θ has a prior probability density π(θ) with respect
to dθ. Then π(θ) ≥ 0 and

∫

Θ
π(θ)dθ = 1. If θ = p with 0 ≤ p ≤ 1 is

the success probability in a binomial distribution, a simple and natural
choice for its prior (in the absence of any particular information about
p) is a U [0, 1] distribution with π(p) = 1 for 0 ≤ p ≤ 1. The earliest
works in Bayesian statistics, Bayes (1764) and Laplace (1774), made
this choice.
Let f(x, θ) be a likelihood function for one observation, which may be

either a probability mass function if x is discrete or a density function
if x is continuous. If we have i.i.d. observations X = (X1, ..., Xn) we
get a likelihood function f(X, θ) =

∏n
j=1 f(Xj, θ).

However f(X, θ) is obtained, the posterior density πX(θ) is gotten by
multiplying the likelihood function by the prior and then normalizing
it,

(1) πX(θ) =
f(X, θ)π(θ)

∫

Θ
f(X,φ)π(φ)dφ

.

To show that (1) makes sense we can use the following:

Theorem 1. Let Θ ⊂ R
k be a parameter space. Let π(θ) ≥ 0 be a

prior probability density for θ. Suppose that for each θ ∈ Θ, f(X, θ) is
a probability density with respect to X ∈ R

n, so that
∫

f(X, θ)dX = 1
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where dX = dx1dx2 · · · dxn. Let q(X, θ) = π(θ)f(X, θ) for all θ ∈ Θ
and all X. Then
(a) q is a probability density for (X, θ), X ∈ R

m, θ ∈ R
k, with respect

to dXdθ, for a joint probability distribution Q of (X, θ),
(b) the marginal density of q with respect to θ is π,
(c) and for each θ ∈ Θ the conditional density of X given θ is q(X|θ) =
f(X, θ).
(d) Letting

τ(X) =

∫

Θ

q(X, θ)dθ,

τ is a probability density and is the marginal density of Q with respect
to X.
(e) With probability 1 with respect to Q, or with respect to its marginal
density τ ,

(2) 0 < τ(X) < +∞.

(f) For all X such that (2) holds, a conditional density of θ given X
(posterior density) exists and is given by q(θ|X) = πX(θ) in (1) where
the denominator in (1) is τ(X).
(g) We have for Q-almost all (x, θ),

(3) q(X, θ) = π(θ)f(X, θ) = τ(X)πX(θ).

Proof. For (a), since the integrand is nonnegative we can do an iterated
integral in either order. If we integrate first with respect to X we get
π(θ) which has integral 1 with respect to θ. This also proves (b),
and the rest of the statements are known facts about marginal and
conditional densities from probability theory. Since part (e) is crucial
in showing that πX is well-defined with probability 1, let’s prove it in
detail, assuming part (d). We have

Pr(τ(X) = 0) =

∫

τ(X)=0

τ(X) dX =

∫

0 dX = 0.

On the other hand let A = {X : τ(X) = +∞}. Then

Pr(A) =

∫

A

τ(X) dX =

∫

A

+∞ dX = +∞,

which is impossible since Pr(A) ≤ 1, unless
∫

A
1 · dX = 0, in which

case
∫

A
+∞ dX is 0 by definition of (Lebesgue) integral, so Pr(A) = 0,

and (e) follows, i.e. (2) holds with probability 1.
For part (g), in (3), the first equation holds by definition of q(X, θ),

and the second by the definitions and parts (d) and (e). �
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3. Bayes least-squares estimation

First here is a very simple, probably familiar, fact.

Proposition 1. For any random variable Y with E(Y 2) < +∞, the
unique constant c that minimizes E((Y − c)2) is c = EY .

Proof. E((Y − c)2) = E(Y 2)−2cEY + c2 is a quadratic polynomial in
c which goes to +∞ as c → ±∞, so it’s minimized where its derivative
with respect to c equals 0, namely at c = EY . �

Suppose we want to estimate a function g(θ). Then for an estimator
V (X), the mean-square error (MSE) for a given θ is Eθ[(V (X)−g(θ))2].
For a prior π, the risk is the expectation of the MSE with respect to
that prior, namely

(4) r(V, π) :=

∫

Θ

Eθ[(V (X)− g(θ))2]π(θ)dθ.

A Bayes estimator for g(θ) for the given prior is one that minimizes
the risk, provided its risk is finite.

Theorem 2. For a given likelihood function f(X, θ) for θ ∈ Θ , where
Θ ⊂ R

k for some k ≥ 1, and prior density π, if there exists some
estimator U(X) of the given g(θ) that has finite risk for the given π,
then there exists a Bayes estimator T , given by the expectation of g(θ)
with respect to the posterior distribution,

(5) T (X) =

∫

Θ

g(θ)πX(θ)dθ.

The Bayes estimator is essentially unique, in the sense that any Bayes
estimator must equal this T (X) with probability 1.

Proof. We have

r(U, π) =

∫

Θ

∫

[(U(X)− g(θ))2f(X, θ)dX]π(θ)dθ < ∞.

Interchanging integrals for a nonnegative integrand, this gives by (3)
∫ ∫

[(g(θ)− U(X))2πX(θ)dθ τ(X)dX < ∞.

It follows that with probability 1 with respect to the marginal distri-
bution τ(X)dX of X,

∫

((g(θ)− U(X))2πX(θ)dθ < ∞.

Since U(X) is constant with respect to θ, and a constant plus a square-
integrable function is square-integrable, it further follows that with
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probability 1 with respect to τ(X)dX, g is square-integrable with re-
spect to the posterior distribution πX :

(6)

∫

g(θ)2πX(θ)dθ < ∞.

We would like to minimize (4). Let’s write out the Eθ. Recall that
∫

· · · dX is a shorthand for
∫

∞

−∞

∫

∞

−∞

· · ·
∫

∞

−∞

· · · dx1 dx2 · · · dxn,

where the integral(s) are replaced by sums in case X is discrete. The
method of proof is essentially the same. Then (4) becomes

(7)

∫

Θ

∫

[(V (X)− g(θ))2]f(X, θ) dX π(θ)dθ.

Since the integrand is nonnegative and the integrals are well-defined
(possibly infinite) we can interchange the two integrals, and (7) be-
comes

(8)

∫ ∫

Θ

[(V (X)− g(θ))2]f(X, θ)π(θ)dθ dX.

Then applying (3), the factor τ(X) doesn’t depend on θ so we can take
it outside the integral with respect to θ, and (8) becomes

(9)

∫ ∫

Θ

[(V (X)− g(θ))2]πX(θ)dθ τ(X) dX.

In the inner integral with respect to θ in (9), X is fixed and g(θ) is
a random variable with respect to the posterior density πX(θ), having
finite mean-square by (6). To minimize this inner integral we need to
choose V (X), which would be constant for fixed X. By Proposition 1,
the correct constant is given by V (X) = T (X) in (5). Since the risk
is finite for an estimator U by assumption, the minimum risk must be
finite, so T (X) in (5) indeed gives a Bayes estimator. The essential
uniqueness follows from the uniqueness in Proposition 1. �

In case of a Gamma(a, c) prior density for a Poisson parameter λ,
where the posterior density will also be in the gamma family, the ex-
pectation of λ for the posterior density is easy to calculate, see below
under “Conjugate priors.” Similarly, we have an easy calculation for
the posterior expectation of a binomial parameter p using a Beta(a, b)
prior.
Some texts give a different formulation of Theorem 2 in which they

say that the Bayes estimator is the conditional expectation of g(θ) given
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X, T (X) = E(g(θ)|X). That is correct in case
∫

|g(θ)|π(θ)dθ < +∞
but integrals with respect to the posterior distributions may be finite
even if they are not with respect to the prior. There is more about
that in Section 2.6 of the 18.466 OCW notes, but that section is far
from self-contained, so otherwise it isn’t recommended reading in this
course.

4. Admissibility

Recall that a statistic T (X) is said to be inadmissible as an estimator
of a function g(θ) of a parameter θ if there exists another estimator
V (X) such that Eθ((V (X)−g(θ))2) ≤ Eθ((T (X)−g(θ))2) for all θ and
Eθ((V (X) − g(θ))2) < Eθ((T (X) − g(θ))2) for some θ. Then T (X) is
admissible if it is not inadmissible. Let’s call T (X) strongly inadmissible
if we add to the the definition that Eθ[(V (X)− g(θ))2] < Eθ[(T (X)−
g(θ))2] for all θ in a non-empty open set U , namely, a set such that: for
some θ0 in U and r > 0, also θ is in U for all θ such that |θ − θ0| < r.
In one dimension this would just say that U includes a non-degenerate
interval.
If π is a prior density with π(θ) > 0 for almost all θ, i.e. if A is

the set of θ for which π(θ) = 0, then
∫

1A(θ)dθ = 0, and if T is a
Bayes estimator for g(θ), namely the integral of g(θ) times the posterior
density πX(θ), then T cannot be strongly inadmissible, or there would
be an estimator with smaller overall risk (integrating mean-square error
times π(θ)), contradicting the Bayes property of T .
Recall that when we considered unbiased estimation earlier in the

course, in the handout on mean-squred error, it was pointed out that
the usual unbiased estimator

s2X =
1

n− 1

n
∑

j=1

(Xj −X)2

of the variance σ2 for n ≥ 2 is inadmissible for any i.i.d. Xj with σ > 0

and E(X4
1 ) < +∞, using V (X) = (n+2)(n−1)

n(n+1)
s2X (Yatracos’s estimator).

In fact s2X is strongly inadmissible as just defined.

5. Unbiasedness

The Bayes property for squared-error loss turns out to be virtually
incompatible with unbiasedness. Let’s begin with two examples.

Example 1. For 0 ≤ θ ≤ 1 let δθ be the point mass at θ. Suppose θ
is unknown in advance and has prior density U [0, 1]. Suppose that the
true θ = θ0 for some θ0. If we have even one observation X1 from δθ,
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then Pr(X1 = θ0) = 1. So X1 is both an unbiased estimator and a
Bayes estimator of θ for the given prior (or any prior on [0, 1]). That
shows that this combination of properties of an estimator is possible,
but it’s a rather extreme and impractical case.

Example 2. Let p be the success probability in a binomial(n, p) dis-
tribution, and let π(p) > 0 for 0 < p < 1 be a prior density for p.
Then for any observation X, an integer with 0 ≤ X ≤ n, the likelihood
function is proportional to pX(1− p)n−X , which is a bounded function
of p, and a posterior density πX(p) defined by (1) exists. Moreover,

since p is bounded, the integral T (X) =
∫ 1

0
pπX(p)dp is always finite,

in fact satisfies 0 ≤ T (X) ≤ 1, and so has finite risk as an estimator
of p with squared-error loss. So by Theorem 2, T is a Bayes estimator
for p for the given π. Now suppose the true p = 0. Then we will have
Pr(X = 0) = 1 and the likelihood function will be (1 − p)n. Then
πX(p) > 0 for 0 < p < 1 because π(p) > 0, and so Pr(T (X) > 0) = 1
and E0T (X) > 0, so T is not an unbiased estimator of p.
Similarly, when the true p = 1, E1(T (X)) will be less than 1. For

0 < p0 < 1 there do exist priors π of p such that for the Bayes estimators
T (X) for π, Ep0T (X) = p0. But it is not possible to find π such that for
the Bayes estimator T (X) for π, Ep(T (X)) = p for all p with 0 < p < 1,
as a special case of the following theorem.

Theorem 3. Let f(X, θ), θ ∈ Θ, be a parametric family of densi-
ties for X in n-dimensional Euclidean space R

n, with respect to dX =
dx1dx2 · · · dxn, where θ is in any parameter space Θ included in a Eu-
clidean space R

k. For any prior density π on Θ and real-valued function
g on Θ which is a random variable with respect to π, an unbiased esti-
mator T of g is Bayes for π and squared-error loss if and only if it has
risk r(T, π) = 0, so that T (x) = g(θ) with Q-probability 1.

Remark. The theorem shows that an estimator can be both Bayes
and unbiased only when g(θ) can be estimated exactly without error,
as in Example 1.

Proof. “If” is clear. To prove “only if,” by definition of Bayes esti-
mator, T must have finite risk, and by the proof of Theorem 2, with
probability 1 in X,

∫

g(θ)2πX(θ)dθ < ∞. Let τ be the marginal density
of Q for X given by Theorem 1(d). By (3), q(X, θ) = πX(θ)τ(X) with
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probability 1. We have

r(T, π) =

∫ ∫

(T (X)− g(θ))2q(X, θ)dX dθ

=

∫ ∫

T (X)2 − 2T (X)g(θ) + g(θ)2 πX(θ)τ(X)dXdθ.(10)

As the integrand in (10) is nonnegative we can do the integral in either
order. The proof will work by finding two different expressions of the
integral of the cross term −2T (X)g(θ), in (11) and (13), which together
will give (14). First, by the Bayes property and equation (5),

T (X) =

∫

g(θ)πX(θ)dθ.

Doing the integral in (10) in the order dθ dX and doing the integral with
respect to θ of the cross term,X is fixed and we get−2T (X)τ(X)T (X) =
−2T (X)2τ(X). It then follows that

(11) r(T, π) =

∫
[

T (X)2 − 2T (X)2 +

∫

g(θ)2 πX(θ)dθ

]

τ(X)dX.

Since r(T, π)< +∞, and for fixed X, −T (X)2 is also fixed, we have
∫

g(θ)2πX(θ)dθ< +∞ for τ -almost all X, and

(12) r(T, π) =

∫ ∫

[

g(θ)2 − T (X)2
]

q(X, θ)dθ dX.

On the other hand, doing the integral in (10) in the stated order, we
know by unbiasedness that for fixed θ, EθT (X) =

∫

T (X)f(X, θ)dX =
g(θ). By (3), f(X, θ)π(θ) ≡ πX(θ)τ(X). As θ is fixed in the inner
integral dX, we can take π(θ) outside the integral. We then have

∫

−2g(θ)T (X)f(X, θ)dX = −2g(θ)2

and so

(13) r(T, π) =

∫
[
∫

T (X)2f(X, θ)dX − 2g(θ)2 + g(θ)2
]

π(θ)dθ.

Next, r(T, π)< +∞ implies
∫

T (X)2f(X, θ)dX< +∞ for π-almost all
θ, and

(14) r(T, π) =

∫

[

T (X)2 − g(θ)2
]

q(X, θ)dX dθ = −r(T, π)

from (12), so r(T, π) = 0, finishing the proof. �
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6. Conjugate priors

A conjugate prior for a given parametric family of distributions with
a likelihood function is one such that the posterior distributions all
belong to the same parametric family. For example, if θ = λ is a Poisson
parameter with 0 < λ < +∞ and the prior π(θ) is a gamma density,
then the posterior πX(θ) is also in the gamma family. Specifically, if
λ has prior density Gamma(a, c), where a > 0 and c > 0, so that for
λ > 0, π(λ) = caλa−1 exp(−cλ)/Γ(a), and we observe X1, ..., Xn i.i.d.
Poisson(λ) with Sn := X1 + · · · + Xn, then the likelihood function is
proportional to e−nλλSn and so the posterior density is Gamma(a +
Sn, c+n) (it is proportional to this as a function of λ, and a probability
density has a unique normalizing constant). As the expectation for
Γ(a, c) is a/c, the expectation of λ for the posterior distribution (the
Bayes estimate of λ by Theorem 2) is Sn+a

n+c
. With probability 1, this is

asymptotic as n → ∞ to the maximum likelihood estimate Xn = Sn/n,
in other words

Sn + a

n+ c
· n

Sn

→ 1,

because n/(n+ c) → 1 and (Sn + a)/Sn = 1 + (a/Sn) → 1 because by
the law of large numbers, Sn/n → λ and so Sn ∼ nλ → +∞.
Likewise, beta densities give conjugate priors for the binomial prob-

ability p, as will be seen in a problem in PS10.

6.1. Normal-inverse-gamma distributions; conjugate for nor-

mals. Let Y > 0 be a random variable having a distribution func-
tion F and a density f = fY . Let V := 1/Y . Then for any x > 0,
Pr(V ≤ x) = Pr(1/Y ≤ x) = Pr(Y ≥ 1/x) = 1−F (1/x), and so by the
chain rule 1/Y has a density f1/Y (x) = −f(1/x)·(−1/x2) = x−2f(1/x).
Thus if Y has a Gamma(α, β) density f(y) = βαyα−1 exp(−βy)/Γ(α)
then 1/Y has the density

βαy1−α exp(−β/y)/(y2Γ(α)) = βαy−1−α exp(−β/y)/Γ(α)

where α > 0, β > 0, and y > 0, which is called an inverse gamma
(α, β) density.
Parameters of prior or posterior distributions are called hyperparam-

eters. The family of all normal distributions N(µ, σ2) on the real line
has a conjugate prior for the parameter θ = (µ, σ) called the “normal-
inverse-gamma distribution” and given by

(15) πα,β,ν,λ(µ, σ) =

√
ν

σ
√
2π

· βα

Γ(α)

(

1

σ2

)α+1

exp

(

−2β + ν(µ− λ)2

2σ2

)
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with four hyperparameters α > 0, β > 0, ν > 0, and λ ∈ R. For
(15), given the hyperparameters, the marginal density of σ2 is inverse
gamma (α, β), or equivalently 1/σ2 has Gamma(α, β), and the condi-
tional density of µ given σ is N(λ, σ2/ν). If σ is fixed, then the normal
distributions give a conjugate prior family for µ, which is much simpler,
but it’s usually unrealistic to assume σ is known. Likewise if µ is fixed,
the gamma distributions for 1/σ2 give a conjugate prior family, but for
µ to be fixed is also usually unrealistic. For the joint conjugate prior
density (15) of µ and σ2, µ and σ2 are not independent: the density
is not a product f(µ) times g(σ) for any functions f and g. So the
joint conjugate prior is a bit complicated. There seem to be no rules
for choosing hyperparameters. It is not proved here that it is actually
a conjugate prior family for normals.

Why do Bayes estimation of normal parameters?

If one observes X1, ..., Xn assumed to be i.i.d. N(µ, σ2) for some un-
known µ and some σ > 0, then the sample mean X is a natural and
usual estimator of µ and is the MLE of µ. It cannot be the Bayes esti-
mator for any non-trivial prior distribution for µ, because it is unbiased
(Theorem 3).
For σ2, we’ve considered estimators cn

∑n
j=1(Xj − X)2, which are

unbiased for cn = 1/(n− 1), MLEs for cn = 1/n, and minimize mean-
squared error for cn = 1/(n+ 1). The three factors cn differ from each
other by amounts of order O(1/n2), which is relatively small for n large.
The unbiased choice cn = 1/(n − 1) gives an inadmissible estimator:
Yatracos showed that cn = (n+2)/[n(n+1)] gives smaller mean-square
error, not only for normal distributions but for all distributions with
E(X4

1 ) < ∞ and variance σ2 > 0.
In Section 2.7 of the 18.466 (2003) OCW notes, it’s pointed out that

X is an admissible estimator of µ. Likewise for 2-dimensional i.i.d.
random vectors Xi with distribution N(µ, I) where I is the identity
covariance matrix, the sample mean vector X is still an admissible
estimator of the mean vector µ. But in dimension d ≥ 3, X is no
longer admissible, as Charles Stein proved in 1956, with a proof given
in Lehmann (1983, 1991; Lehmann and Casella, 1998) and also in the
OCW notes. The inadmissibility for d ≥ 3 is sometimes called “Stein’s
phenomenon.” Bayes estimators T (·) are generally admissible, as noted
above, but for the normal µ they may not be “minimax,” specifically,
for large |µ|, E(|T (X)− µ|2) may be substantially larger than E(|X −
µ|2) = d.
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In applied statistics, it seems that the sample mean vector X contin-
ues to be used unless there is a reason to think that it may be influenced
by outliers.

7. Credible intervals

These are the Bayesian counterparts of confidence intervals. A 100(1−
α)% credible interval for a real parameter θ is one that has posterior
probability 1 − α of containing θ. A two-sided 95% credible interval
for θ, for example, would be the interval with endpoints the 0.025 and
0.975 quantiles of the posterior distribution. For any family of distribu-
tions which R handles, one can compute quantiles by “qfamily(β, θ)”
where θ is a parameter or a list of parameters and we want the β quan-
tile, for example qbeta(0.025, a, b) would give the 0.025 quantile of a
Beta(a, b) distribution. There are cases where a maximum likelihood
estimate (MLE) is unbiased, as with the sample mean X for the normal
mean µ or the Poisson parameter λ. In such cases, typically a Bayes
estimator will be somewhere between the MLE and the mean of the
prior distribution, becoming asymptotic to the MLE as n → ∞.

8. Historical Notes

These notes are based on Stigler (1986), pp. 359-362. The field of
“Bayesian” statistics is named for Thomas Bayes, who wrote a paper
about the method in 1764. But the work by the leading mathematician
and scientist Laplace (1774) attracted more attention. Stigler (p. 361)
wrote that Bayes’s article “was ignored until after 1780 and played no
important role in scientific debate until the twentieth century.” Laplace
used the U [0, 1] prior distribution for a binomial parameter p and noted
that the posterior distributions are beta distributions. Stigler (p. 359)
writes “we can be reasonably certain Laplace was unaware of Bayes’s
earlier work.”
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